Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (17): 3649-3657.doi: 10.3864/j.issn.0578-1752.2011.17.018

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Advanced Research on Honeybee Proteome

LI  Jian-Ke, FENG  Mao, ZHENG  Ai-Juan   

  1. 1.中国农业科学院蜜蜂研究所
    2.中国农业科学院饲料研究所
  • Received:2010-10-11 Revised:2010-11-23 Online:2011-09-01 Published:2011-01-04

Abstract: Honeybee plays an important role for the nature and the human. It is crucial for agriculture as a facilitator of pollination and indispensable to maintain the biological diversity of the ecological system. Also, bee products are widely used for their nutrition and health care functions to the mankind. The proteomic researches on honeybee have been ushered into a new stage since the completion of the honeybee genome sequencing project. And the combination of two-dimensional electrophoresis and mass spectrometry is the most popular method in honeybee proteome investigations. This paper reviewed the advances in honeybee proteomics concerning the development of honeybee egg, larva, pupa, hypopharyngeal gland and caste differentiation, the comparison between nurses and foragers, the analysis of some tissues and organs such as honeybee head, thorax, hemolymph, venom gland, queen spermathecal gland, male accessory gland and sperm, the studies on royal jelly, pollen, honeybee venom and so on, hoping to provide some clues for future studies.

Key words: honeybee, proteomics, advance, application

[1]The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443(7114): 931-949.

[2]Robinson G E, Grozinger C M, Whitfield C W. Sociogenomics: social life in molecular terms. Nature Reviews Genetics, 2005, 6(4): 257-270.

[3]Graham J M. The Hive and the Honey Bee. Illinois: Dadant & Sons, INC, 1992: 106-167.

[4]Heisenberg M. Mushroombody memoir: from maps to models. Nature Reviews Neuroscience, 2004, 4: 266-275.

[5]Page Jr R E, Peng C Y S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Experimental Gerontology, 2001, 36(4/6): 695-711.

[6]Page R E, Robinson G E. The genetics of division of labour in honey bee colonies. Advances in Insect Physiology, 1991, 23: 117-169.

[7]Evans J D, Aronstein K, Chen Y P, Hetru C, Imler J L, Jiang H, Kanost M, Thompson G J, Zou Z, Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15(5): 645-656.

[8]Amdam G V, Omholt S W. The regulatory anatomy of honeybee lifespan. Journal of Theoretical Biology, 2002, 216(2): 209-228.

[9]Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16(7): 1090-1094.

[10]Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis, 1997, 18(3/4): 533-537.

[11]Anderson N L, Anderson N G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis, 1998, 19(11): 1853-1861.

[12]Blackstock W P, Weir M P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnology, 1999, 17(3): 121-127.

[13]Liebler D C. Introduction to Proteomics: Tools for New Biology. New Jersey: Humana Press INC., 2002: 123-185.

[14]张  兰, 李建科, 吴黎明. 王浆高产蜜蜂(Apis mellifera L.)卵期发育蛋白质组分析. 中国农业科学, 2007, 40(6): 1276-1287.

Zhang L, Li J K, Wu L M. Profile analysis of the proteome of the eggs of the higher royal jelly producing bees (Apis mellifera L.). Scientia Agricultura Sinica, 2007, 40(6): 1276-1287. (in Chinese)

[15]房  宇, 李建科. 王浆高产蜜蜂和原种意大利蜜蜂雄蜂卵期发育蛋白质组分析. 中国农业科学, 2009, 42(7): 2552-2563.

Fang Y, Li J K. Comparative analysis of proteome between drone eggs of high royal jelly producing bees (Apis mellifera L.) and native Italian bees (Apis mellifera L.). Scientia Agricultura Sinica, 2009, 42(7): 2552-2563. (in Chinese)

[16]房  宇, 李建科. 意大利蜜蜂(A. m. ligustica)雄蜂卵期发育蛋白质组分析. 中国农业科学, 2008, 41(11): 3793-3800.

Fang Y, Li J K. Analysis of developmental proteome at egg stage of drone honeybees (A. m. ligustica). Scientia Agricultura Sinica, 2008, 41(11): 3793-3800. (in Chinese)

[17]Li J K, Zhang L, Feng M, Zhang Z H, Pan Y H. Identification of the proteome composition occurring during the course of embryonic development of bees (Apis mellifera). Insect Molecular Biology, 2009, 18(1): 1-9.

[18]Chan M M Y, Choi S Y C, Chan Q W T, Li P, Guarna M M, Foster L J. Proteome profile and lentiviral transduction of cultured honey bee (Apis mellifera L.) cells. Insect Molecular Biology, 2010, 19(5): 653-658.

[19]Wang D I. Growth rates of young queen and worker honeybee larvae. Journal of Apicultural Research, 1965, 4: 3-6.

[20]李建科, 李华玮, 张  兰. 王浆高产蜜蜂(Apis mellifera L.)工蜂幼虫发育期蛋白质组分析. 中国农业科学, 2008, 41(3): 880-889.

Li J K, Li H W, Zhang L. Analysis of the proteome of the larvae of the high royal jelly producing worker bees (Apis mellifera L.). Scientia Agricultura Sinica, 2008, 41(3): 880-889. (in Chinese)

[21]Li J K, Li H W, Zhang Z H, Pan Y H. Identification of the proteome complement of higher royal jelly producing bees (Apis mellifera) during worker larvael development. Apidologie, 2007, 38(6): 545-557.

[22]陈  健, 李建科. 王浆高产蜜蜂(A. m. ligustica)与喀尼鄂拉蜂(A. m. carnica)幼虫期蛋白质组比较. 中国农业科学, 2008, 41(10): 3292-3299.

Chen J, Li J K. Comparative analysis of proteome complement between worker bee larvae of high royal jelly producing bees (A. m. ligustica) and Carniolians (A. m. carnica) bees. Scientia Agricultura Sinica, 2008, 41(10): 3292-3299. (in Chinese)

[23]Chan Q W T, Foster L J. Changes in protein expression during honey bee larval development. Genome Biology, 2008, 9: R156 (doi:10.1186/gb-2008-9-10-r156).

[24]郑爱娟, 房  宇, 冯  毛, 吴  静, 宋飞飞, 李建科. 原种意大利蜜蜂(Apis mellifera L.)与其王浆高产品系工蜂蛹期头部发育差异蛋白质组分析. 中国农业科学, 2010, 43(8): 1703-1715.

Zheng A J, Fang Y, Feng M, Wu J, Song F F, Li J K. Proteome comparison between worker pupal head of native Italian honeybee (Apis mellifera L.) and higher royal jelly producing strain. Scientia Agricultura Sinica, 2010, 43(8): 1703-1715. (in Chinese)

[25]Allsopp M H, Calis J N M, Boot W J. Differential feeding of worker larvae affects caste characters in the Cape honeybee, Apis mellifera capensis. Behavioral Ecology and Sociobiology, 2003, 54: 555-561.

[26]吴  静, 李建科. 蜜蜂(Apis mellifera L.)幼虫级型分化差异蛋白质组分析. 中国农业科学, 2010, 43(1): 176-184.

Wu J, Li J K. Proteomic analysis of the honeybee (Apis mellifera L.) caste differentiation between worker and queens bees larvae. Scientia Agricultura Sinica, 2010, 43(1): 176-184. (in Chinese)

[27]Schippers M P, Dukas R, Smith R W, Wang J, Smolen K, McClelland G B. Lifetime performance in foraging honeybees: behaviour and physiology. The Journal of Experimental Biology, 2006, 209: 3828-3836.

[28]Garcia L, Garcia C H S, Calábria L K, da Cruz G C N, Puentes A S, Báo S N, Fontes W, Ricart C A O, Espindola F S, de Sousa M V. Proteomic analysis of honey bee brain upon ontogenetic and behavioral development. Journal of Proteome Research, 2009, 8(3): 1464-1473.

[29]Wolschin F, Amdam G V. Comparative proteomics reveal characteristics of life-history transitions in a social insect. Proteome Science, 2007, 5: 10.

[30]Uno Y, Fujiyuki T, Morioka M, Takeuchi H, Kubo T. Identification of proteins whose expression is up- or down-regulated in the mushroom bodies in the honeybee brain using proteomics. FEBS Letters, 2007, 581: 97-101.

[31]Peixoto L G, Calábria L K, Garcia L, Capparelli F E, Goulart L R, de Sousa M V, Espindola F S. Identification of major royal jelly proteins in the brain of the honeybee Apis mellifera. Journal of Insect Physiology, 2009, 55: 671-677.

[32]Huang Z Y, Otis G W, Teal P E A. Nature of brood signal activating the protein synthesis of hypopharyngeal gland in honey bees Apis mellifera (Apidae: Hymenoptera). Apidologie, 1989, 20(6): 455-464.

[33]Crailsheim K. The flow of jelly within a honeybee colony. Journal of Comparative Physiology B, Biochemical, Systemic and Environmental Physiology, 1992, 162(8): 681-689.

[34]Evans J D, Wheeler D E. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(10): 5575-5580.

[35]Hasegawa M, Asanuma S, Fujiyuki T, Kiya T, Sasaki T, Endo D, Morioka M, Kubo T. Differential gene expression in the mandibular glands of queen and worker honeybees, Apis mellifera L.: Implications for caste-selective aldehyde and fatty acid metabolism. Insect Biochemistry and Molecular Biology, 2009, 39: 661-667.

[36]Li J K, Feng M, Zhang Z H, Pan Y H. Identification of the proteome complement of hypopharyngeal glands from two strains of honeybees (Apis mellifera). Apidologie, 2008, 39: 199-214.

[37]冯  毛, 李建科. 王浆高产蜜蜂和原种意大利蜜蜂咽下腺发育蛋白质组分析. 中国农业科学, 2009, 42(2): 677-687.

Feng M, Li J K. Proteome analysis of the development of hypopharyngeal gland of high royal jelly producing bees and native Italian bees. Scientia Agricultura Sinica, 2009, 42(2): 677-687. (in Chinese)

[38]Feng M, Fang Y, Li J K. Proteomic analysis of honeybee worker (Apis mellifera) hypopharyngeal gland development. BMC Genomics, 2009, 10: 645.

[39]Bogaerts A, Baggerman G, Vierstraete E, Schoofs L, Verleyen P. The henolymph proteome of the honeybee: gel-based or gel-free? Proteomics, 2009, 9: 3201-3208.

[40]Chan Q W T, Howes C G, Foster L J. Quantitative comparison of caste differences in honeybee hemolymph. Molecular and Cellular Proteomics, 2006, 5: 2252-2262.

[41]Collins A M, Williams V, Evans J D. Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Molecular Biology, 2004, 13(2): 141-146.

[42]den Boer S P A, Boomsma J J, Baer B. Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. Journal of Insect Physiology, 2009, 55: 538-543.

[43]Baer B, Eubel H, Taylor N L, O’Toole N, Millar A H. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biology, 2009, 10(6): R67.

[44]Scarselli R, Donadio E, Giuffrida M G, Fortunato D, Conti A, Balestreri E, Felicioli R, Pinzauti M, Sabatini A G, Felicioli A. Towards royal jelly proteome. Proteomics, 2005, 5: 769-776.

[45]Santos K S, dos Santos L D, Mendes M A, de Souza B M, Malaspina O, Palma M S. Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect Biochemistry and Molecular Biology, 2005, 35: 85-91.

[46]Schönleben S, Sickmann A, Mueller M J, Reinders J. Proteome analysis of Apis mellifera royal jelly. Analytical and Bioanalytical Chemistry, 2007, 389:1087-1093.

[47]Sano O, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M. Characterizaton of royal jelly proteins in both Africanized and European honeybees (Apis mellifera) by two-dimensional gel electrophoresis. Journal of Agricultural and Food Chemistry, 2004, 52: 15-20.

[48]Li J K, Wang T, Zhang Z H, Pan Y H. Proteomic analysis of royal jelly from three strains of western honeybees (Apis mellifera). Journal of Agricultural and Food Chemistry, 2007, 55: 8411-8422.

[49]Li J K, Wang T, Peng W J. Comparative analysis of the effects of different storage conditions on major royal jelly proteins. Journal of Apicultural Research, 2007, 46(2): 73-81.

[50]Li J K, Feng M, Zhang L, Zhang Z H, Pan Y H. Proteomics analysis of major royal jelly protein changes under different storage conditions. Journal of Proteome Research, 2008, 7(8): 3339-3353.

[51]Fang Y, Feng M, Li J K. Royal jelly proteome comparison between A. mellifera ligustica and A. cerana cerana. Journal of Proteome Research, 2010, 9(5): 2207-2215.

[52]Furusawa T, Rakwal R, Nam H W, Shibato J, Agrawal G K, Kim Y S, Ogawa Y, Yoshida Y, Kouzuma Y, Masuo Y, Yonekura M. Comprehensive royal jelly (RJ) proteomics using one- and two-dimensional proteomics platforms reveals novel RJ proteins and potential phospho/glycoproteins. Journal of Proteome Research, 2008, 7(8): 3194-3229.

[53]Biliková K, Mirgorodskaya E, Bukovská G, Gobom J, Lehrach H, Šimúth J. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics, 2009, 9: 2131-2138.

[54]Almeida-Muradian L B, Pamplona L C, Coimbra S, Barth O M. Chemical composition and botanical evaluation of died bee pollen pellets. Journal of Food Composition and Analysis, 2005, 18: 105-111.

[55]Nagai T, Inoue R, Inoue H, Suzuki N. Scavenging capacities of pollen extracts from Cistus ladaniferus on autoxidation, superoxide radicals, hydroxyl radicals, and DPPH radicals. Nutrition Research, 2002, 22(4): 519-526.

[56]Li J K, Chen J, Zhang Z H, Pan Y H. Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions. Journal of Agricultural and Food Chemistry, 2008, 56: 7535-7544.

[57]胡若洋, 冯  毛, 李建科. 不同贮存温度下茶花蜂花粉蛋白质组的初步研究. 食品科学, 2008, 29(6): 438-443.

Hu R Y, Feng M, Li J K. Preliminary study on proteome of honeybee pollen of Camellia sinensis at different storage temperatures. Food Science, 2008, 29(6): 438-443. (in Chinese)

[58]Peiren N, Vanrobaeys F, de Graaf D C, Devreese B, Van Beeumen J, Jacobs F J. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochimica et Biophysica Acta, 2005, 1752: 1-5.

[59]Peiren N, de Graaf D C, Vanrobaeys F, Danneels E L, Devreese B, Van Beeumen J, Jacobs J. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon, 2008, 52: 72-83.
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] JIANG Hui,FENG Yu,QIN YuMing,ZHU LiangQuan,FAN XueZheng,DING JiaBo. Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1676-1684.
[3] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[4] LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong. Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(3): 514-528.
[5] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[6] REN ZiQi,KANG YuJie,LI HaiZhen,WANG LianGang,MA HaoYun,LI Hui,WANG LiuYang,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4640-4650.
[7] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[8] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[9] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[10] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[11] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[12] ZHOU GuiYing,YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing. Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs [J]. Scientia Agricultura Sinica, 2022, 55(15): 2938-2948.
[13] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[14] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[15] GONG Liang,JIN DanDan,NIU ShiWei,WANG Na,XU JiaYi,SUI ShiJiang. Analysis of Chemical Fertilizer Application Reduction Potential for Paddy Rice in Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(9): 1926-1936.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!