Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (22): 4703-4717.doi: 10.3864/j.issn.0578-1752.2025.22.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Continuous Reduction Fertilization on the Stability of Spring Wheat Grain Quality in the Yellow River Irrigation Area of Ningxia

QIAN ZhiJin1(), WANG XiNa1(), TIAN HaiMei1, WANG YueMei1, HAO WenYue1, ZHOU Hui1, TAN JunLi2   

  1. 1 Agricultural College, Ningxia University, Yinchuan 750021
    2 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021
  • Received:2024-12-04 Accepted:2025-02-17 Online:2025-11-16 Published:2025-11-21
  • Contact: WANG XiNa

Abstract:

【Objective】The objective of this study was to investigate the effect of continuous reducing chemical fertilizer on the stability of spring wheat grain quality, to evaluate the sustainability of chemical fertilizer reduction techniques, and then to provide a theoretical basis for the rational reduction of chemical fertilizers in spring wheat in the Yellow River Irrigation Area of Ningxia. 【Method】A positioning field experiment on the reduction of nitrogen, phosphorus, and potassium fertilizers was conducted with Ningchun 4 cultivar of spring wheat as the test crop from 2019 to 2023. According to the fertilizer response functions established in previous experiments on nitrogen, phosphorus, and potassium application rates, the treatments of the upper limit of fertilizer reduction (RF1: applying 180 kg of N, 45 kg of P2O5, and 30 kg of K2O per hectare) and the lower limit of fertilizer reduction (RF2: applying 225 kg of N, 75 kg of P2O5, and 45 kg of K2O per hectare) were designed. Additionally, a conventional fertilization treatment (CF: applying 270 kg of N, 150 kg of P2O5, and 75 kg of K₂O per hectare) and a no- fertilization (CK) were set as controls. The variations in the SPAD value, leaf area, dry matter allocation, and photosynthetic capacity of spring wheat flag leaves from 2021 to 2023 were measured to analyze the stability of grain quality. 【Result】During 2022-2023, compared with the conventional fertilization treatment, the SPAD value and leaf area under RF1 treatment did not decrease significantly (P>0.05), and those under RF2 treatment tended to increase, yet without reaching a significant level. As for the photosynthetic indicators, in 2021 and 2023, the net photosynthetic rate, stomatal conductance, and transpiration rate were the highest under RF2 treatment, which was increased by 29.8% and 25.0%, 6.1% and 6.9%, 5.4% and 16.6%, compared with CF treatment, respectively, while RF1 treatment showed a certain degree of decline compared with CF treatment. From 2021 to 2023, the total dry matter of spring wheat presented the order of RF2 > CF > RF1 > CK. In 2021, CK treatment significantly decreased by 53.3%, 50.1% and 56.6% compared with CF, RF1 and RF2 treatment, respectively, and significantly decreased by 67.2%, 57.9% and 67.3% in 2023, respectively. In 2021 and 2023, the distribution rate of dry matter to grain was the highest under RF2, which was 38.3% and 38.6%, respectively. For grain quality, appropriate reducing chemical fertilizer application (RF2) was conducive to and continuously increases the crude protein content and soluble sugar content in spring wheat grains; compared with the CF treatment, in 2021 and 2023, they increased by 6.3% and 1.0%, 14.4% and 1.8%, and 12.2% and 1.4%, respectively. However, excessive reduction of chemical fertilizer application (RF1) led to a decreasing trend in crude protein and soluble sugar content. Except for the no-fertilization control, the RF1 treatment resulted in the lowest protein yield, which was significantly reduced by 46.68% and 38.72% compared to the CF treatment in 2021 and 2023, respectively.The protein stability index was based on the lowest RF2. There was little difference in the soluble-sugar stability index among different treatments, and the starch stability index was the minimum under RF1 treatment. The crude protein content in grains was extremely significantly and positively correlated with the SPAD value, leaf area, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, dry matter accumulation in vegetative organs and grains of the flag leaves during the grain-filling period of spring wheat. Meanwhile, there were extremely significant positive correlations among the SPAD value, leaf area, net photosynthetic rate, stomatal conductance, transpiration rate, and dry matter accumulation in vegetative organs and grains at the maturity stage. The soluble sugar content in grains was positively correlated with stomatal conductance, intercellular CO2 concentration, and transpiration rate. Through principal component analysis, it was found that the load values of grain dry matter mass, transpiration rate, net photosynthetic rate, stomatal conductance, crude protein content, starch content, and leaf area were relatively high, and the quality of spring wheat under RF2 treatment was the best. 【Conclusion】In the Yellow River Irrigation Area of Ningxia, the continuous and appropriate reduction of chemical fertilizers (applying 225 kg N·hm-2, 75 kg P2O5·hm-2 and 45 kg K2O·hm-2, with a 17.0% reduction in N, a 50.0% reduction in P2O5, and a 40.0% reduction in K2O compared to CF) could, to a certain extent, increase the SPAD value and leaf area of the flag leaves during the grain-filling stage of spring wheat, improve its photosynthetic efficiency, and promote dry matter accumulation and its translocation and distribution to grains, thereby stably improving the quality of grain, especially for the content of crude protein and soluble sugar.

Key words: spring wheat, continuous reduction of fertilizer application, photosynthetic capacity, dry matter accumulation and distribution, quality stability of grain

Table 1

Basic physical and chemical properties of the test site in 0-20 cm soil layer"

土层
Soil layer
(cm)
有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
矿质态氮
Mineral N
(mg·kg-1)
全磷
Total P
(g·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
pH值
pH Value
容重
Bulk density
(g·cm-3)
电导率
EC1.5
(mS·cm-1)
0-20 10.50 0.81 27.20 0.69 9.65 182.25 8.60 1.16 0.22

Table 2

Annual precipitation and average annual temperature in the test site"

2019 2020 2021 2022 2023
年降水量 Annual precipitation (mm) 145.5 181.4 160.6 136.5 146.6
生育期降水量 Growth period precipitation (mm) 74.5 70.1 92.6 126.4 68.9
年均气温 Average annual temperature (℃) 10.9 11.2 11.0 10.7 14.8
生育期平均气温 Average temperature during growth period (℃) 14.3 15.7 19.0 13.5 13.3

Table 3

Experimental treatments and fertilization amount"

施肥方式
Fertilization pattern
处理
Treatment
施肥量 Amount of fertilizer (kg·hm-2)
N P2O5 K2O
基肥
Basal fertilizer
(60%)
不施肥CK Unfertilized 0 0 0
常规施肥CF Conventional fertilization 162 150 75
减肥上限RF1 Maximum fertilizer reduction limit 108 45 30
减肥下限RF2 Minimum fertilizer reduction target 135 75 45
追肥
Top dressing
(40%)
不施肥CK Unfertilized 0 0 0
常规施肥CF Conventional fertilization 108 0 0
减肥上限RF1 Maximum fertilizer reduction limit 72 0 0
减肥下限RF2 Minimum fertilizer reduction target 90 0 0

Table 4

Field management"

年份
Year
播种时间Sowing time 播种量
Seeding rate (kg·hm-2)
宽窄行
Wide and narrow row (cm)
播深
Sowing depth (cm)
播种方式
Sowing method
除草时间
Weeding time
除草剂
Herbicide
除虫时间
Deworming time
除虫剂
Insecticide
2021 3月3日
March 3
375.0 16×12 3-5 机械条播
Drilling
4月21日
April 21
唑草酮
Carfentrazone-ethyl
苯磺隆
Tribenuron-methyl
6月10日
June 10
联苯菊酯
Bifenthrin
吡虫啉
Imidacloprid
2022 3月6日
March 6
337.5 16×11 3-5 机械条播
Drilling
4月10日
April 10
5月10日
May 10
麦草畏
Dicamba
2,4-D异辛酯
2,4-D isooctyl ester
二甲溴苯腈
Bromoxynil octanoate
6月11日
June 11
氟啶٠吡蚜酮
Flonicamid and pymetrozine mixture
联菊٠啶虫脒
Bifenthrin and acetamiprid mixture
2023 3月1日
March 1
375.0 16×12 3-5 机械条播
Drilling
4月9日
April 9
5月11日
May 11
麦草畏
Dicamba
2,4-D异辛酯
2,4-D isooctyl ester
二甲溴苯腈
Bromoxynil octanoate
6月11日
June 11
氟啶٠吡蚜酮
Flonicamid and pymetrozine mixture
联菊٠啶虫脒
Bifenthrin and acetamiprid mixture

Fig. 1

Effects of different fertilization treatments on SPAD value of spring wheat at filling stage Different letters above columns mean significant difference among treatments (P<0.05).The same as below"

Fig. 2

Effects of different fertilization treatments on leaf area of spring wheat at filling stage"

Table 5

Photosynthetic rate and related parameters of spring wheat"

年份
Year
处理
Treatment
净光合速率 Pn
(μmolCO2·m-2·s-1)
气孔导度 Gs
(mmolH2O·m-2·s-1)
胞间CO2浓度 Ci
(μmolCO2·mol-1)
蒸腾速率 Tr
(mmolH2O·m-2·s-1)

2021
不施肥 Unfertilized 3.45±0.62b 0.09±0.03b 258.31±17.76a 3.39±0.95b
常规施肥 Conventional fertilization 10.16±1.20a 0.33±0.08ab 298.69±18.83a 9.04±1.70a
减肥上限 Maximum fertilizer reduction limit 12.05±0.82a 0.21±0.02a 270.10±10.72a 7.79±0.25a
减肥下限 Minimum fertilizer reduction target 13.19±0.93a 0.35±0.02a 296.84±6.20a 9.53±0.27a
2022 不施肥 Unfertilized 4.79±0.14c 0.13±0.04b 289.45±4.61b 10.97±2.53b
常规施肥 Conventional fertilization 10.78±0.25ab 0.25±0.03a 321.85±8.20a 16.19±0.28a
减肥上限 Maximum fertilizer reduction limit 10.32±0.32b 0.23±0.01a 297.83±5.16b 15.18±0.98ab
减肥下限 Minimum fertilizer reduction target 11.83±0.75a 0.31±0.02a 327.41±3.74a 17.59±0.36a
2023 不施肥 Unfertilized 5.46±0.17c 0.13±0.01c 233.34±4.20b 6.20±0.73c
常规施肥 Conventional fertilization 9.76±0.32b 0.29±0.02a 258.62±9.69a 10.11±0.95ab
减肥上限 Maximum fertilizer reduction limit 9.65±0.18b 0.23±0.01b 241.47±7.07ab 8.31±0.60bc
减肥下限 Minimum fertilizer reduction target 12.20±0.19a 0.31±0.01a 255.07±3.21ab 11.79±0.34a

Fig. 3

Effects of different fertilization treatments on dry matter accumulation and distribution in spring wheat organs at maturity Different lowercase letters represent significant differences among different year under the same treatment (P<0.05), and different uppercase letters represent significant differences among different fertilization treatments in the same year (P<0.05). The vegetative body includes stems, leaves and glume shells"

Table 6

Effects of continuous fertilizer reduction on grain nutritional quality (dry base %) of spring wheat"

年份
Year
处理
Treatment
粗蛋白质
Crude protein (%)
可溶性糖
Soluble sugar (%)
淀粉
Starch (%)
籽粒蛋白产量
Grain protein yield (kg·hm-2)
2021 不施肥 Unfertilized 8.78±0.18d 5.01±0.09a 65.61±2.32a 297.3±1.35c
常规施肥 Conventional fertilization 14.40±0.20b 4.55±0.27a 62.92±3.17a 918.23±48.12a
减肥上限 Maximum fertilizer reduction limit 11.51±0.15c 4.59±0.21a 66.95±0.68a 626.02±22.72b
减肥下限 Minimum fertilizer reduction target 15.31±0.10a 4.59±0.22a 65.08±0.84a 1015.21±36.81a
2022 不施肥 Unfertilized 7.93±1.67b 4.54±0.04b 62.81±2.09a 227.83±49.72b
常规施肥 Conventional fertilization 13.70±0.50a 4.92±0.10ab 66.03±1.33a 616.54±56.08a
减肥上限 Maximum fertilizer reduction limit 12.77±1.46a 4.69±0.21ab 63.79±3.38a 548.06±41.49ab
减肥下限 Minimum fertilizer reduction target 15.67±0.37a 5.01±0.05a 66.60±2.17a 845.24±181.84a
2023 不施肥 Unfertilized 7.23±1.46c 4.44±0.07c 59.45±6.94a 267.09±13.68c
常规施肥 Conventional fertilization 14.89±0.80ab 5.00±0.08ab 62.34±7.05a 1005.66±84.59a
减肥上限 Maximum fertilizer reduction limit 11.41±1.55b 4.72±0.15bc 63.32±2.70a 724.96±93.51b
减肥下限 Minimum fertilizer reduction target 16.70±0.93a 5.07±0.07a 65.19±7.00a 1140.81±92.12a

Table 7

Standard deviation, average quality and stability index of spring wheat in 2021-2023"

处理
Treatment
标准差 Standard deviation 平均含量 Average content 稳定性指数 Index of stability
粗蛋白质
Protein
可溶性糖
Soluble sugar
淀粉
Starch
粗蛋白质
Protein
可溶性糖
Soluble sugar
淀粉
Starch
粗蛋白质
Protein
可溶性糖
Soluble sugar
淀粉
Starch
不施肥 Unfertilized 1.93 0.27 6.84 7.98 4.66 62.62 0.24 0.06 0.11
常规施肥 Conventional fertilization 0.93 0.31 6.43 14.33 4.82 63.76 0.07 0.06 0.10
减肥上限
Maximum fertilizer reduction limit
1.85 0.28 3.94 11.89 4.67 64.69 0.16 0.06 0.06
减肥下限
Minimum fertilizer reduction target
1.01 0.29 6.06 15.89 4.89 65.62 0.06 0.06 0.09

Fig. 4

Correlation analysis of photosynthesis, dry matter allocation, SPAD value, leaf area and quality of each organ at maturity A represents the crude protein content; B represents the soluble sugar; C represents the starch; D represents the net photosynthetic rate; E represents the stomatal conductance; F represents the intercellular CO2 concentration; G represents the transpiration rate; H represents the SPAD value; I represents the leaf area during the grain-filling stage; J represents the grain yield at the maturity stage; K represents the dry matter mass of vegetative organs at the maturity stage. The same as below"

Fig. 5

Principal component analysis of each index"

Table 8

Comprehensive evaluation of grain quality parameters of spring wheat"

处理 Treatment PC1得分PC1 score PC2得分
PC2 score
综合得分
Overall score
综合排名
Overall ranking
减肥下限 Minimum fertilizer reduction target 2.702 -0.231 2.292 1
常规施肥 Conventional fertilization 1.782 -0.319 1.487 2
减肥上限 Maximum fertilizer reduction limit 0.057 0.808 0.162 3
不施肥 Unfertilized -4.541 -0.257 -3.941 4
[1]
韩明会, 李保国, 张丹, 李颖. 再生农业: 基于土地保护性利用的可持续农业. 中国农业科学, 2021, 54(5): 1003-1016. doi: 10.3864/j.issn.0578-1752.2021.05.012.
HAN M H, LI B G, ZHANG D, LI Y. Regenerative agriculture- sustainable agriculture based on the conservational land use. Scientia Agricultura Sinica, 2021, 54(5): 1003-1016. doi: 10.3864/j.issn.0578-1752.2021.05.012. (in Chinese)
[2]
杨滨键, 尚杰, 于法稳. 农业面源污染防治的难点、问题及对策. 中国生态农业学报(中英文), 2019, 27(2): 236-245.
YANG B J, SHANG J, YU F W. Difficulty, problems and countermeasures of agricultural non-point sources pollution control in China. Chinese Journal of Eco-Agriculture, 2019, 27(2): 236-245. (in Chinese)
[3]
李芳, 冯淑怡, 曲福田. 发达国家化肥减量政策的适用性分析及启示. 农业资源与环境学报, 2017, 34(1): 15-23.
LI F, FENG S Y, QU F T. Fertilizer reduction policies in developed countries: suitability and implications. Journal of Agricultural Resources and Environment, 2017, 34(1): 15-23. (in Chinese)
[4]
刘钦普. 中国化肥施用强度及环境安全阈值时空变化. 农业工程学报, 2017, 33(6): 214-221.
LIU Q P. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 214-221. (in Chinese)
[5]
陈诚, 吴柯, 陈江龙. 基于投入品减量增效视角的长江经济带农业生产绿色化演进研究. 自然资源学报, 2024, 39(10): 2399-2417.
CHEN C, WU K, CHEN J L. Evolution of agricultural green development in the Yangtze River Economic Belt based on the perspective of reducing chemical products input and increasing output. Journal of Natural Resources, 2024, 39(10): 2399-2417. (in Chinese)
[6]
王月梅, 田海梅, 王西娜, 郝雯悦, 吕喆铭, 于金铭, 谭军利, 王朝辉. 引黄灌区连续减施化肥对春小麦产量稳定性的影响. 中国农业科学, 2024, 57(3): 539-554. doi: 10.3864/j.issn.0578-1752.2024.03.009.
WANG Y M, TIAN H M, WANG X N, HAO W Y, Z M, YU J M, TAN J L, WANG Z H. Effect of continuous reduction of fertilizer application on yield stability of spring wheat in Yellow River irrigation area of Ningxia. Scientia Agricultura Sinica, 2024, 57(3): 539-554. doi: 10.3864/j.issn.0578-1752.2024.03.009. (in Chinese)
[7]
NOURELDIN N A, SAUDY H S, ASHMAWY F, SAED H M. Grain yield response index of bread wheat cultivars as influenced by nitrogen levels. Annals of Agricultural Sciences, 2013, 58(2): 147-152.
[8]
GUAN G, TU S X, LI H L, YANG J C, ZHANG J F, WEN S L, YANG L. Phosphorus fertilization modes affect crop yield, nutrient uptake, and soil biological properties in the rice-wheat cropping system. Soil Science Society of America Journal, 2013, 77(1): 166-172.
[9]
WANG Y, ZHAO X, WANG L, ZHAO P H, ZHU W B, WANG S Q. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake region of China. Field Crops Research, 2016, 198: 32-39.
[10]
CAHOON L B, ENSIGN S H. Spatial and temporal variability in excessive soil phosphorus levels in eastern North Carolina. Nutrient Cycling in Agroecosystems, 2004, 69(2): 111-125.
[11]
WANG J, G A, GUO X S, WANG Y Q, DING S W, WANG D Z. Conservation tillage and optimized fertilization reduce winter runoff losses of nitrogen and phosphorus from farmland in the Chaohu Lake region, China. Nutrient Cycling in Agroecosystems, 2015, 101(1): 93-106.
[12]
杜新慧, 王祎, 王宜伦, 汪强, 李慧, 苗玉红, 谭金芳, 韩燕来. 砂质潮土区不同小麦品种的施钾效应. 麦类作物学报, 2014, 34(3): 358-363.
DU X H, WANG Y, WANG Y L, WANG Q, LI H, MIAO Y H, TAN J F, HAN Y L. Potassium effects on different wheat varieties in sandy soil. Journal of Triticeae Crops, 2014, 34(3): 358-363. (in Chinese)
[13]
丛孟菲, 赖宁, 胡洋, 吴江红, 马雯琪, 孙霞, 陈署晃, 贾宏涛. 化肥减施对滴灌冬小麦灌浆期光合生理特性的影响. 中国土壤与肥料, 2022(5): 43-50.
CONG M F, LAI N, HU Y, WU J H, MA W Q, SUN X, CHEN S H, JIA H T. Effects of chemical fertilizer reduction on photosynthetic physiological characteristics of winter wheat at grain filling stage under drip irrigation. Soil and Fertilizer Sciences in China, 2022(5): 43-50. (in Chinese)
[14]
杨明达, 马守臣, 杨慎骄, 张素瑜, 关小康, 李学梅, 王同朝, 李春喜. 氮肥后移对抽穗后水分胁迫下冬小麦光合特性及产量的影响. 应用生态学报, 2015, 26(11): 3315-3321.
YANG M D, MA S C, YANG S J, ZHANG S Y, GUAN X K, LI X M, WANG T C, LI C X. Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Chinese Journal of Applied Ecology, 2015, 26(11): 3315-3321. (in Chinese)
[15]
牟海萌, 孙丽芳, 王壮壮, 王宇, 宋一凡, 张荣, 段剑钊, 谢迎新, 康国章, 王永华, 郭天财. 施氮量和种植密度对两冬小麦品种抗倒性能和籽粒产量的影响. 中国农业科学, 2023, 56(15): 2863-2879. doi: 10.3864/j.issn.0578-1752.2023.15.003.
MU H M, SUN L F, WANG Z Z, WANG Y, SONG Y F, ZHANG R, DUAN J Z, XIE Y X, KANG G Z, WANG Y H, GUO T C. Effect of nitrogen application rate and planting density on the lodging resistance and grain yield of two winter wheat varieties. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879. doi: 10.3864/j.issn.0578-1752.2023.15.003. (in Chinese)
[16]
刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响. 作物学报, 2023, 49(8): 2296-2307.
LIU S J, YANG X W, MA G, FENG H X, HAN Z D, HAN X J, ZHANG X Y, HE D X, MA D Y, XIE Y X, WANG L F, WANG C Y. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat. Acta Agronomica Sinica, 2023, 49(8): 2296-2307. (in Chinese)
[17]
吴培金, 闫素辉, 邵庆勤, 许峰, 张从宇, 李文阳. 施氮量对弱筋小麦籽粒品质形成的影响. 麦类作物学报, 2020, 40(10): 1232-1238.
WU P J, YAN S H, SHAO Q Q, XU F, ZHANG C Y, LI W Y. Effect of nitrogen rate on grain quality of weak gluten wheat. Journal of Triticeae Crops, 2020, 40(10): 1232-1238. (in Chinese)
[18]
马永鑫, 王西娜, 韦广源, 薛旭, 郝雯悦, 王朝辉, 谭军利. 减氮节水对宁夏引黄灌区春小麦光合特性与产量的影响. 农业工程学报, 2022, 38(10): 75-84.
MA Y X, WANG X N, WEI G Y, XUE X, HAO W Y, WANG Z H, TAN J L. Effects of nitrogen reduction and water saving on the photosynthetic characteristics and yield of spring wheat in the Yellow River Irrigation Areas of Ningxia. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 75-84. (in Chinese)
[19]
李红, 王西娜, 韦广源, 马永鑫, 田海梅, 王月梅, 钱芝瑾, 谭军利. 节水减氮对宁夏引黄灌区春小麦抗倒伏特性及产量的影响. 中国农业科学, 2024, 57(17): 3424-3439. doi: 10.3864/j.issn.0578-1752.2024.17.009.
LI H, WANG X N, WEI G Y, MA Y X, TIAN H M, WANG Y M, QIAN Z J, TAN J L. Effects of water saving and nitrogen reduction on lodging resistance and grain yield of spring wheat in the Yellow River irrigation area of Ningxia. Scientia Agricultura Sinica, 2024, 57(17): 3424-3439. doi: 10.3864/j.issn.0578-1752.2024.17.009. (in Chinese)
[20]
马静丽, 方保停, 乔亚伟, 李春喜, 王志敏, 蒿宝珍, 姜丽娜. 减氮对豫北限水灌溉冬小麦冠层结构和光合特性的影响. 麦类作物学报, 2019, 39(3): 346-355.
MA J L, FANG B T, QIAO Y W, LI C X, WANG Z M, HAO B Z, JIANG L N. Effect of lower nitrogen application on canopy structure and photosynthesis of winter wheat grown under limited irrigation in northern Henan Province. Journal of Triticeae Crops, 2019, 39(3): 346-355. (in Chinese)
[21]
ABEDI T, ALEMZADEH A, KAZEMEINI S A. Wheat yield and grain protein response to nitrogen amount and timing. Australian Journal of Crop Science, 2011, 5(3): 330-336.
[22]
王西娜, 于金铭, 谭军利, 张佳群, 魏照清, 王朝辉. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力. 中国农业科学, 2020, 53(23): 4891-4903. doi: 10.3864/j.issn.0578-1752.2020.23.014.
WANG X N, YU J M, TAN J L, ZHANG J Q, WEI Z Q, WANG Z H. Requirement of nitrogen, phosphorus and potassium and potential of reducing fertilizer application of spring wheat in Yellow River irrigation area of Ningxia. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903. doi: 10.3864/j.issn.0578-1752.2020.23.014. (in Chinese)
[23]
黄兴成, 李渝, 白怡婧, 张雅蓉, 刘彦伶, 张文安, 蒋太明. 长期不同施肥下黄壤综合肥力演变及作物产量响应. 植物营养与肥料学报, 2018, 24(6): 1484-1491.
HUANG X C, LI Y, BAI Y J, ZHANG Y R, LIU Y L, ZHANG W A, JIANG T M. Evolution of yellow soil fertility under long-term fertilization and response of crop yield. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1484-1491. (in Chinese)
[24]
马玉诏, 党红凯, 李科江, 郑春莲, 曹彩云, 张俊鹏, 李全起. 咸水灌溉对冬小麦籽粒品质特性和产量的影响. 应用生态学报, 2022, 33(4): 1063-1068.
MA Y Z, DANG H K, LI K J, ZHENG C L, CAO C Y, ZHANG J P, LI Q Q. Effects of brackish water irrigation on grain quality characteristics and yield of winter wheat. Chinese Journal of Applied Ecology, 2022, 33(4): 1063-1068. (in Chinese)
[25]
赵犇, 姚霞, 田永超, 刘小军, 曹卫星, 朱艳. 基于上部叶片SPAD值估算小麦氮营养指数. 生态学报, 2013, 33(3): 916-924.
ZHAO B, YAO X, TIAN Y C, LIU X J, CAO W X, ZHU Y. Estimation of nitrogen nutrient index on SPAD value of top leaves in wheat. Acta Ecologica Sinica, 2013, 33(3): 916-924. (in Chinese)
[26]
董瑞, 吕厚波, 张保军, 张正茂, 陈魏涛, 刘芳亮. 叶面喷施氮肥对小麦SPAD值及产量的影响. 麦类作物学报, 2015, 35(1): 99-104.
DONG R, H B, ZHANG B J, ZHANG Z M, CHEN W T, LIU F L. Effect of foliar application of nitrogen fertilizer on SPAD and yield of wheat. Journal of Triticeae Crops, 2015, 35(1): 99-104. (in Chinese)
[27]
魏小武, 单世平, 郭照辉, 付祖姣, 程伟, 王玉双, 张敏, 欧阳薇, 易红伟, 伍善东. 化肥减量配施生物有机肥对油菜产量的影响. 湖南农业科学, 2019(4): 37-40.
WEI X W, SHAN S P, GUO Z H, FU Z J, CHENG W, WANG Y S, ZHANG M, OUYANG W, YI H W, WU S D. Effects of bio-organic fertilizer with reducing application of chemical fertilizer on rape yield. Hunan Agricultural Sciences, 2019(4): 37-40. (in Chinese)
[28]
吉春容, 李世清, 李生秀. 施肥与品种及其种子大小对冬小麦光合及叶绿素荧光特性的影响. 西北植物学报, 2007, 27(12): 2522-2530.
JI C R, LI S Q, LI S X. Effects of fertilization, variety and seed size on photosynthesis and chlorophyll fluorescence of winter wheat. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(12): 2522-2530. (in Chinese)
[29]
马国成, 尹娟, 李文证. 水肥耦合对马铃薯叶绿素和光合速率的影响. 节水灌溉, 2016(6): 35-40.
MA G C, YIN J, LI W Z. Effect of water and fertilizer coupling on chlorophyll relative content and photosynthetic rate of potato. Water Saving Irrigation, 2016(6): 35-40. (in Chinese)
[30]
李彦君, 庄丽, 徐红军, 周萍, 穆培源. 水氮耦合对北疆地区春小麦光合特性及产量的影响. 新疆农业科学, 2013, 50(2): 204-213.
LI Y J, ZHUANG L, XU H J, ZHOU P, MU P Y. Effects of water-nitrogen coupling on photosynthetic characteristics and yield of spring wheat in northern Xinjiang. Xinjiang Agricultural Sciences, 2013, 50(2): 204-213. (in Chinese)
[31]
姜丽娜, 马静丽, 方保停, 马建辉, 李春喜, 王志敏, 蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响. 作物学报, 2019, 45(6): 957-966.
JIANG L N, MA J L, FANG B T, MA J H, LI C X, WANG Z M, HAO B Z. Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province. Acta Agronomica Sinica, 2019, 45(6): 957-966. (in Chinese)
[32]
徐晓峰, 焦念元. 氮肥减施对宽幅播种冬小麦产量形成和氮肥利用效率的影响. 核农学报, 2021, 35(4): 953-959.
XU X F, JIAO N Y. Effects of reduced application of nitrogen fertilizer on yield formation and nitrogen use efficiency of winter wheat with wide-range sowing. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 953-959. (in Chinese)
[33]
李传梁, 于振文, 张娟, 张永丽, 石玉. 测墒补灌条件下施氮量对小麦干物质积累转运和产量的影响. 麦类作物学报, 2023, 43(8): 1039-1046.
LI C L, YU Z W, ZHANG J, ZHANG Y L, SHI Y. Effect of nitrogen application rates on dry matter accumulation, transportation and yield of wheat under the conditions of soil moisture measurement and supplementary irrigation. Journal of Triticeae Crops, 2023, 43(8): 1039-1046. (in Chinese)
[34]
杨长琴, 张国伟, 刘瑞显, 倪万潮, 张雷, 周关印. 氮肥运筹对麦后直播棉产量与氮素利用的影响. 中国生态农业学报, 2016, 24(12): 1607-1613.
YANG C Q, ZHANG G W, LIU R X, NI W C, ZHANG L, ZHOU G Y. Effect of nitrogen management on lint yield and nitrogen utilization of field-seeded cotton after barley harvest. Chinese Journal of Eco- Agriculture, 2016, 24(12): 1607-1613. (in Chinese)
[35]
王子胜, 徐敏, 刘瑞显, 吴晓东, 朱鹤, 陈兵林, 周治国. 施氮量对不同熟期棉花品种的生物量和氮素累积的影响. 棉花学报, 2011, 23(6): 537-544.
WANG Z S, XU M, LIU R X, WU X D, ZHU H, CHEN B L, ZHOU Z G. Effects of nitrogen rates on biomass and nitrogen accumulation of cotton with different varieties in growth duration. Cotton Science, 2011, 23(6): 537-544. (in Chinese)
[36]
邓丽娟, 焦小强. 氮管理对冬小麦产量和品质影响的整合分析. 中国农业科学, 2021, 54(11): 2355-2365. doi: 10.3864/j.issn.0578-1752.2021.11.009.
DENG L J, JIAO X Q. A meta-analysis of effects of nitrogen management on winter wheat yield and quality. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365. doi: 10.3864/j.issn.0578-1752.2021.11.009. (in Chinese)
[37]
路佳慧, 王爽, 李云, 郭振清, 王健, 韩玉翠, 林小虎. 减量施氮对春小麦不同器官氮肥利用及籽粒品质的影响. 作物杂志, 2024(5): 220-227.
LU J H, WANG S, LI Y, GUO Z Q, WANG J, HAN Y C, LIN X H. Effects of reduced nitrogen application on nitrogen utilization and grain quality in different organs of spring wheat. Crops, 2024(5): 220-227. (in Chinese)
[38]
王伟, 侯丽丽, 贾永红, 雷荣荣, 刘旭欢, 石书兵. 水分胁迫下施氮量对春小麦旗叶生理特性的影响. 新疆农业科学, 2013, 50(11): 1967-1973.
WANG W, HOU L L, JIA Y H, LEI R R, LIU X H, SHI S B. Effect of nitrogen application rate on physiological characteristics in flag leaf of spring wheat under water stress. Xinjiang Agricultural Sciences, 2013, 50(11): 1967-1973. (in Chinese)
[39]
ACRECHE M M, BRICEÑO-FÉLIX G, MARTÍN SÁNCHEZ J A, SLAFER G A. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Research, 2009, 110(2): 91-97.
[40]
田纪春, 陈建省, 王延训, 张永祥. 氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响. 中国农业科学, 2001, 34(1): 101-103.
TIAN J C, CHEN J S, WANG Y X, ZHANG Y X. Effects of delayed-nitrogen application on grain yield and photosynthetic characteristics in flag leaves of wheat cultivars. Scientia Agricultura Sinica, 2001, 34(1): 101-103. (in Chinese)
[41]
李姗姗, 赵广才, 常旭虹, 刘利华, 杨玉双, 丰明. 追氮时期对强筋小麦产量、品质及其相关生理指标的影响. 麦类作物学报, 2008, 28(3): 461-465.
LI S S, ZHAO G C, CHANG X H, LIU L H, YANG Y S, FENG M. Effects of nitrogen topdressing stage on quality, yield and other physiological traits in strong gluten wheat. Journal of Triticeae Crops, 2008, 28(3): 461-465. (in Chinese)
[42]
郭振清, 付陈陈, 李婧实, 张敏, 张玉春, 李清瑶, 郭双双, 蔡瑞国. 施氮对花后遮光条件下小麦产量与蛋白质含量的影响. 麦类作物学报, 2021, 41(7): 883-890.
GUO Z Q, FU C C, LI J S, ZHANG M, ZHANG Y C, LI Q Y, GUO S S, CAI R G. Effect of different nitrogen rate on wheat yield and protein content under shading conditions after anthesis. Journal of Triticeae Crops, 2021, 41(7): 883-890. (in Chinese)
[43]
巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1): 1-13.
JU X T, ZHANG C. The principles and indicators of rational N fertilization. Acta Pedologica Sinica, 2021, 58(1): 1-13. (in Chinese)
[44]
徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响. 作物学报, 2022, 48(2): 437-447.
XU L L, YIN W, HU F L, FAN H, FAN Z L, ZHAO C, YU A Z, CHAI Q. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat. Acta Agronomica Sinica, 2022, 48(2): 437-447. (in Chinese)
[45]
闫恒辉, 温樱, 王东. 底肥分层条施对冬小麦旗叶衰老和光合特性、籽粒产量和肥料利用率的影响. 中国农业科学, 2019, 52(5): 813-821. doi: 10.3864/j.issn.0578-1752.2019.05.004.
YAN H H, WEN Y, WANG D. Effects of basal fertilization in strips at different soil depths on flag leaf senescence and photosynthetic characteristics, grain yield and fertilizer use efficiency of winter wheat. Scientia Agricultura Sinica, 2019, 52(5): 813-821. doi: 10.3864/j.issn.0578-1752.2019.05.004. (in Chinese)
[46]
杨婷婷, 闫素辉, Abdul Rehman, 陈娟, 汪建来, 李文阳. 花后弱光对软质小麦籽粒产量与淀粉品质的影响. 麦类作物学报, 2024, 44(11): 1431-1438.
YANG T T, YAN S H, REHMAN A, CHEN J, WANG J L, LI W Y. Effect of weak light after anthesis on grain yield and starch quality in soft wheat. Journal of Triticeae Crops, 2024, 44(11): 1431-1438. (in Chinese)
[1] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[2] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[3] ZHANG HuanHuan, ZHANG DiaoLiang, WANG XiaoLi, CHEN Han, SHAO Juan, YIN Wen, HU FaLong, CHAI Qiang, FAN ZhiLong. Effects of Green Manure and Wheat Straw Combined Returning Application on Photosynthetic Characteristics and Yield of Spring Wheat Under Reduced Nitrogen Levels [J]. Scientia Agricultura Sinica, 2025, 58(17): 3461-3472.
[4] CAO JingWen, NIE ZhiGang, LI Guang, YANG Jie. Multi-Objective Optimization of Stable Yield and Emission Reduction of Dryland Spring Wheat Based on DNDC and NSGA-Ⅲ. Coupling Model [J]. Scientia Agricultura Sinica, 2025, 58(13): 2538-2551.
[5] LI Rong, LI ZhengPeng, YAN QingBiao, GUO RanRan, HAN Mei, XU Ke. Effects of Multiple Cropping Green Manure Combined with Different Nitrogen Fertilizer Levels on Yield and Quality of Spring Wheat [J]. Scientia Agricultura Sinica, 2025, 58(12): 2333-2345.
[6] LI XiaoYan, DU YaDan, HU XiaoTao, LU YiNing, GU XiaoBo. The Influence of Nitrogen Application Under Aerated Drip Irrigation on the Hydraulic Characteristics and Photosynthetic Capacity of Tomato [J]. Scientia Agricultura Sinica, 2025, 58(11): 2225-2238.
[7] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[10] LI Hong, WANG XiNa, WEI GuangYuan, MA YongXin, TIAN HaiMei, WANG YueMei, QIAN ZhiJin, TAN JunLi. Effects of Water Saving and Nitrogen Reduction on Lodging Resistance and Grain Yield of Spring Wheat in the Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(17): 3424-3439.
[11] SUN WeiHao, LIU Ting, SANG YiNan, YANG ZhengWei, ZHANG GaiSheng, SONG YuLong, ZHANG ShuangXi. Analysis of Heterosis and Combining Ability of Lodging Resistance Traits of Spring Wheat Varieties (Lines) in the Ningxia Yellow River Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(13): 2497-2508.
[12] ZHANG DianKai, LI Pan, FAN Hong, HE Wei, FAN ZhiLong, HU FaLong, SUN YaLi, TAN XiangNian, YIN Wen, CHEN GuiPing. Soil Water Use Characteristics of Spring Wheat with Multiple- Cropping Green Manure and Nitrogen Reduction in Northwest Irrigated Areas [J]. Scientia Agricultura Sinica, 2024, 57(11): 2189-2201.
[13] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[14] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[15] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!