Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (23): 4928-4935 .doi: 10.3864/j.issn.0578-1752.2010.23.019

• VETERINARY SCIENCE • Previous Articles     Next Articles

Cloning and Expression of Yak Copper, Zinc-Superoxide Dismutase in E.coli

XU Ya-ou, YUAN Zhong, MAO De-cai, MAO Liang, ZHENG Yu-cai
  

  1. (西南民族大学生命科学与技术学院)
  • Received:2010-01-04 Revised:2010-03-03 Online:2010-12-01 Published:2010-12-01

Abstract:

【Objective】 Due to the medical superoxide dismutase (SOD) source is restricted from animals and plants, establishment of the prokaryotic expressing system of yak Cu, Zn-SODpET22b(+)-E. coli BI21(DE3) by genetic engineering method is a basis for recombinant SOD protein of clinical injection. 【Method】 Yak Cu, Zn-SOD gene was amplified using reverse transcription-polymerase chain reaction (RT-PCR). The PCR product was inserted into the vector pET22b(+) to construct plasmid Cu, Zn-SOD/ pET22b(+), then the plasmid expressed in E. coli BL21 (DE3) cell that induced by IPTG. The expression product and it's activity were tested by the method of SDS-PAGE, native PAGE (enzyme active stain) electrophoresis and pyrogallol (1,2,3-trihydroxybenzene) self oxidation. The level of expression protein was determined by Brad Ford. 【Result】 The length of ORF of yak Cu, Zn-SOD was 456 bp encoding 152 amino acids peptides. The nucleotide sequence and amino acids sequence of Cu, Zn-SOD similarities between yak and bovine were 99.6% and 98.7%, respectively. The activity ratio of the protein crude extract of recombinant Cu, Zn-SOD was 35U?mg-1. The concentration of the recombinant Cu, Zn-SOD is 0.2772 (mg?mL-1). 【Conclusion】 The prokaryotic expression vector for yak Cu, Zn-SOD/pET22b(+) was constructed successfully and it expresses in Escherichia coli stably and highly. The recombinant product was obtained and the product has higher biological activity.

Key words: yak, Cu, ZnSOD, clone, prokaryotic expression

[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] LI Hui,YIN ShiCai,GUO ZongXiang,MA HaoYun,REN ZiQi,SHE DongMei,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Protoschinia scutosa [J]. Scientia Agricultura Sinica, 2022, 55(9): 1790-1799.
[5] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[6] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[7] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[8] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[11] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[12] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[13] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!