Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (20): 4230-4239.doi: 10.3864/j.issn.0578-1752.2011.20.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-term Fertilization on Diversity of Ammonia-Oxidizing Archaea Communities and Abundance in Dry Highland Soil of Loess Plateau

 WU  Chuan-Dong, XIN  Liang, LI  Xiu-Ying, WANG  Bao-Li, QU  Dong   

  1. 1.西北农林科技大学生命科学学院
    2.西北农林科技大学资源环境学院
  • Received:2010-11-26 Online:2011-10-15 Published:2011-05-06

Abstract: 【Objective】In order to improve the efficiency of nitrogen utilization and explicate the function of ammonia- oxidizing archaea (AOA) under the changes of soil quality in the Loess Plateau, the community structure diversity and abundance of AOA were studied. 【Method】 The influence of long-term fertilization treatments including CK, M, NM, PM and NPM on soil AOA community structure diversity and amoA gene copy numbers were analyzed by restriction fragment length polymorphism (PCR-RFLP) and real-time PCR.【Result】From the clone libraries of the different fertilization treatments, there were 25, 18, 29, 20 and 30 restriction endonuclease types, respectively. The α diversity indices indicated that there was a pronounced difference among five fertilizer treatments. The OTUs was the highest in NPM treatment and the lowest diversity in M treatment. The rescaled distance matrix tree indicated that the different fertilization had the largest convergence coefficient of AOA community types with the CK treatment soil, so the different fertilization led to significant changes of AOA communities. The amoA gene copy numbers of AOA changes were different among the treatments, whereas the highest copy numbers were detected in the NPM treatment, and had a pronounced difference with other fertilizer treatments. All preponderant sequences of AOA fell within soils/fresh water sediments based on phylogenetic tree of amoA gene amino acid sequences analysis.【Conclusion】Long-term fertilization resulted in changes of AOA community diversity and abundance.

Key words: long-termfertilization, ammonia-oxidizingarchaea, communitystructure, diversity

[1]Denef K, Roobroeck D, Lootens P, Wadu M, Boeckx P. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biology and Biochemistry, 2009, 41(1): 144-153.

[2]Li J, Zhao B Q, Li X Y, Jiang R B, So H B. Effects of long-term combined application of organic and mineral fertilizer on microbial biomass, soil enzyme activities and soil fertility. Agriculture Sciences in China, 2008, 7(3): 336-343.

[3]You J, Das A, Dolan E M, Hu Z Q. Ammonia-oxidizing archaea involved in nitrogen removal. Water Research, 2009, 43(7): 1801-1809.

[4]Purkhold U, Pommerening-Röser A, Juretschko S, Schmid M, Koops H P, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000, 66(12): 5368-5382.

[5]Könneke M, Bernhard A E, de la Torre J R, Walker C B, Waterbury J B, Stahl D A. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058): 543-546.

[6]Roesch L F W, Fulthorpe R R, Riva A, Casella G, Hadwin A K M, Kent A D, Daroub S H, Camargo F A, Farmerie W G, Triplett E W. Pyrosequencing enumerates and contrasts soil microbial diversity. Multidisciplinary Journal of Microbial Ecology, 2007, 1(4): 283- 290.

[7]Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G W, ProsserJ I, Schuster S C, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442(7104): 806-809.

[8]Jia Z J, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 2009, 11(7): 1658-1671.

[9]Yamamoto N, Otawa K, Nakai Y. Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting. Microbial Ecology, 2010, 60(4): 807-815.

[10]Di H J, Cameron K C, Shen J P, Winefield C S, O'Callaghan M, Bowatte S, He J Z. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology, 2010, 72(3): 386-394.

[11]郭胜利, 党廷辉, 郝明德. 施肥对半干旱地区小麦产量、NO3--N累积和水分平衡的影响. 中国农业科学, 2005, 38(4): 754-760.

Guo S L, Dang T H, Hao M D. Effects of fertilization on wheat yield, NO3--N accumulation and soil water content in semi-arid area of China. Scientia Agricultura Sinica, 2005, 38(4): 754-760. (in Chinese)

[12]郭胜利, 吴金水, 党廷辉. 轮作和施肥对半干旱区作物地上部生物量与土壤有机碳的影响. 中国农业科学, 2008, 41(3): 744-751.

Guo S L, Wu J S, Dang T H. Effects of crop rotation and fertilization on aboveground biomass and soil organic C in semi-arid region. Scientia Agricultura Sinica, 2008, 41(3): 744-751. (in Chinese)

[13]刘桂婷, 程  林, 王保莉, 赵其国, 曲  东. 长期不同施肥对黄土旱塬黑垆土氨氧化细菌多样性的影响. 中国农业科学, 2010, 42(13): 2706-2714.

Liu G T, Cheng L, Wang B L, Zhao Q G, Qu D. Changes of soil ammonia-oxidizing bacterial diversity in response to long-term fertilization in dry highland of loess plateau. Scientia Agricultura Sinica, 2010, 42(13): 2706-2714. (in Chinese)

[14]Zhou J Z, Bruns M A, Tiedjie J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316-322.

[15]Francis C A, Roberts K J, Beman J M, Santoro A E, Oakley B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683-14688.

[16]Dang H, Li J, Zhang X, Li T, Tian F, Jin W. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical west pacific continental margin. Journal of Applied Microbiology, 2009, 106(5): 1482-1493.

[17]Liang B, Yang X Y, He X H, Zhou J B. Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biology and Fertility of Soils, 2011, 47(2): 121-128.

[18]He J Z, Shen J P, Zhang L M, Zhu Y G, Zheng Y M, Xu M G, Di H J. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 2007, 9(9): 2364-2374.

[19]Prosser J I, Nicol G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology, 2008, 10(11): 2931- 2941.

[20]Beman J M, Francis C A. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahía del Tóbari, Mexico. Applied and Environmental Microbiology, 2006, 72(12): 7767-7777.

[21]Boyle-Yarwood S A, Bottomley P J, Myrold D D. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Environmental Microbiology, 2008, 10(11): 2956-2965.

[22]Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z. Ammonia-oxidizing archaea: mportant players in paddy rhizosphere soil? Environmental Microbiology, 2008, 10(8): 1978-1987.

[23]Herfort L, Schouten S, Abbas B, Veldhuis M J, Coolen M J, Wuchter C, Boon J P, Herndl G J, Sinninghe Damsté J S. Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiology Ecology, 2007, 62(3): 242-257.

[24]Beman J M, Popp B N,  Francis C A. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. The ISME Journal, 2008, 2(4): 429-441.

[25]Sahan E, Muyzer G. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiology Ecology, 2008, 64(2): 175-186.

[26]Shen J P, Zhang L M, Zhu Y G, Zhang J B, He J Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 10(6): 1601-1611.
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[3] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[6] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
[9] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[10] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[11] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[12] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[13] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[14] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[15] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!