Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (14): 2801-2814.doi: 10.3864/j.issn.0578-1752.2012.14.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Advances in Molecular Biology Research of Interaction between Plants and Beneficial Microorganisms and Their Applications in Plant Improvement

 ZHOU  Xiao-Hong, TIAN  Fang, DU  Li-Pu, WANG  Ke, LIN  Zhi-Shan, YE  Xing-Guo   

  1. 1.中国农业科学院作物科学研究所/国家基因资源与遗传改良重大科学工程/农业部作物遗传育种重点开放实验室,北京 100081
     2.中国农业科学院植物保护研究所/植物病虫害生物学国家重点实验室,北京 100093
  • Received:2012-02-15 Online:2012-07-15 Published:2012-05-07

Abstract: There is a close and complex relationship between plants and microorganisms in their living environments, and they both evolve synchronously and use products from each other for better surviving in the long evolutionary history. The resistance of plants to microorganisms has been increased with the enhancement of the virulence of pathogenic microorganisms, and meanwhile the economic traits of plants related to agronomic biology, yield and quality, have also been improved through nature variation or human interfering technologies. Molecular biology of plant-pathogen interactions has promoted the establishment of genetic engineering breeding strategies, in particular, gene transformation, mediated by microorganisms has become a very important technology for genetic improvement of plants. The immune responses, signal transduction and molecular mechanisms involved in the interaction of plants and some main beneficial microorganisms, and the advances in applying beneficial microorganisms in genetic engineering of plant improvement were reviewed. The immune response pathways, and the molecular signaling pathway in the interaction between plants and some beneficial microorganisms including Rhizobium, Agrobacterium, endophytes and virus, were described in detail, and the application of them in genetic engineering and breeding was summarized. This review will help people  in related research fields to accurately recognize the essence of plant pathogens, change conventional ideas, and improve the resistance or tolerance of plants to biotic or abiotic stresses by using the positive side of beneficial microorganisms to obtain good crop varieties.

Key words: plants, Agrobacterium, Rhizobium, endophyte, plant virus, interaction

[1]Jones J D, Dangl J L. The plant immune system. Nature, 2006, 444(7117): 323-329.

[2]Aderem A, Ulevitch R J. Toll-like receptors in the induction of the innate immune response. Nature, 2000, 406(6797): 782-787.

[3]Madala N E, Molinaro A, Dubery I A. Distinct carbohydrate and lipid-based molecular patterns within lipopolysaccharides from Burkholderia cepacia contribute to defense-associated differential gene expression in Arabidopsis thaliana. Innate Immunity, 2012, 18(1): 140-154.

[4]Lee J, Klessig D F, Nurnberger T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. The Plant Cell, 2001, 13(5): 1079-1093.

[5]Felix G, Duran J D, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999, 18(3): 265-276.

[6]Nurnberger T, Brunner F. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Current Opinion in Plant Biology, 2002, 5(4): 318-324.

[7]Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou J M. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host and Microbe, 2007, 1(3): 175-185.

[8]Wittstock U, Gershenzon J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology, 2002, 5(4): 300-307.

[9]Blume B, Nurnberger T, Nass N, Scheel D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. The Plant Cell, 2000, 12(8): 1425-1440.

[10]Kim M C, Panstruga R, Elliott C, Muller J, Devoto A, Yoon H W, Park H C, Cho M J, Schulze-Lefert P. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 2002, 416(6879): 447-451.

[11]Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4800-4805.

[12]Lamb C, Dixon R A. The oxidative burst in plant disease resistance. Annual Reviews Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275.

[13]Fellbrich G, Blume B, Brunner F, Hirt H, Kroj T, Ligterink W, Romanski A, Nurnberger T. Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant Cell and Physiologist, 2000, 41(6): 692-701.

[14]Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. Systemic acquired resistance. The Plant Cell, 1996, 8(10): 1809-1819.

[15]Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 2002, 5(4): 325-331.

[16]von Saint Paul V,Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schaffner A R. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. The Plant Cell, 2011, 23(11): 4124-4145.

[17]Kumar D, Klessig D F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 16101-16106.

[18]Falk A, Feys B J, Frost L N, Jones J D, Daniels M J, Parker J E. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(6): 3292-3297.

[19]Jirage D, Tootle T L, Reuber T L, Frost L N, Feys B J, Parker J E, Ausubel F M, Glazebrook J. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(23): 13583-13588.

[20]Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance. Trends in Genetics, 2000, 16(10): 449-455.

[21]Slaymaker D H, Navarre D A, Clark D, del Pozo O, Martin G B, Klessig D F. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11640-11645.

[22]Mukhtar M S, Nishimura M T, Dangl J. NPR1 in plant defense: It's not over'til it's turned over. Cell, 2009, 137(5): 804-806.

[23]Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert P R. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. The Plant Cell , 2003, 15(9): 2181-2191.

[24]Young J M, Kuykendall L D, Martinez-Romero E, Kerr A, Sawada H. Classification and nomenclature of Agrobacterium and Rhizobium. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(5): 1689-1695.

[25]史晓霞, 师尚礼, 杨  晶, 王正凤. 豆科植物根瘤茵分类研究进展. 草坪与草原, 2006(1): 12-16.

Shi X X, Shi S L, Yang J, Wang Z F. Research advancement in taxonomy of Rhizobium leguminosarum. Grassland and Turf, 2006(1): 12-16. (in Chinese)

[26]Stachel S E, Nester E W. The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. The EMBO Journal, 1986, 5(7): 1445-1454.

[27]Altabe S, de Iannino N I, De Mendoza D, Ugalde R. Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp. Journal of bacteriology, 1990, 172(5): 2563-2567.

[28]Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiology and Molecular Biology Reviews, 2005, 69(1): 155-194.

[29]Jin S, Roitsch T, Ankenbauer R G, Gordon M P, Nester E W. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. Journal of Bacteriology, 1990, 172(2): 525-530.

[30]Wise A A, Fang F, Lin Y H, He F, Lynn D G, Binns A N. The receiver domain of hybrid histidine kinase VirA: An enhancing factor for vir gene expression in Agrobacterium tumefaciens. Journal of  Bacteriology, 2010, 192(6): 1534-1542.

[31]Mantis N J, Winans S C. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. Journal of Bacteriology, 1993, 175(20): 6626-6636.

[32]Cangelosi G A, Martinetti G, Leigh J A, Lee C C, Thienes C, Nester E W. Role for Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. Journal of Bacteriology, 1989, 171(3): 1609-1615.

[33]Matthysse A G, Yarnall H, Boles S B, McMahan S. A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. Biochimica et Biophysica Acta, 2000, 1490(1/2): 208-212.

[34]Wood D W, Setubal J C, Kaul R, Monks D E, Kitajima J P, Okura V K, Zhou Y, Chen L, Wood G E, Almeida N F, Jr., Woo L, Chen Y, Paulsen I T, Eisen J A, Karp P D, Bovee D, Sr., Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li M J, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao Z Y, Dolan M, Chumley F, Tingey S V, Tomb J F, Gordon M P, Olson M V, Nester E W. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 2001, 294(5550): 2317-2323.

[35]Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman B S, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 2001, 294(5550): 2323-2328.

[36]Nair G R, Liu Z, Binns A N. Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiology, 2003, 133(3): 989-999.

[37]Schroder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid, 2005, 54(1): 1-25.

[38]Gelvin S B. Agrobacterium-mediated plant transformation: The biology behind the "gene-jockeying" tool. Microbiology and Molecular Biology Reviews, 2003, 67(1): 16-37

[39]Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H. Trojan horse strategy in Agrobacterium transformation: Abusing MAPK defense signaling. Science, 2007, 318(5849): 453-456.

[40]Tzfira T, Vaidya M, Citovsky V. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature, 2004, 431(7004): 87-92.

[41]Chen I, Christie P J, Dubnau D. The ins and outs of DNA transfer in bacteria. Science, 2005, 310(5753): 1456-1460.

[42]Guo M, Hou Q, Hew C L, Pan S Q. Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Molecular Plant-Microbe Interactions, 2007, 20(10): 1201-1212.

[43]Guo M, Jin S, Sun D, Hew C L, Pan S Q. Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 20019-20024.

[44]Ditt R F, Nester E W, Comai L. Plant gene expression response to Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10954-10959.

[45]Yuan Z C, Liu P, Saenkham P, Kerr K, Nester E W. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. Journal of Bacteriology, 2008, 190(2): 494-507.

[46]Ballas N, Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(20): 10723-10728.

[47]Tao Y, Rao P K, Bhattacharjee S, Gelvin S B. Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(14): 5164-5169.

[48]Bako L, Umeda M, Tiburcio A F, Schell J, Koncz C. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17): 10108-10113.

[49]Tzfira T, Vaidya M, Citovsky V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. The EMBO Journal, 2001, 20(13): 3596-3607.

[50]Tzfira T, Vaidya M, Citovsky V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10435-10440.

[51]Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore K S. Arabidopsis VIRE2 interacting protein 2 is required for Agrobacterium T-DNA integration in plants. The Plant Cell, 2007, 19(5): 1695-1708.

[52]Hoff De P L, Brill L M, Hirsch A M. Plant lectins: The ties that bind in root symbiosis and plant defense. Molecular Genetics and Genomics, 2009, 282(1): 1-15.

[53]Hamblin J, Kent S P. Possible role of phytohaemagglutinin in Phaseolus vulgaris L.. Nature New Biology, 1973, 245(140): 28-30.

[54]Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé J C, Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, 1990, 344(6268): 781-784.

[55]van de Wiel C, Scheres B, Franssen H, van Lierop M J, van Lammeren A, van Kammen A,  Bisseling T. The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. The EMBO Journal, 1990, 9(1): 1-7.

[56]Csanadi G, Szecsi J, Kalo P, Kiss P, Endre G, Kondorosi A, Kondorosi E, Kiss G B. ENOD12, an early nodulin gene, is not required for nodule formation and efficient nitrogen fixation in alfalfa. The Plant Cell, 1994, 6(2): 201-213.

[57]Khan J A, Wang Q, Sjolund R D, Schulz A, and Thompson G A. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis. Plant Physiology, 2007, 143(4): 1576-1589.

[58]Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425(6958): 585-592.

[59]Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Ma L, Hong Z, Zhang Z. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. Plant Physiology, 2012, 159: 131-143.

[60]Ane J M, Kiss G B, Riely B K, Penmetsa R V, Oldroyd G E, Ayax C, Levy J, Debelle F, Baek J M, Kalo P, Rosenberg C, Roe B A, Long S R, Denarie J, Cook D R. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science, 2004, 303(5662): 1364-1367.

[61]Riely B K, Lougnon G, Ane J M, Cook D R. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. The Plant Journal, 2007, 49(2): 208-216.

[62]Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R. Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(29): 10375-10380.

[63]Gleason C, Chaudhuri S, Yang T, Munoz A, Poovaiah B W, Oldroyd G E. Nodulation independent of Rhizobia induced by a calcium- activated kinase lacking autoinhibition. Nature, 2006, 441(7097): 1149-1152.

[64]Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, and Hayashi M. Gibberellin controls the nodulation signaling pathway in Lotus japonicus. The Plant Journal, 2009, 58(2): 183-194.

[65] Shrawat A K, Lorz H. Agrobacterium-mediated transformation of cereals: A promising approach crossing barriers. Plant Biotechnology Journal, 2006, 4(6): 575-603.

[66]Gould J, Devey M, Hasegawa O, Ulian E C, Peterson G, Smith R H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiology, 1991, 95(2): 426-434.

[67]Philippe V. Thirty years of plant transformation technology development. Plant Biotechnology Journal, 2007, 5(2): 221-229.

[68]James C. 2011年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2012, 32(1): 1-14

James C. The commercial development situation of global biological technology/gm crops in 2011. China Biotechnology, 2012, 32(1): 1-14. (in Chinese)

[69]Abuodeh R O, Orbach M J, Mandel M A, Das A, Galgiani J N. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. The Journal of Infectious Diseases, 2000, 181(6): 2106-2110.

[70]Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1871-1876.

[71]Broothaerts W, Mitchell H J, Weir B, Kaines S, Smith L M, Yang W, Mayer J E, Roa-Rodriguez C, Jefferson R A. Gene transfer to plants by diverse species of bacteria. Nature, 2005, 433(7026): 629-633.

[72]Ma Y M, Li Y, Liu J Y, Song Y C, Tan R X. Anti-Helicobacter pylori metabolites from Rhizoctonia sp. Cy064, an endophytic fungus in Cynodon dactylon. Fitoterapia, 2004, 75(5): 451-456.

[73]Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kuhn T, Pelzing M, Sakayaroj J, Taylor W C. Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry, 2008, 69(9): 1900-1902.

[74]Song Y C, Li H, Ye Y H, Shan C Y, Yang Y M, Tan R X. Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiology Letters, 2004, 241(1): 67-72.

[75]Khan A L, Hamayun M, Kang S M, Kim Y H, Jung H Y, Lee J H, Lee I J. Endophytic fungal association via gibberellins and indole acetic acid secretion can improve plant growth potential in abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiology, 2012, 12(1): 3.

[76]Saikkonen K, Faeth S, Helander M, Sullivan T. Fungal endophytes: A continuum of interactions with host plants. Annual Review of Ecology and Systematics, 1998: 319-343.

[77]Moricca S, Ragazzi A. Fungal endophytes in Mediterranean oak forests: A lesson from Discula quercina. Phytopathology, 2008, 98(4): 380-386.

[78]Saikkonen K, Wali P R, Helander M. Genetic compatibility determines endophyte-grass combinations. PLoS Pathogens, 2010, 5(6): e11395.

[79]Kogel K H, Franken P, Huckelhoven R. Endophyte or parasite-what decides? Current Opinion in Plant Biology, 2006, 9(4): 358-363.

[80]Márquez L M, Redman R S, Rodriguez R J, Roossinck M J. A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science, 2007, 315(5811): 513-515.

[81]Shahollari B, Vadassery J, Varma A, Oelmüller R. A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. The Plant Journal, 2007, 50(1): 1-13.

[82]Cunningham P, Foot J, Reed K. Perennial ryegrass (Lolium perenne) endophyte (Acremonium lolii) relationships: The Australian experience. Agriculture, Ecosystems and Environment, 1993, 44: 157-168.

[83]Noh M J, Yang J G, Kim K S, Yoon Y M, Kang K, Han H Y, Shim S B, Park H J. Isolation of a novel microorganism, Pestalotia heterocornis, producing paclitaxel. Biotechnology and Bioengineering, 1999, 64(5): 620-623.

[84]Krohn K, Flörke U, Rao M S, Steingröver K, Aust H J, Draeger S, Schulz B. Metabolites from fungi 15. new isocoumarins from an endophytic fungus isolated from the Canadian thistle Cirsium arvense. Natural Product Letters, 2001, 15(5): 353-361.

[85]Villarreal L P. Are viruses alive? Scientific American, 2004, 291: 100-105.

[86]Roossinck M J. Mechanisms of plant virus evolution. Annual Reviews Phytopathology, 1997, 35: 191-209.

[87]Aranda M A, Fraile A, Dopazo J, Malpica J M, Garcia-Arenal F. Contribution of mutation and RNA recombination to the evolution of a plant pathogenic RNA. Journal of Molecular Evolution, 1997, 44(1): 81-88.

[88]Corona F M O, Lebas B S M, Elliott D, Tang J, Alexander B J R. New host records and new host family range for turnip mosaic virus in New Zealand. Australasian Plant Disease Notes, 2007, 2(1): 127-130.

[89]Mochizuki T, Ohki S T. Cucumber mosaic virus: Viral genes as virulence determinants. Molecular Plant  Pathology, 2011, 13(3): 217-225.

[90]Nouri S, Falk B W, Groves R L. A new satellite RNA is associated with natural infections of cucumber mosaic virus in succulent snap bean. Archives of Virology, 2011, 157(2): 375-377.

[91]Körbelin J, Willingmann P, Adam G, Heinze C. The complete sequence of tobacco mosaic virus isolate Ohio V reveals a high accumulation of silent mutations in all open reading frames. Archives of Virology, 2011, 157(2): 387-389.

[92]Huh S U, Kim K J, Paek K H. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochemical and Biophysical Research Communications, 2012, 417(2): 910-917.

[93]McCormick A A, Kumagai M H, Hanley K, Turpen T H, Hakim I, Grill L K, Tuse D, Levy S, Levy R. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2): 703-708.

[94]Nichols M E, Stanislaus T, Keshavarz-Moore E, Young H A. Disruption of leaves and initial extraction of wildtype CPMV virus as a basis for producing vaccines from plants. Journal of Biotechnology, 2002, 92(3): 229-235.

[95]Mechtcheriakova I, Eldarov M, Nicholson L, Shanks M, Skryabin K, Lomonossoff G. The use of viral vectors to produce hepatitis B virus core particles in plants. Journal of Virological Methods, 2006, 131(1): 10-15.

[96]Fernandez-Fernandez M R, Mourino M, Rivera J, Rodriguez F, Plana-Duran J, Garcia J A. Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology, 2001, 280(2): 283-291.

[97]Yasawardene S G, Lomonossoff G P, Ramasamy R. Expression and immunogenicity of malaria merozoite peptides displayed on the small coat protein of chimaeric cowpea mosaic virus. Indian Journal of Medical Research, 2003, 118: 115-124.

[98]Yusibov V, Mett V, Davidson C, Musiychuk K, Gilliam S, Farese A, Macvittie T, Mann D. Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine, 2005, 23(17/18): 2261-2265.

[99]Brennan F R, Gilleland L B, Staczek J, Bendig M M, Hamilton W D, Gilleland H E, Jr. A chimaeric plant virus vaccine protects mice against a bacterial infection. Microbiology, 1999, 145: 2061-2067.

[100]Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y. Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 2005, 23(6): 718-723.

[101]Hammond-Kosack K E, Staskawicz B, Jones J, Baulcombe D. Functional expression of a fungal avirulence gene from a modified potato virus X genome. Molecular Plant Microbe Interactions, 1995, 8(1): 181-185.

[102]Kumagai M, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill L. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(5): 1679-1683.

[103]Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyan J, Masuta C. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathogens, 2011, 7(5): 1002021.

[104]Hu Q, Niu Y, Zhang K, Liu Y, Zhou X. Virus-derived transgenes expressing hairpin RNA give immunity to tobacco mosaic virus and Cucumber mosaic virus. Virology Journal, 2011, 8(1): 41-52.

[105] Stafford C A, Walker G P, Ullman D E. Infection with a plant virus modifies vector feeding behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(23): 9350-9355.
[1] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[4] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[5] WANG Bing,LI HuiMin,CAO HaiQun,WANG GuiRong. Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2021, 54(8): 1653-1672.
[6] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[7] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[8] YANG FengKe,HE BaoLin,DONG Bo,WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region [J]. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325.
[9] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[10] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[11] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[12] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[13] Yang YANG,HongLi TIAN,HongMei YI,YaWei LIU,Jie REN,Rui WANG,Lu WANG,JiuRan ZHAO,FengGe WANG. Analysis of the Current Status of Protection of Maize Varieties in China [J]. Scientia Agricultura Sinica, 2020, 53(6): 1095-1107.
[14] GONG Qiang,WANG Ke,YE XingGuo,DU LiPu,XU YanHao. Generation of Marker-Free Transgenic Barley Plants by Agrobacterium-Mediated Transformation [J]. Scientia Agricultura Sinica, 2020, 53(18): 3638-3649.
[15] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!