Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (11): 2249-2259.doi: 10.3864/j.issn.0578-1752.2012.11.014

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Function, Research, and Application of Antimicrobial Peptides

 DAN  An-Shan, MA  De-Ying, FENG  Xing-Jun, MA  Qing-Quan, DONG  Na, WANG  Liang, 吕Yin-Feng , ZHU  Xin   

  1. 东北农业大学动物营养研究所,哈尔滨 150030
  • Received:2011-09-13 Online:2012-06-01 Published:2012-03-12

Abstract: Antimicrobial peptides (AMPs) distribute widely in all organisms. As an important part of the non-specific immune functions of organisms, AMPs process the properties of various biological functions and low tendency of developing drug resistance and have a potential application prospect in many fields. This review deals with classification, biofunction and antibacterial mechanism of AMPs, particularly summurizes the research progess in the exploitation and application of AMPs in animals in recent years.

Key words: antimicrobial peptitides, function, exploitation, application, animals

[1]Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415: 389-395.

[2]Hancock R E. Peptide antibiotics. Lancet, 1997, 349(9049): 418-422.

[3]Andreu D, Rivas L. Animal antimicrobial peptides: an overview. Biopolymers, 1998, 47: 415-433.

[4]Boman H G, Nilsson-Faye I, Paul K, Rasmuson T Jr. Insect immunity I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samiacynthia pupae. Infection and Immunity, 1974, 10(1): 136-145.

[5]Steiner H, Hultmark D, Engström A, Bennich H, Boman H G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292(5820): 246-248.

[6]Holak T A, Engstrom A, Kraulis P J, Lindeberg G, Bennich H, Jones T W, Gronenborn A M, Clore G M. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry, 1988, 27(20): 7620-7629.

[7]Ganz T, Selsted M E, Szklarek D, Harwig S S, Daher K, Bainton D F, Lehrer R I. Defensins, natural peptideantibiotics of human neutrophils. The Journal of Clinical Investigation, 1985, 76(4): 1427-1435.

[8]Selsted M E, Ouellette A J. Mammalian defensins in the antimicrobial immune response. Nature Immunology, 2005, 6: 551-557.

[9]Thomma B P, Cammue B P, Thevissen K. Plant defensins. Planta, 2002, 216(2): 193-202.

[10]Froy O, Gurevitz M. Arthropod and mollusk defensins-evolution by exon-shuffling. Trends in Genetics, 2003, 19(12): 684-687.

[11]Ganz T. Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology, 2003, 3: 710-720.

[12]Lehrer R I, Ganz T. Defensins of vertebrate animals. Current Opinion in Immunology, 2002, 14(1): 96-102.

[13]Schutte B C, McCray P B. Beta-defensins in lung host defense. Annual Review of Physiology, 2002, 64: 709-748.

[14]Wu M, Hancock R E W. Improved derivatives of bactenecin, a cyclic dodeeameric antimiembial cationic peptide. Antimicrob Agents Chemother, 1999, 43(5): 1274-1276.

[15]Boman H G. Gene-eneoded peptide antibiotics and the concept of innate immunity: an update review. Scandinavian Journal of Immunology, 1998, 48(1): 15-25.

[16]徐恒卫, 孙  兰, 刘景生. 富含脯氨酸的抗菌肽研究进展. 中国药理学通报, 2004, 20(7): 735-740.

Xu H W, Sun L, Liu J S. Recent research advances of Pro2-rich antimicrobial peptides. Chinese Pharmacological Bulletin, 2004, 20(7): 735-740. (in Chinese)

[17]Bulet P, Hetru C, Dimarcq J L, Hoffmann D. Antimicrobial peptide in insects: structure and function. Developmental and Comparative Immunology, 1999, 23(4/5): 329-344.

[18]Bulet P, Hegy G, Lambert J, van Dorsselaer A, Hoffmann J A, Hetru C. Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity. Biochemistry, 1995, 34(22): 7394-7400.

[19]Vizioli J, Salzet M. Antimicrobial peptides from animal: focus on invertebrates. Trends Pharmacological Sciences, 2002, 23(11): 494-496.

[20]Koczulla A R, Bals R. Antimicrobial peptides: current status and therapeutic potential. Drugs, 2003, 63(4): 389-406.

[21]Iijima R, Kurata S, Nator S. Purification, characterization, and cDNA cloning of an antifungal protein from the hemolyph of Sarcophaga peregrine (flesh fly) larvae. The Journal of Biological Chemistry, 1993, 268(18): 12055-12061.

[22]Dagan A, Efron L, Gaidukov L, Mor A. In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother, 2002, 46(4): 1059-1066.

[23]Boman H G, Wade D, Boman I A, Wåhlin B, Merrifield R B. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Letters, 1989, 259(1): 103-106.

[24]Díaz-Achirica P, Ubach J, Guinea A, Andreu D, Rivas L. The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1-8)M(1-18), a synthetic cecropin A-melittin hybrid peptide. Biochemical Journal, 1998, 330(Pt1): 453-460.

[25]Winder D, Günzburg W H, Erfle V, Salmons B. Expression of antimicrobial peptides has an antitumour effect in human cells. Biochemical and Biophysical Research Communications, 1998, 242(3): 608-612.

[26]Mineshiba J, Myokai F, Mineshiba F, Matsuura K, Nishimura F, Takashiba S. Transcriptional regulation of β-defensin-2 by lipopolysaccharide in cultured human cervical carcinoma (Hela) cells. FEMS Immunology and Medical Microbiology, 2005, 45(1): 37-44.

[27]Suttmann H, Retz M, Paulsen F, Harder J, Zwergel U, Kamradt J, Wullich B, Unteregger F, Stöckle M, Lehmann J. Antimicrobial peptides of the cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urology, 2008, 8: 5-11.

[28]Lu J, Chen Z W. Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis. Peptides, 2010, 31(1): 44-50.

[29]Gutsmann T, Hagge S O, Larrick J W, Seydel U, Wiese A. Interaction of CAP18 derived peptides with membranes made from endotoxins or phospholipids. Biophysical Journal, 2001, 80(6): 29-35.

[30]Chen Y X, Xu X M, Hong S G, Chen J G, Liu N F, Charles B U. RGD-Tchyplesin inhibits tumor growth. Cancer Research, 2001, 61(6): 2434-2438.

[31]Charp P A, Rice W G, Raynor R L. Inhibition of protein kinase C by defensins, antibiotics peptides from human neutrophils. Biochemical Pharmacology, 1988, 37(5): 951-956.

[32]Zhu Q, Hu J, Mulay S. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proceedings of National Academy of the United States of America, 1988, 85(2): 592-596.

[33]Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers (Peptide Science), 2002, 66(4): 236-248.

[34]Hancock R E W, Chapple D S. Peptide antibiotics. Antimicrob Agents Chemother, 1999, 43(6): 1317-1323.

[35]Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 2003, 55(1): 27-55.

[36]Dathe M, Nikolenko H, Meyer J, Beyermann M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Letters, 2001, 501(2/3): 146-150.

[37]Matsuzaki K, Nakamura A, Murase O, Sugishita K, Fujii N, Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry, 1997, 36(8): 2104-2111.

[38]Castle M, Nazarian A, Yi S S, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. Journal of Biological Chemistry, 1999, 274(46): 32555-32564.

[39]Otvos L, Bokonyi K, Varga I, Ertl H C J, Hoffmann R, Bulet P, Otvos B I, Wade J D, Mcmanus A M, Craik D J. Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Science, 2000, 9: 742-749.

[40]Yang L, Harroun T A, Weiss T M, Ding L, Huang H W. Barrel-stave model or toroidal model? a case study on melittin pores. Biophysical Journal, 2001, 81(3): 1475-1485.

[41]Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Quarterly Reviews of Biophysics, 1977, 10(1): 1-34.

[42]Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 1996, 35(35): 11361-11368.

[43]Hallock K J, Lee D K, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophysical Journal, 2003, 84(5): 3052-3060.

[44]Hara T, Kodama H, Kondo M, Wakamatsu K, Takeda A, Tachi T, Matsuzaki K. Effects of peptide dimerization on pore formation: antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers, 2001, 58(4): 437-446.

[45]Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura A, Tachi T, Kodama H, Kondo M, Mori H, Otaka A, Nobutaka F, Matsuzaki K. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study. Biochemistry, 2001, 40(41): 12395-12399.

[46]Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophysical Journal, 2000, 79(4): 2075-2083.

[47]Brogden K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 2005, 3: 238-250.

[48]Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers, 2000, 55(1): 31-49.

[49]Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by K-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta, 1999, 1462: 55-70.

[50]Fehlbaum P, Bulet P, Chernysh S, Briand J P, Roussel J P, Letellier L, Hetru C, Hoffmann J A. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proceedings of National Academy of the United States of America, 1996, 93(3): 1221-1225.

[51]Boman H G, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infection and Immunity, 1993, 61(7): 2978-2984.

[52]Sang Y, Blecha F. Porcine host defense peptides: expanding repertoire and functions. Developmental and Comparative Immunology, 2009, 33(3): 334-343.

[53]Zhang G L, Ross C R, Bleeha F. Porcine antimicrobial peptides: new prospects for ancient molecules of host defense. Veterinary Research, 2000, 31(3): 277-296.

[54]Zanetti M, Storici P, Tossi A, Scocchi M, Gennaro R. Molecular cloning and chemical synthesis of a novel antibacterial peptide derived from pig myeloid cells. The Journal of Biological Chemistry, 1994, 269: 7855-7858.

[55]Evans E W, Beach G G, Wunderlich J, Harmon B G. Isolation of antimicrobial peptides from avian heterophils. Journal of Leukocyte Biology, 1994, 56(5): 661-665.

[56]Lynn D J, Higgs R, Gaines S. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics, 2004, 56(3): 170-177.

[57]Thouzeau C, Maho Y L, Froget G, Sabatier L, Bohec C L, Hoffmann J A, Bulet P. Hoffmann, Philippe Bulet. Sphenicins, avain β-defensins in preserved stomach contents of the king penguin, Aptenodytes patagonicus. The Journal of Biological Chemistry, 2003, 278(51): 51053-51058.

[58]Yu P L, Choudhury S D, Ahrens K. Purification and characterization of the antimicrobial peptide, ostricacin. Biotechnology Letters, 2001, 23: 207-210.

[59]马得莹, 刘胜旺, 李一经, 单安山. 鸡β-防御素基因的克隆、序列分析及其在组织中的分布. 畜牧兽医学报, 2008, 39(8): 1033-1039.

Ma D Y, Liu S W, Li Y J, Shan A S. Cloning, sequencing and distribution of chick β-defensin genes. Acta Veterinaria et Zootechnica Sinica, 2008, 39(8): 1033-1039. (in Chinese)

[60]Ma D Y, Wang R Q, Liao W Y, Han Z X, Liu S W. Identification and characterization of a novel antibacterial peptide, avian β-defensin 2 from ducks. The Journal of Microbiology, 2009, 47(5): 610-618.

[61]Ma D Y, Liao W Y, Wang R Q, Han Z X, Liu S W. Two novel duck antibacterial peptides, avian β-defensins 9 and 10, with antimicrobial activity. Journal of Microbiology and Biotechnology, 2009, 19(11): 1447-1455.

[62]王瑞琴, 廖文艳, 马得莹, 韩宗玺, 刘胜旺. 鸭β-防御素2基因的克隆、表达和表达产物的生物学特性分析. 中国农业科学, 2009, 42(10): 3685-3692.

Wang R Q, Liao W Y, Ma D Y, Han Z X, Liu S W. Cloning, expression and bioactivity characterization of duck avian β-defensin 2. Scientia Agricultura Sinica, 2009, 42(10): 3685-3692. (in Chinese)

[63]廖文艳, 马得莹, 王瑞琴, 韩宗玺, 邵昱昊, 李慧昕, 刘胜旺. 鸭β-防御素10基因的克隆、遗传进化分析及其生物学特性的初步研究. 畜牧兽医学报, 2009, 40(9): 1320-1326.

Liao W Y, Ma D Y, Wang R Q, Han Z X, Shao T H, Li H X, Liu S W. mRNA Cloning, evolutionary analysis and biological characterization of duck avian β-defensin 10. Acta Veterinaria et Zootechnica Sinica, 2009, 40(9): 1320-1326. (in Chinese)

[64]廖文艳, 马得莹, 刘胜旺, 韩宗玺. 鸭β-防御素9基因的克隆、组织分布及其原核表达. 中国农业科学, 2009, 42(4): 1406-1412.

Liao W Y, Ma D Y, Liu S W, Han Z X. mRNA Cloning, Tissue distribution and expression of duck avian β-defensin 9 in E. coli. Scientia Agricultura Sinica, 2009, 42(4): 1406-1412. (in Chinese)

[65]Wang R Q, Ma D Y, Lin L J, Zhou C W, Han Z X, Shao Y H, Liao W Y, Liu S W. Identification and characterization of an avian β-defensin orthologue, avian β-defensin 9 from quails. Applied Microbiology and Biotechnology, 2010, 87: 1395-1405.

[66]蔺丽娟, 王瑞琴, 周财源, 韩宗玺, 邵昱昊, 刘胜旺, 马得莹. 鹌鹑β-防御素10基因的克隆及其生物学作用的初步研究. 第六次全国饲料营养学术研讨会论文集, 2010: 387.

Lin L J, Wang R Q, Zhou C Y, Han Z X, Shao Y H, Liu S W, Ma D Y. Cloning and initial identification of quail avain β-defensin 10. Proceedings of the 6th National Symposium on Feed Nutrition, 2010: 387. (in Chinese)

[67]周财源, 蔺丽娟, 韩宗玺, 邵昱昊, 刘胜旺, 马得莹. 一个新的禽β-防御素, 鹅β-防御素5基因克隆与生物学特性的初步分析.  第六次全国饲料营养学术研讨会论文集, 2010: 263.

Zhou C Y, Lin L J, Han Z X, Shao Y H, Liu S W, Ma D Y. Cloning and initial characterization of a novel avian β-defensin(AvBD), goose AvBD5. Proceedings of the 6th National Symposium on Feed Nutrition, 2010: 263. (in Chinese)

[68]Andreu D, Ubach J, Boman A, Wåhlin B, Wade D, Merrifield R B, Boman H G. Shortened cecropin A-melittin hybrids significant size reduction retains potent antibiotic activity. FEBS Letters, 1992, 296(2): 190-194.

[69]高  鹏, 冯兴军, 毕重朋, 单安山. 杂合肽基因的合成及在大肠杆菌中的表达. 东北农业大学学报, 2009, 40(11): 99-103.

Gao P, Feng X J, Bi C P, Shan A S. Synthesis and expression of a gene encoding bovine lactoferricin15-magainin12 hybrid peptide. Journal of Northeast Agricultural University, 2009, 40(11): 99-103. (in Chinese)

[70]毕重朋, 冯兴军, 单安山, 郭佳音. 牛乳铁蛋白素(1-15)-蜂毒素(5-12)杂合肽基因的合成及在大肠杆菌中的表达. 生物工程学报, 2009, 25(7): 975-981.

Bi C P, Feng X J, Shan A S, Guo J Y. Cloning and expression of a gene encoding shortened LfcinB(1-15)-Melittin(5-12) hybrid peptide in Escherichia coli BL21(DE3). Chinese Journal of Biotechnology, 2009, 25(7): 975-981. (in Chinese)

[71]冯兴军, 李  静, 赵晓宇, 宋雪莹, 许文杉. 牛乳铁蛋白素-马盖宁杂合抗菌肽的设计、合成及抑菌活性. 东北农业大学学报, 2011, 42(3): 105-109.

Feng X J, Li J, Zhao X Y, Song X Y, Xu W S. Design, synthesis and antimicrobial activity of an hybrid antimicrobial peptide LFB15-MA12. Journal of Northeast Agricultural University, 2011, 42(3): 105-109. (in Chinese)

[72]马清泉, 单安山, 董  娜, 曹艳萍. 富含亮氨酸和精氨酸的抗菌肽设计. 畜牧兽医学报, 2011, 42(6): 804-807.

Ma Q Q, Shan A S, Dong N, Cao Y P. De novo design of a Leu-Arg-rich antimicrobial peptide. Acta Veterinaria et Zootechnica Sinica, 2011, 42(6): 804-807. (in Chinese)

[73]Ma Q Q, Dong N, Cao Y P, Shan A S. Rational design of a-helical antimicrobial peptide with Val and Arg residues. Acta Microbiological Sinica, 2011, 51(3): 346-351.

[74]Ma Q Q, Shan A S, Dong N, Cao Y P, Lü Y F, Wang L. The effects of Leu or Val residues on cell selectivity of α-helical peptides. Protein and Peptide Letters, 2011, 18(11): 1112-1118.

[75]Ma Q Q, Shan A S, Dong N, Gu Y, Sun W Y, Hu W N, Feng X J. Cell selectivity and interaction with model membranes of Val/Arg-rich peptides. Journal of Peptide Science, 2011, 17(7): 520-526.

[76]Ma D Y, Liu S W, Han Z X, Li Y J, Shan A S. Expression and characterization of recombinant gallinacin-9 and gallinacin-8 in Escherichia coli. Protein Expression and Purification, 2008, 58(2): 284-291.

[77]马得莹, 刘胜旺, 韩宗玺, 单安山. 重组鸡β-防御素5-β-防御素10双分子蛋白的构建及其理化特性分析. 农业生物技术学报, 2009, 17(1): 41-46.

Ma D Y, Liu S W, Han Z X, Shan A S. Construction of recombinant chicken AvBD5-AvBD10 double molecule protein and analysis of its physical and chemistry characterizations. Journal of Agricultural Biotechnology, 2009, 17(1): 41-46. (in Chinese)

[78]廖文艳, 马得莹, 韩宗玺, 刘胜旺. 重组鸡β-防御素10蛋白的原核表达及其抗菌活性的测定. 中国预防兽医学报, 2008, 30(10): 765-769.

Liao W Y, Ma D Y, Han Z X, Liu S W. Expression of recombinant chicken avian β-defensin 10 in E.coli and determination of its antimicrobial activity. Chinese Journal of Preventive Veterinary Medicine, 2008, 30(10): 765-769. (in Chinese)

[79]Feng X J, Wang J H, Shan A S, Teng D, Yang Y L, Yao Y, Yang G P, Shao Y C, Liu S, Zhang F. Fusion expression of bovine lactoferricin in Escherichia coli. Protein Expression and Purification, 2006, 47(1): 110-117.

[80]Feng X J, Liu C L, Guo J Y, Bi C P, Cheng B J, Li Z Y, Shan A S, Li Z Q. Expression and purification of an antimicrobial peptide, bovine lactoferricin derivative LfcinB-W10 in Escherichia coli. Current Microbiology, 2010, 60(3): 179-184.

[81]Fu S, Guo W M, Taylor A, Bian Q N. Dose dependent effects of dominant-negative K6W-ubiquitin: construction of mini-genes that encode multiple copies to K6W-ubiquitin. The Journal of the Federation of American Societies for Experimental Biology, 2010, 24: Ib91.

[82]Goto Y, Carter D, Guderian J, Inoue N, Kawazu S, Reed S G. Upregulated expression of B-cell antigen family tandem repeat proteins by Leishmania amastigotes. Infection and Immunity, 2010, 78(5): 2138-2145.

[83]Kim J M, Jang S A, Yu B J, Sung B H, Cho J H, Kim S C. High-level expression of an antimicrobial peptide histonin as a natural form by multimerization and furin-mediated cleavage. Applied Microbiology and Biotechnology, 2008, 78(1): 123-130.

[84]曹艳萍, 单安山, 马清泉, 尹佳佳. 多拷贝策略在小肽表达中的应用. 生物工程学报, 2011, 27(5): 684-689.

Cao Y P, Shan A S, Ma Q Q, Yin J J. Application of multi-copies in expression of smaller peptides: a review. Chinese Journal of Biotechnology, 2011, 27(5): 684-689. (in Chinese)

[85]李  静, 冯兴军, 宋雪莹. 抗菌肽酵母表达系统的研究进展. 中国饲料, 2011(8): 4-6.

Li J, Feng X J, Song X Y. Research progress of yeast expression system of antimicrobial peptides. China Feed, 2011(8): 4-6. (in Chinese)

[86]Chen Z J, Wang D M, Cong Y G, Wang J, Zhu J M, Yang J, Hu Z, Hu X M, Tan Y L, Hu F Q, Rao X C. Recombinant antimicrobial peptide hPAB-β expressed in Pichia pastoris, a potential agent active against methicillin-resistant Staphylococcus aureus. Applied Microbiology and Biotechnology, 2011, 89(2): 281-291.

[87]Zhang J, Yang Y, Teng D, Tian Z G, Wang S R, Wang J H. Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expression and Purification, 2011, 78(2): 189-196.

[88]侯振平, 印遇龙, 王文杰, 刘景喜, Souffrant W B. 乳铁蛋白素B和天蚕素P1对投喂大肠杆菌断奶仔猪生长及肠道微生物区系的影响. 动物营养学报, 2011, 23(9): 1536-1544.

Hou Z P, Yin Y L, Wang W J, Liu J X, Souffrant W B. Effects of lactoferricin B and cecropin P1 on growth and gut microflora in weaned piglets challenged with enterotoxigenic Escherichia coli. Chinese Journal of Animal Nutrition, 2011, 23(9): 1536-1544. (in Chinese)

[89]Tang Z R, Yin Y L, Zhang Y M, Huang R L, Sun Z H, Li T J, Chu W Y, Kong X F, Li L L, Geng M M, Tu Q. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21d. British Journal of Nutrition, 2009, 101: 998-1005.

[90]王秀青, 朱明星, 张爱君, 丁淑琴, 杨风琴. 抗菌肽Cecropin B对鸡生长发育及免疫功能的影响. 宁夏医科大学学报, 2010, 32(1): 39-41.

Wang X Q, Zhu M X, Zhang A J, Ding S Q, Yang F Q. Effect of antibacterial peptide cecropin B on growth-enhancing and immunological function in chickens. Journal of Ningxia Medical University, 2010, 32(1): 39-41. (in Chinese)

[91]吕尊周, 袁肖笑, 蔡兆伟, 尹兆正. 抗菌肽对蛋鸡血清免疫指标及脾脏白细胞介素 2mRNA表达量的影响. 动物营养学报, 2011, 23(12): 2183-2189.

Lv Z Z, Yuan S X, Cai Z W, Yin Z Z. Effect of antimicrobial peptide on serum immune indices and IL-2 mRNA expression in spleen of laying hens. Chinese Journal of Animal Nutrition, 2011, 23(12): 2183-2189. (in Chinese)

[92]陈晓生, 张辉华, 罗竞彪, 温刘发, 黄国庆, 黄自然. 饲粮中添加抗菌肽对肉鸭增重及血清尿素氮、总蛋白水平的影响. 中国饲料, 2005(6): 21-23.

Chen X S, Zhang H H, Luo J B, Wen L F, Huang G Q, Huang Z R. The effects of antibiotic peptide addition in feed on the body weight gain, serum urea nitrogen and total protein level in meat duck. China Feed, 2005(6): 21-23. (in Chinese)

[93]郭丽君, 牛淑玲, 马 倩, 赵衍铜, 柏明娜, 韩文瑜, 冯 新, 张 晶. 抗菌肽制剂对芦花鸡胸肌肉质性状、游离氨基酸及微量元素含量的影响. 动物营养学报, 2012, 24(4): 1-7.

Guo L J, Niu S L, Ma Q, Zhao Y T, Bai M N, Han W Y, Feng X, Zhang J. Effect of antibacterial peptide agent on meat quality, contents of free amion acids and microelements in breast muscle of barred plvmouth rock chickens. Chinese Journal of Animal Nutrition, 2012, 24(4): 1-7. (in Chinese)

[94]杨玉荣, 梁宏德, 卫红丽. 鸵鸟皮肤抗菌肽对雏鸡免疫器官指数及T淋巴细胞数量的影响初探. 中国农学通报, 2009, 25(20): 46-48.

Yang Y R, Liang H D, Wei H L. The preliminary study of antimicrobial peptides extracted from african ostrich skin on the immune organs indexes and the number of T lymphocytes in immune organs of chickens. Chinese Agricultural Science Bulletin, 2009, 25(20): 46-48. (in Chinese)

[95]马卫明, 佘锐萍, 靳  红, 彭芳珍, 胡艳欣. 猪小肠抗菌肽的抗菌作用研究. 中国兽医杂志, 2005, 41(1): 3-7.

Ma W M, She R P, Jin H, Peng F Z, Hu Y X. Activity of antibacterial peptides extracted from pig small intestine against 11 strains of bacteria. Chinese Journal of Veterinary Medicine, 2005, 41(1): 3-7. (in Chinese)

[96]马卫明, 佘锐萍, 胡艳欣, 靳  红, 彭芳珍. 猪小肠抗菌肽对雏鸡的促生长作用及其机理初探. 中国农业科学, 2006, 39(8): 1723-1728.

Ma W M, She R P, Hu Y X, Jin H, Peng F Z. Effect of antibacterial peptide extracted from pig small intestine on growth-enhancing and approach to the mechanism in chickens. Scientia Agricultura Sinica, 2006, 39(8): 1723-1728. (in Chinese)

[97]姜  珊, 王宝杰, 刘  梅, 蒋克勇, 宫  魁, 王  雷. 饲料中添加重组抗菌肽对吉富罗非鱼生长性能及免疫力的影响. 中国水产科学, 2011, 18(6): 1308-1314.

Jiang S, Wang B J, Liu M, Jiang K Y, Gong K, Wang L. Effects of recombinant antimicrobial peptides on growth and immunity in tilapia(GIFT). Journal of Fishery Sciences of China, 2011, 18(6): 1308-1314. (in Chinese)
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] JIANG Hui,FENG Yu,QIN YuMing,ZHU LiangQuan,FAN XueZheng,DING JiaBo. Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1676-1684.
[4] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[5] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[6] LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong. Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(3): 514-528.
[7] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[8] REN ZiQi,KANG YuJie,LI HaiZhen,WANG LianGang,MA HaoYun,LI Hui,WANG LiuYang,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4640-4650.
[9] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[10] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[11] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[12] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[13] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[14] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[15] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!