Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (14): 2793-2800.doi: 10.3864/j.issn.0578-1752.2012.14.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTLs Analysis of Wheat Seedling Traits under Salt Stress

 REN  Yong-Zhe, XU  Yan-Hua, GUI  Xiang-Wei, WANG  Su-Ping, DING  Jin-Ping, ZHANG  Qing-Chen, MA  Yuan-Song, PEI  Dong-Li   

  1. 1.商丘师范学院生命科学学院,河南商丘 476000
    2.河南省延津县农业局,河南延津 453200
  • Received:2012-02-17 Online:2012-07-15 Published:2012-04-19

Abstract: 【Objective】The present study is aimed to identify QTLs associated with seedling traits under salt stress in common wheat (Triticum aestivum L.) and provide target loci and linked molecular markers for marker assisted selection of wheat salt tolerant-related traits.【Method】A hydroponic culture was carried out to evaluate wheat seedling traits (RDW, MRL, SDW, TDW) under control (CK) and salt stress (ST) conditions by using a recombinant inbred line (RIL) population derived from two Chinese wheat varieties Xiaoyan 54 and Jing 411. The relative values of each trait (ratio of ST/CK) were also calculated. 【Result】 A total of 25 QTLs for 4 traits were detected distributed on chromosomes 1A, 2A, 2D, 3A, 4A, 4B, 5B, 5D, 6B, 7A and 7B, and explained phenotypic variation ranging from 4.4% to 25.5%. Fifteen out of 25 QTLs detected in this research located on 5 genetic intervals in clusters on chromosomes 3A, 4A, 4B, 5B, and 5D and each of the other 10 loci located on different genetic intervals. A total of 5 major QTLs (explained phenotypic variation more than 10%) located on two major chromosome regions (Xgwm497.1-Xcfa2193 and Xbarc78-Xgwm350.1) on chromosomes 3A and 4A, respectively. 【Conclusion】 Most QTLs for wheat salt tolerance detected in present paper clustered on chromosomes 3A, 4A, 4B, 5B and 5D. Five major QTLs located on two chromosome regions (Xgwm497.1-Xcfa2193 and Xbarc78-Xgwm350.1) on chromosomes 3A and 4A, respectively. These chromosome regions may have a potential in the practice of marker assisted wheat breeding for improving salt-tolerance.

Key words: wheat (Triticum aestivum L.), QTL, salt stress, seedling stage

[1]Boyer J S. Plant productivity and environment. Science, 1982, 218: 443-448.

[2]曾华宗, 罗利军. 植物抗旱、耐盐基因概述. 植物遗传资源学报, 2003, 4(3): 270-273.

Zeng H Z, Luo L J. A review on plant drought and salt tolerance gene. Journal of Plant Genetic Resource, 2003, 4(3): 270-273. (in Chinese)

[3]Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273.

[4]Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 2007, 143: 1001-1012.

[5]Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell and Physiology, 2010, 51(6): 997-1006.

[6]Ren Z, Zheng Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu J K. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2010, 107(12): 5669-5674.

[7]Kingsbury R, Epstein E. Selection for salt-resistant spring wheat. Crop Science, 1984, 24: 310-315.

[8]Sayed H I. Diversity of salt tolerance in a germplasm collection of wheat (Triticum spp.). Theoretical and Applied Genetics, 1985, 69: 651-657.

[9]Jafari-Shabestari J, Corke H, Qualset C O. Field evaluation of tolerance to salinity stress in Iranian hexaploid wheat landrace accessions. Genetic Resources and Crop Evaluation, 1995, 42: 147-156.

[10]李树华, 许  兴, 惠洪霞, 米海莉, 班乃荣, 张  铎. 不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应. 麦类作物学报, 2000, 20(4): 63-67.

Li S H, Xu X, Hui H X, Mi H L, Ban N R, Zhang D. Salinity stress on the physiological and agronomic traits of wheat. Journal of Triticeae Crops, 2000, 20(4): 63-67. (in Chinese)

[11]刘  旭, 史  娟, 张学勇, 马缘生, 贾继增. 小麦耐盐种质的筛选鉴定和耐盐基因的标记. 植物学报, 2001, 43(9): 948-954.

Liu X, Shi J, Zhang X Y, Ma Y S, Jia J Z. Screening salt tolerance germplasms and tagging the tolerance gene(s) using microsatellite (SSR) markers in wheat. Acta Botanica Sinica, 2001, 43(9): 948-954. (in Chinese)

[12]侯  宁, 吴郁文, 刘春光, 张翠兰, 张  岩. 异源细胞质小麦耐盐性的研究. 遗传学报, 2000, 27(4): 325-330.

Hou N, Wu Y W, Liu C G, Zhang C L, Zhang Y. Studies of salt tolerance of alloplasmic wheat. Acta Genetica Sinica, 2000, 27(4): 325-330. (in Chinese)

[13]陈桂平, 黄占景, 马闻师, 沈银柱. 盐胁迫下小麦耐盐突变体后代差异cDNA的分离和鉴定. 中国农业科学, 2003, 36(9): 996 -999.

Chen G P, Huang Z J, Ma W S, Shen Y Z. IsoIation and characterization of the cDNA fragments of wheat invoived in sait stress. Scientia Agricultura Sinica, 2003, 36(9): 996-999. (in Chinese)

[14]秘彩莉, 张学勇, 温小杰, 刘  旭. 利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C. 中国农业科学, 2006, 39(9): 1736-1742.

Mi C L, Zhang X Y, Wen X J, Liu X. Isolation of TaVHA-C, a gene in wheat related to salt-tolerance via cDNA-AFLP. Scientia Agricultura Sinica, 2006, 39(9): 1736-1742. (in Chinese)

[15]翁跃进, 陈道明. 小麦耐盐基因的标记和标记的克隆. 遗传学报, 2001, 29(4): 343-349.

Weng Y J, Chen D M. Molecular markers and its clone for salt tolerance gene in wheat. Acta Genetica Sinica, 2001, 29(4): 343-349. (in Chinese)

[16]单  雷, 赵双宜, 陈  芳, 夏光敏. 小麦体细胞杂种山融3 号耐盐相关SSR 标记的筛选和初步定位. 中国农业科学, 2006, 39(2): 225-230.

Shan L, Zhao S Y, Chen F, Xia G M. Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No.3. Scientia Agricultura Sinica, 2006, 39(2): 225-230. (in Chinese)

[17]武玉清, 刘录祥, 郭会君, 赵林姝, 赵世荣. 小麦苗期耐盐相关性状的QTL分析. 核农学报, 2007, 21(6): 545-549.

Wu Y Q, Liu L X, Guo H J, Zhao L S, Zhao S R. Mapping QTL for salt tolerant traits in wheat. Journal of Nuclear Agricultural Sciences, 2007, 21(6): 545-549. (in Chinese)

[18]Kawaura K, Mochida K, Ogihara Y. Genome-wide analysis for identification of salt-responsive genes in common wheat. Functional and Integrative Genomics, 2008, 8(3): 277-286.

[19]Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. Journal of Proteomics, 2012, 75(6): 1867-1885.

[20]Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell and Environment, 2012, 35(6): 1156-1170.

[21]Cai H, Tian S, Liu C, Dong H. Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene, 2011, 485(2): 146-152.

[22]Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Functional Integrative Genomics, 2011, 11(3): 431-443.

[23]Huang X, Wang G, Shen Y, Huang Z. The wheat gene TaST can increase the salt tolerance of transgenic Arabidopsis. Plant Cell Reports, 2012, 31(2): 339-347.

[24]He X, Hou X, Shen Y, Huang Z. TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Letters, 2011, 585(8): 1231-1237.

[25]Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R, Shen Y, Huang Z. Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell and Physiology, 2010, 51(5): 767-775.

[26]Zhang H, Mao X, Wang C, Jing R. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One, 2010, 5(12): 16041.

[27]Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. Journal of Experimental Botany, 2010, 61(3): 683-696.

[28]Ren Y Z, He X, Liu D C, Li J J, Zhao X Q, Li B, Tong Y P, Zhang A M, Li Z S. Major quantitative trait loci for seminal root morphology of wheat seedlings. Molecular Breeding, 2012, 30(1): 139-148.

[29]马雅琴, 翁跃进. 引进春小麦种质耐盐性的鉴定评价. 作物学报, 2005, 31(1): 58-64.

Ma Y Q, Weng Y J. Evaluation for salt tolerance in spring wheat cultivars introduced from abroad. Acta Agronomica Sinica, 2005, 31(1): 58-64. (in Chinese)

[30]Liao M T, Palta J A, Fillery I R P. Root characteristics of vigorous wheat improve early nitrogen uptake. Australian Journal of Agricultural Research, 2006, 57(10): 1097-1107.

[31]An D G, Su J Y, Liu Q Y, Li B, Jing R L, Li J Y, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant and Soil, 2006, 284: 73-84.

[32]Koyama M L, Levesley A, Koebner R M, Flowers T J, Yeo A R. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology, 2001, 125(1): 406-422.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[10] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[11] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[12] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[13] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[14] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[15] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!