Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (14): 2838-2847.doi: 10.3864/j.issn.0578-1752.2012.14.006

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of the Pathogen Causing Fusarium Root Rot of Pea and Diversity of Pathogenicity Genes

 XIANG  Ni, DUAN  Can-Xing, XIAO  Yan-Nong, WANG  Xiao-Ming, ZHU  Zhen-Dong   

  1. 1.中国农业科学院作物科学研究所/国家农作物基因资源与基因改良国家重大科学工程,北京 100081
    2.华中农业大学植物科技学院,武汉 430070
  • Received:2011-10-26 Online:2012-07-15 Published:2012-04-26

Abstract: 【Objective】The objective of this study is to determine the pathogen causing Fusarium root rot on pea and diversity of pathogenicity genes.【Method】The Fusarium isolates were identified by PCR detection using specific primers for F. solani, morphological characteristics, and pathogenicity test. Pea pathogenicity genes PDA, PEP1, PEP3, and PEP5 in the isolates identified as F. solani f. sp. pisi were detected using the gene-specific primers.【Result】Ninety-six isolates were identified as F. solani f. sp. pisi. Pathogenicity tests showed that all isolates were pathogenic to pea variety “Caoyuan 27”. There was a great difference in virulence among the isolates with 8.3%, 10.4% and 81.3% being weakly virulent, moderately virulent and highly virulent to pea, respectively. Results of the PCR detection of the pathogenicity genes indicated that there were 10 combinations of pathogenicity genes (genotypes) in the 96 isolates and about 91% isolates possessed three or 4 pathogenicity genes. Most of the isolates containing four or three pathogenicity genes were highly virulent (87.4%) or moderately virulent (9.2%). The isolates without the PDA generally possessed weak virulence. These results suggest that virulence of F. solani f. sp. pisi isolates were determined by the type, the number, and/or the combination of the pathogenicity genes.【Conclusion】F. solani f. sp. pisi is the major pathogen causing pea root rot, and the highly virulent pathogen type appears to be prevalent in main pea production areas in China.

Key words: pea, Fusarium root rot, Fusarium solani f. sp. pisi, virulence, pathogenicity gene

[1]Graham P H, Vance C P. Legumes: importance and constraints to greater use. Plant Physiology, 2003, 131(3): 872-877.

[2]Etebu E, Osborn A M. In search of target gene(s) to quantify pea pathogenic Nectria haematococca in agricultural soils. Current Research Journal of Biological Sciences, 2011, 3(3): 195-208.

[3]Kraft J M, Pfleger F L. Compendium of Pea Diseases and Pests, 2nd ed. St. Paul, Minnesota: American Phytopathological Society, 2001.

[4]Etebu E, Osborn A M. Molecular quantification of the pea footrot disease pathogen (Nectria haematococca) in agricultural soils. Phytoparasitica, 2010, 38(5): 447-454.

[5]Rush C M, Kraft J M. Effects of inoculum density and placement on Fusarium root rot of peas. Phytopathology, 1986, 76(12): 1325-1329.

[6]刁治民. 青海豌豆根腐病病原菌种类及致病性的研究. 微生物学杂志, 1996, 16(1): 31-34.

Diao Z M. Studies on the species and pathogenicity of root disease of peas in Qinghai province. Journal of Microbiology, 1996, 16(1): 31-34. (in Chinese)

[7]郑卓杰. 我国豌豆资源研究的回顾和展望. 中国种业, 1982(2): 17-18.

Zheng Z J. Review and prospect on pea resources in China. China Seeds, 1982(2): 17-18. (in Chinese)

[8]宗绪晓, 关建平, 王述民, 刘庆昌. 中国豌豆地方品种SSR 标记遗传多样性分析. 作物学报, 2008, 34(8): 1330-1338.

Zong X X, Guan J P, Wang S M, Liu Q C. Genetic diversity among Chinese pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agronomica Sinica, 2008, 34(8): 1330-1338. (in Chinese)

[9]余大绂. 中国镰刀菌属 (Fusarium)菌种的初步名录. 植物病理学报, 1955, 1(1): 1-18.

Yu T F. A preliminary list of Fusaria in China. Acta Phytopathologica Sinica, 1955, 1(1): 1-18. (in Chinese)

[10]王春梅, 连荣芳, 墨金萍, 王思慧. 甘肃豌豆根腐病研究及抗病育种. 杂粮作物, 2008, 28(4): 272-273.

Wang M C, Lian R F, Mo J P, Wang S H. Research of the pea root rot and resistant breeding in Gansu province. Rain Fed Crops, 2008, 28(4): 272-273. (in Chinese)

[11]伍克俊, 谢正团, 李秀君.甘肃中部地区豌豆根腐病病原研究. 甘肃农业大学学报, 1992, 27(3): 225-231.

Wu K J, Xie Z T, Li X J. Study on the pathogens of root rot of pea in the central region of Gansu provine. Journal of Gansu Agricultural University, 1992, 27(3): 225-231. (in Chinese)

[12]唐德志, 何苏琴, 李玉奇, 朱润身. 甘肃豌豆根病的病原菌种类及致病力研究. 西北农业学报, 1993, 2(2): 37-39.

Tang D Z, He S Q, Li Y Q, Zhu R S. Studies on the species and pathogenicity of root disease of peas in Gansu province. Acta Agriculturae Boreali-occidentalis Sinica, 1993, 2(2): 37-39. (in Chinese)

[13]王宽仓, 张宗山, 陈渐宁, 樊仲庆, 牛宝山, 赵  明, 谢成君. 豌豆根腐病发生规律及综合防治技术研究. 宁夏农林科技, 1995(5): 1-6.

Wang K C, Zhang Z S, Chen J N, Fan Z Q, Niu B S, Zhao M, Xie C J. Studies on occurrence regulation and the integrated prevention and control techniques of Fusarium root rot of pea. Ningxia Journal of Agriculture and Forestry Science and Technology, 1995(5): 1-6. (in Chinese)

[14]陈庆河, 翁启勇, 何玉仙, 赵  健. 福建省豌豆根腐病病原及致病性研究. 福建农业学报, 2004, 19(1): 28-31.

Chen Q H, Weng Q Y, He Y X, Zhao J. Pathogens and pathogenicity of root disease of peas in Fujian Province. Fujian Journal of Agricultural Science, 2004, 19(1): 28-31. (in Chinese)

[15]宋  刚, 徐玉明. 豌豆品种抗根腐病鉴定初报. 杂粮作物, 2001, 21(4): 40-41.

Song G, Xu Y M. Preliminary report of the resistant pea cultivar to root rot disease. Rain Fed Crops, 2001, 21(4): 40-41. (in Chinese)

[16]Infantino A, Kharrat M, Riccioni L, Coyne C J, McPhee K E, Grünwald N J. Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica, 2006, 147(1/2): 201-221.

[17]Feng J, Hwang R, Chang K F, Conner R L, Hwang S F, Strelkov S E, Gossen B D, McLaren D L, Xue A G. Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Canadian Journal of Plant Science, 2011, 91(1): 199-204.

[18]Etebu E, Osborn A M. Molecular assays reveal the presence and diversity of genes encoding pea footrot pathogenicity determinants in Nectria haematococca and in agricultural soils. Journal of Applied Microbiology, 2009, 106(5): 1629-1639.

[19]VanEtten H D, Funnel-Baerg D, Wasmann C, McCluskey K. Location of pathogenicity genes on dispensable chromosomes in Nectria haematococca MPVI. Antonie van Leeuwenhoek, 1994, 65(3): 263-267. 

[20]Han Y N, Liu X G, Benny U, Kistler H C, VanEtten H D. Genes determining pathogenicity to pea are clustered on a supernumerary chromosomes in the fungal plant pathogen Nectria haematococca. The Plant Journal, 2001, 25(3): 305-314.

[21]Temporini E D, VanEtten H D. Distribution of the pea pathogenicity (PEP) genes in the fungus Nectria haematococca mating population VI. Current Genetics, 2002, 41(2): 107-114.

[22]VanEtten H D, Matthews P S, Tegtmeier K J, Dietert M F, Stein J I. The association of pisatin tolerance and demethylation with virulence on pea in Nectria haematococca. Physiological Plant Pathology, 1980, 16(2): 257-268.

[23]Matthews D E, VanEtten H D. Detoxification of the phytoalexin pisatin by a fungal cytochrome P-450. Archives of Biochemistry and Biophysics, 1983, 224(2): 494-505.

[24]Kistler H C, VanEtten H D. Regulation of pisatin demethylation in Nectria haematococca and its influence on pisatin tolerance and virulence. Journal of General Microbiology, 1984, 130: 2605-2613.

[25]Miao V P W, Matthews D E, VanEtten H D. Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca. Molecular and General Genetics, 1991, 226(1/2): 214-223.

[26]George H L, Hirschi K D, VanEtten H D. Biochemical properties of the products of the cytochrome P450 genes (PDA) encoding pisatin demethylase activity in Nectria haematococca. Archives of Microbiology, 1998, 170(3): 147-154.

[27]Wasmann C C, VanEtten H D. Transformation mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Molecular Plant-Microbe Interactions, 1996, 9(9): 793-803.

[28]Temporini E D, VanEtten H D. An analysis of the phylogenetic distribution of the pea pathogenicity genes of Nectria haematococca MPVI supports the hypothesis of their origin by horizontal transfer and uncovers a potentially new pathogen of garden pea Neocosmospora boniensis. Current Genetics, 2004, 46(1): 29-36.

[29]Etebu E, Osborn A M. A potential model for pea footrot disease prediction. Asian Journal of Agricultural Sciences, 2011, 3(3): 177-186.

[30]Nelson P E, Toussoun T A, Marasas W F O. Fusarium Species: an Illustrated Manual for Identification. Pennsylvania: Pennsylvania State University Press, 1983.

[31]易润华, 朱西儒, 周而勋. 简化CTAB法快速微量提取丝状真菌DNA. 湛江海洋大学学报, 2003, 23(6): 72-73.

Yi R H, Zhu X R, Zhou E X. Simplified CTAB method for rapid extraction DNA of filamentous fungal. Journal of Zhanjiang Ocean University, 2003, 23(6): 72-73. (in Chinese)

[32]Lievens B, Brouwer M, Vanachter A, Cammue B, Thomma B. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Science, 2006, 171(1): 155-165.

[33]Fisher N L, Burgess L M, Toussoun T A, Nelson P E. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology, 1982, 72(1): 151-153.

[34]Matuo T, Snyder W C. Use of morphology and mating populations in the identification of formae specials in Fusarium solani. Phytopathology, 1973, 63: 562-565.

[35]Zaccardelli M, Vitale S, Luongo L, Merighi M, Corazza L. Morphological and molecular characterization of Fusarium solani isolates. Journal of Phytopathology, 2008, 156(9): 534-541.

[36]Jung Y S, Kim Y T, Yoo S J, Kim H G. Mycological characteristics of Fusarium solani f. sp. pisi isolates from pea, ginseng and soybean in Korea. The Plant Pathology Journal, 1999, 15(1): 44-47.

[37]Etebu E, Osborn A M. Pea footrot disease depends on the combination of pathogenicity genes in Nectria haematococca. Asian Journal of Agricultural Sciences, 2011, 3(3): 156-161.

[38]Ciuffetti L M, VanEtten H D. Virulence of a pisatin demethylase-deficient Nectria haematococca MPVI isolate is increased by transformation with a pisatin demethylase gene. Molecular Plant-Microbe Interactions, 1996, 9(9): 787-792.

[39]Liu X, Inlow M, VanEtten H D. Expression profiles of pea pathogenicity (PEP) genes in vivo and in vitro, characterization of the flanking regions of the PEP cluster and evidence that the PEP cluster region resulted from horizontal gene transfer in the fungal pathogen Nectria haematococca. Current Genetics, 2003, 44(2): 95-103.

[40]Coleman J J, White G J, Rodriguez-Carres M, VanEtten H D. An ABC transporter and a cytochrome P450 of Nectria haematococca MPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin. Molecular Plant-Microbe Interactions, 2011, 24(3): 368-376. 

[41]Funnell D L, VanEtten H D. Pisatin demethylase genes are on dispensable chromosomes while genes for pathogenicity on carrot and ripe tomato are on other chromosomes in Nectria haematococca. Molecular Plant-Microbe Interactions, 2002, 15(8): 840-846.

[42]Tegtmeier K J, VanEtten H D. The role of pisatin tolerance and degradation in the virulence of Nectria haematococca on peas: a genetic analysis. Phytopathology, 1982, 72(6): 608-612.

[43]Mackintosh S F, Matthews D E, VanEtten H D. Two additional genes for pisatin demethylation and their relationship to the pathogenicity of Nectria haematococca on pea. Molecular Plant-Microbe Interactions, 1989, 2(6): 354-362.

[44]Maloney A P, VanEtten H D. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Molecular and General Genetics, 1995, 243(5): 506-514.

[45]Funnell D L, Matthews P S, VanEtten H D. Identification of new pisatin demethylase genes (PDA5 and PDA7) in Nectria haematococca and non-Mendelian segregation of pisatin demethylating ability and virulence on pea due to loss of chromosomal elements. Fungal Genetics and Biology, 2002, 37(2): 121-133.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] ZHANG Rui,ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue. Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species [J]. Scientia Agricultura Sinica, 2022, 55(9): 1859-1867.
[3] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[4] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[7] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[8] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[11] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[12] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[13] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[14] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[15] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!