Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3985-3999.doi: 10.3864/j.issn.0578-1752.2025.19.014

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Functional Study of AkNAC2 from Actinidia kolomikta

ZOU PeiYi(), LIU MeiYan, WANG Ying, LI RanHong()   

  1. College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang 157011, Heilongjiang
  • Received:2025-04-18 Accepted:2025-07-14 Online:2025-10-01 Published:2025-10-10
  • Contact: LI RanHong

Abstract:

【Objective】The NAC transcription factors constitute the largest family of transcription factors in plants, and play an important role in plant resistance to abiotic stresses such as cold. Actinidia kolomikta is one of the most cold-resistant kiwifruits. Based on the transcriptome data of Actinidia kolomikta, a NAC transcription factor family member responding to cold-AkNAC2 was obtained. The function of AkNAC2 in cold response was further studied by constructing overexpression and inhibition expression lines, which provided available gene resources for cultivating cold-resistant kiwifruit varieties.【Method】The leaves cDNA of Actinidia kolomikta were used as experimental materials to clone AkNAC2, and its sequence information and protein structure were analyzed by bioinformatics. The subcellular localization of AkNAC2 was analyzed by GFP labeling. The tissue-specific expression information of AkNAC2 was obtained by transcriptome data, and the response of AkNAC2 to cold, salt and waterlogging stress was detected by qRT-PCR. The overexpression lines of AkNAC2 Nicotiana benthamiana and the inhibitory expression lines of Actinidia kolomikta were constructed. The phenotypic, physiological and biochemical indexes and the expression of CBF pathway related genes were compared between the transgenic lines and the control after cold treatment.【Result】The CDS length of AkNAC2 is 897 bp. and has a domain. AkNAC2 encoding 298 amino acids, was a hydrophilic acidic protein, its promoter contained multiple cis-elements related to abiotic stress. Phylogenetic analysis indicated that AkNAC2 was closely related to NAC2 of Actinidia eriantha. Subcellular localization showed that AkNAC2 is localized in the nucleus. The expression level of AkNAC2 was the highest in leaves, followed by pistillate flowers, staminate flowers, fruits and stems, and the lowest in roots. The expression of AkNAC2 could be induced by cold, salt and waterlogging stress, and the response of AkNAC2 to cold stress was the most obvious. Six Nicotiana benthamiana transgenic lines were obtained by Agrobacterium-mediated, named OE1-OE6, Among them, the gene expression levels of OE2, OE4 and OE6 were higher, which were used as follow-up research materials. Under 4 ℃, compared with wild-type Nicotiana benthamiana, the relative conductivity and malondialdehyde content of the three transgenic Nicotiana benthamiana lines were lower, the content of protective soluble sugar and soluble protein significantly increased, the activity of peroxidase and superoxide dismutase increased, and the antioxidant capacity significantly increased. The expression levels of CBF pathway-related genes (NbtICE1, NbtCOR47, NbtCBF1, NbtCBF2, NbtCBF3) were significantly up-regulated. The AkNAC2 inhibitory expression lines of Actinidia kolomikta were obtained by transient transformation. qRT-PCR showed that the expression of AkNAC2 in the inhibitory expression lines was significantly lower than that in the wild type and the empty vector group. On the 4th day of treatment, the expression level reached the lowest, which was 0.40 times that of the wild type and 0.34 times that of the empty vector group. After 4 °C low temperature treatment, the relative conductivity and malondialdehyde content of the inhibited expression lines were significantly increased, the contents of protective substances such as soluble sugar and soluble protein were significantly decreased, the activities of peroxidase and superoxide dismutase were significantly decreased, and the expression levels of CBF pathway-related genes (AkCBF1.1 and AkCBF3) were significantly down-regulated.【Conclusion】A low temperature response gene AkNAC2 of Actinidia kolomikta was cloned, it may positively regulate the cold resistance of plants by affecting the expression of key genes in the CBF pathway and reducing oxidative stress.

Key words: Actinidia kolomikta, AkNAC2, transcription factor, gene cloning, Agrobacterium-mediated, CBF pathway

Table 1

Primers used in this study"

引物 Primer 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
AkNAC2 CAGTGGTCTCACAACATGACGAGTCAGTTGGAGTTGC CAGTGGTCTCATACACTAGAATGGCTTGTCCATGAACATGA
TRV2-AkNAC2 AAGGTTACCGAATTCTCTAGCCAACGTGGACAGGTCCG CGTGAGCTCGGTACCGGATCTCACGTGCTCGGACCCAC
GFP-AkNAC2 GCTCTAGAATGACGAGTCAGTTGGAGTTGC GCGTCGACCTAGAATGGCTTGTCCATGAACATGA
qAkNAC2 TCACGGTCAGTCCAAAACTCG TTGCTTGGTGGTACGATGGC
qAkGAPDH GTCGGTGGAGACCACATCAT CACTGTCGATGTCTCAGTGGT
qNbtCBF1 CCAAGTCATACAAGGGGTGGT ATTAGCCCCTCGGCCATATTC
qNbtCBF2 TCATCGGAGGCCGAAAACAT ATCCCGGCATGCAAAATAGC
qNbtCBF3 TAGACGAGGAGGCGCTTTTC GAATGCTCAGCTTCCATGCC
qNbtICE1 GGCAACCCCAATTTGAGTTCTT CCATCACTAAACCCCAGTGGA
qNbtCOR47 CCGATGACACTGCCATGATTG GCGGTGAAGTTTGTCCATGAG
qNbtActin ACTGAAGCGCCTCTTAACCC AGACGGAGAATGGCATGTGG
qAkICBF1.1 TCCGAGGATGCCAAGAGAGA TCCCAACTAAAATCCCGCCC
qAkCBF3 AAGTTCAGGGAGACGAGGCA TCGGCGGTTGGGTAGGT

Fig. 1

Cloning of AkNAC2 M: Marker (DL2000); 1: Target gene"

Fig. 2

Bioinformatic analysis of the AkNAC2 A: Tertiary structure of AkNAC2; B: Protein interaction network of AkNAC2; C: Phylogenetic tree"

Table 2

Prediction of the cis-elements in the promoter of AkNAC2"

可能的功能 Possible function 顺式元件 Cis-element 核心序列 Core sequence 数目 Number
低温响应元件Low temperature responsive element ABRE ACGTG 6
MYC CATTTG 3
热诱导元件Heat shock element STRE AGGGG 2
盐胁迫响应元件Salt stress response element W-box TTGACC 2
G-box CACGTT 2
生长素响应元件Auxin response element P-box CCTTTTG 2
光响应元件Light responsive element G-box CACGTC 4
水杨酸响应元件Salicylic acid response element TGACG-motif TGACG 6

Fig. 3

Subcellular localization of AkNAC2"

Fig. 4

Expression patterns of AkNAC2 in Actinidia kolomikta Different letters represent significant levels of difference at P<0.05. The same as below"

Fig. 5

PCR verification of the constructed vectors A: PCR of the overexpressed vector pHK-35S-AkNAC2; B: PCR of repression expression vector pTRV2-AkNAC2. M: Marker (DL2000); 1-2: Recombinant bacterial solution"

Fig. 6

PCR results of transgenic Nicotiana benthamiana DNA M: Marker (DL2000); 1: Positive control; 2: Nicotiana benthamiana WT; 3: Water; 4-9: Transgenic Nicotiana benthamiana OE1-OE6"

Fig. 7

qRT-PCR results of transgenic Nicotiana benthamiana"

Fig. 8

Phenotypes of Nicotiana benthamiana under 4 ℃"

Fig. 9

Physiological changes of Nicotiana benthamiana under cold stress"

Fig. 10

Analysis of the expression level of CBF pathway genes in Nicotiana benthamiana"

Table 3

Prediction of promoter predicted sites"

AtNAC002的下游结合序列
The downstream binding sequence of AtNAC002
基因
Gene
结合序列
Predicted sequence
NbtICE1 ACGTAATT
NbtCBF1 ACTCAACT
NbtCBF2 AAGTAACT
NbtCBF3 AAGCAACT
NbtCOR47 ACGGAACC

Fig. 11

Expression levels of AkNAC2 suppresses lines A: The inhibition efficiency of AkNAC2; B: Expression level of AkNAC2 in different treatment time"

Fig. 12

Phenotypes of Actinidia kolomikta under 0 ℃"

Fig. 13

Physiological changes of Actinidia kolomikta under cold stress"

Fig. 14

Analysis of gene expression level of CBF pathway genes in Actinidia kolomikta"

[1]
刘丹, 毕德泷, 陈鑫, 王立凤. 狗枣猕猴桃胚胎发育晚期富集蛋白的生物信息学分析. 江苏农业科学, 2019, 47(24): 30-33.
LIU D, BI D L, CHEN X, WANG L F. Bioinformatics analysis of enriched protein in Actinidia kolomikta during late embryonic development. Jiangsu Agricultural Sciences, 2019, 47(24): 30-33. (in Chinese)
[2]
AN X, CHEN J, JIN G R. Transcriptome profiling of kenaf (Hibiscus cannabinus L.) under plumbic stress conditions implies the involvement of NAC transcription factors regulating reactive oxygen species-dependent programmed cell death. PeerJ, 2020, 8: e8733.
[3]
于婧瑶, 巩琛锐. 植物NAC转录因子的生物学功能研究进展. 河南科学, 2024, 42(11): 1589-1601.
YU J Y, GONG C R. Advances in biological functions of plant NAC transcription factors. Henan Science, 2024, 42(11): 1589-1601. (in Chinese)
[4]
LIU G S, LI H L, GRIERSON D, FU D Q. NAC transcription factor family regulation of fruit ripening and quality: A review. Cells, 2022, 11(3): 525.
[5]
VALOROSO M C, LUCIBELLI F, ACETO S. Orchid NAC transcription factors: A focused analysis of CUPULIFORMIS genes. Genes, 2022, 13(12): 2293.
[6]
SINGH S, KOYAMA H, BHATI K K, ALOK A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. Journal of Plant Research, 2021, 134(3): 475-495.

doi: 10.1007/s10265-021-01270-y pmid: 33616799
[7]
李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011, 17(4): 596-606.
LI W, HAN L, QIAN Y Q, SUN Z Y. Characteristics and functions of NAC transcription factors in plants. Chinese Journal of Applied & Environmental Biology, 2011, 17(4): 596-606. (in Chinese)
[8]
刘旭, 李玲. 植物NAC转录因子的研究进展. 生命科学研究, 2008, 12(4): 297-302.
LIU X, LI L. Progresses on plant NAC transcription factors. Life Science Research, 2008, 12(4): 297-302. (in Chinese)
[9]
杨洁. 毛果杨PtNAC101基因在高盐胁迫中的功能分析[D]. 烟台: 鲁东大学, 2021.
YANG J. Functional analysis of PtNAC101 gene in Populus tomentosa under high salt stress[D]. Yantai: Ludong University, 2021. (in Chinese)
[10]
VARGAS-HERNÁNDEZ B Y, NÚÑEZ-MUÑOZ L, CALDERÓN- PÉREZ B, XOCONOSTLE-CÁZARES B, RUIZ-MEDRANO R. The NAC transcription factor ANAC087 induces aerial rosette development and leaf senescence in Arabidopsis. Frontiers in Plant Science, 2022, 13: 818107.
[11]
LIU X H, LYU Y S, YANG W P, YANG Z T, LU S J, LIU J X. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal, 2020, 18(5): 1317-1329.
[12]
ZHANG X, LONG Y, CHEN X X, ZHANG B L, XIN Y F, LI L Y, CAO S L, LIU F H, WANG Z G, HUANG H, et al. A NAC transcription factor OsNAC 3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biology, 2021, 21(1): 546.
[13]
LI M, CHEN R, JIANG Q Y, SUN X J, ZHANG H, HU Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology, 2021, 105(3): 333-345.

doi: 10.1007/s11103-020-01091-y pmid: 33155154
[14]
YANG C F, HUANG Y Z, LV P Y, ANTWI-BOASIAKO A, BEGUM N, ZHAO T J, ZHAO J M. NAC transcription factor GmNAC12 improved drought stress tolerance in soybean. International Journal of Molecular Sciences, 2022, 23(19): 12029.
[15]
LI S, JING X L, TAN Q P, WEN B B, FU X L, LI D M, CHEN X D, XIAO W, LI L. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple. Frontiers in Plant Science, 2023, 14: 1173107.
[16]
HOU X M, ZHANG H F, LIU S Y, WANG X K, ZHANG Y M, MENG Y C, LUO D, CHEN R G. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers. Plant Science, 2020, 291: 110346.
[17]
贾湘璐, 粟智勇, 赵文军, 蓝永, 刘秀, 欧阳子龙. 低温对植物生理的影响及生长调节剂的缓解作用研究进展. 热带农业科学, 2025, 45(4): 177-188.
JIA X L, SU Z Y, ZHAO W J, LAN Y, LIU X, OUYANG Z L. Research progress on the effects of low temperature on plant physiology and the alleviation effects of plant growth regulators. Chinese Journal of Tropical Agriculture, 2025, 45(4): 177-188. (in Chinese)
[18]
刘惠玲, 江炳玉, 张静, 王琴, 张莉. 植物NAC转录因子的研究进展. 福建农林大学学报(自然科学版), 2024, 53(6): 742-753.
LIU H L, JIANG B Y, ZHANG J, WANG Q, ZHANG L. Advances in study on plant NAC transcription factors. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2024, 53(6): 742-753. (in Chinese)
[19]
MAO X G, ZHANG H Y, QIAN X Y, LI A, ZHAO G Y, JING R L. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 2012, 63(8): 2933-2946.
[20]
SRIVASTAVA R, KOBAYASHI Y, KOYAMA H, SAHOO L. Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. Journal of Integrative Plant Biology, 2023, 65(1): 25-44.

doi: 10.1111/jipb.13365
[21]
王以斌, 缪锦来, 姜英辉, 刘芳明, 郑洲, 李光友. 脯氨酸和可溶性糖在南极冰藻低温适应机制中的作用. 生物技术通报, 2016, 32(2): 198-202.

doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.024
WANG Y B, MIAO J L, JIANG Y H, LIU F M, ZHENG Z, LI G Y. Roles of proline and soluble sugar in the cold-adaptation of Antarctic ice microalgae. Biotechnology Bulletin, 2016, 32(2): 198-202. (in Chinese)
[22]
WANG Y, WANG J, SARWAR R, ZHANG W, GENG R, ZHU K M, TAN X L. Research progress on the physiological response and molecular mechanism of cold response in plants. Frontiers in Plant Science, 2024, 15: 1334913.
[23]
RITONGA F N, CHEN S. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 2020, 9(5): 560.
[24]
DONG J, CAO L, ZHANG X Y, ZHANG W H, YANG T, ZHANG J Z, CHE D D. An R2R3-MYB transcription factor RmMYB108 responds to chilling stress of Rosa multiflora and conferred cold tolerance of Arabidopsis. Frontiers in Plant Science, 2021, 12: 696919.
[25]
LUO Q C, WEI Q H, WANG R B, ZHANG Y, ZHANG F, HE Y, YANG G X, HE G Y. Ectopic expression of BdCIPK31 confers enhanced low-temperature tolerance in transgenic tobacco plants. Acta Biochimica et Biophysica Sinica, 2018, 50(2): 199-208.
[26]
ZHANG X M, JIANG J W, MA Z W, YANG Y P, MENG L D, XIE F C, CUI G W, YIN X J. Cloning of TaeRF1 gene from Caucasian clover and its functional analysis responding to low-temperature stress. Frontiers in Plant Science, 2022, 13: 968965.
[27]
ZHANG Y X, WU L, LIU L, JIA B, YE Z F, TANG X M, HENG W, LIU L. Functional analysis of PbbZIP11 transcription factor in response to cold stress in Arabidopsis and pear. Plants, 2024, 13(1): 24.
[28]
ALVES M S, DADALTO S P, GONÇALVES A B, DE SOUZA G B, BARROS V A, FIETTO L G. Transcription factor functional protein-protein interactions in plant defense responses. Proteomes, 2014, 2(1): 85-106.

doi: 10.3390/proteomes2010085 pmid: 28250372
[29]
CHEN F Q, ZHANG J Q, HA X, MA H L. Genome-wide identification and expression analysis of the Auxin-Response factor (ARF) gene family in Medicago sativa under abiotic stress. BMC Genomics, 2023, 24(1): 498.
[30]
陈婷欣, 符敏, 李娜, 杨蕾蕾, 李凌飞, 钟春梅. 铁甲秋海棠DNA甲基转移酶全基因组鉴定及表达分析. 植物学报, 2024, 59(5): 726-737.

doi: 10.11983/CBB24010
CHEN T X, FU M, LI N, YANG L L, LI L F, ZHONG C M. Identification and expression analysis of DNA methyltransferase in Begonia masoniana. Chinese Bulletin of Botany, 2024, 59(5): 726-737. (in Chinese)
[31]
刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析. 作物学报, 2024, 50(6): 1451-1466.
LIU Z, CHEN L M, LI Z T, ZHU J Y, WANG W L, QI Z Y, YAO P F, BI Z Z, SUN C, BAI J P, LIU Y H. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.). Acta Agronomica Sinica, 2024, 50(6): 1451-1466. (in Chinese)
[32]
ZHANG R J, KENNEDY M A. Current understanding of the structure and function of pentapeptide repeat proteins. Biomolecules, 2021, 11(5): 638.
[33]
HWARARI D, GUAN Y L, AHMAD B, MOVAHEDI A, MIN T, HAO Z D, LU Y, CHEN J H, YANG L M. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. International Journal of Molecular Sciences, 2022, 23(3): 1549.
[34]
WANG Z C, CHEN Z R, WU Y C, MU M Q, JIANG J W, NIE W T, ZHAO S W, CUI G W, YIN X J. Genome-wide identification and characterization of NAC transcription factor family members in Trifolium pratense and expression analysis under lead stress. BMC Genomics, 2024, 25(1): 128.
[35]
CAO Y, HE L M, LU S D, WANG Y L, ZHANG C X, ZHAN Y G. Function of the NAC1 gene from Fraxinus mandshurica in cold resistance and growth promotion in tobacco. Forests, 2024, 15(8): 1405.
[1] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[2] WANG MengYuan, WEI QianRui, LI HaiYan, YANG QiaoMin, YU Jun, HUANG Wei, LU MingHui. Functional Analysis of MADS-box Transcription Factor Gene CaAGL61 in Heat Tolerance of Pepper [J]. Scientia Agricultura Sinica, 2025, 58(8): 1604-1616.
[3] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[4] ZHENG YaQin, LIU XueQing, WU SiWen, TANG XiaoYan, YANG DanNi, WANG YongKang, AHMAD Aftab, KHAN Afrsyab, WANG ChengGang, CHEN GuoHu. Cloning and Expression of BcDET2 Gene and Functional of Its Regulatory Effect on Bolting and Flowering in Wucai (Brassica campestris L.) [J]. Scientia Agricultura Sinica, 2025, 58(5): 991-1003.
[5] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[6] ZHANG LinLin, GONG Rui, CUI YanLing, ZHONG XiongHui, LI Ye, LI RanHong, QIAN ZongWei. Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS) [J]. Scientia Agricultura Sinica, 2025, 58(3): 548-563.
[7] ZHANG ShuHong, GAO FengJu, WU QiuYing, JI JingXin, ZHANG YunFeng, XU Ke, GU ShouQin, FAN YongShan. Cloning and Expression Analysis of Heat Shock Protein HSP 9/12 Genes in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2025, 58(18): 3648-3663.
[8] RUAN QiaoJun, MAO MiaoMiao, ZHANG YuanYuan, LIN XiaoRong, CHEN ZhongZheng. Screening of Transcription Factors for Key Enzyme Gene CsAlaDC Involved in Ethylamine Synthesis in Yinghong 9 (Camellia sinensis) [J]. Scientia Agricultura Sinica, 2025, 58(12): 2427-2438.
[9] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[10] JIANG XingLin, YU LianWei, FU Han, AI Niu, CUI YingJun, LI HaoHai, XIA ZiHao, YUAN HongXia, LI HongLian, YANG Xue, SHI Yan. The Transcription Factor NbMYB1R1 Inhibits Viral Infection by Promoting ROS Accumulation [J]. Scientia Agricultura Sinica, 2024, 57(8): 1490-1505.
[11] GUAN ZhiLin, JIN FengWei, LIU TingTing, WANG Yi, TAN YingYing, YANG ChunHui, LI RuiTong, WANG Bo, LIU KeDe, DONG Yun. Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(4): 650-662.
[12] ZHANG ShuHong, ZHANG YunFeng, GAO FengJu, WU QiuYing, XU Ke, LI YaZi, LI YanMei, GU ShouQin, FAN YongShan, GONG XiaoDong. Cloning and Expression Analysis of Genes of Small Heat Shock Protein in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2024, 57(17): 3384-3397.
[13] HU DanDan, LUO RunQi, LIANG RuiYing, WANG Lei, LIANG Lin, SI HongBin, DING JiaBo, TANG XinMing. Research Progress of ApiAP2 Transcription Factors in Regulating the Growth and Development of Toxoplasma gondii [J]. Scientia Agricultura Sinica, 2024, 57(13): 2687-2697.
[14] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[15] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!