Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 650-662.doi: 10.3864/j.issn.0578-1752.2024.04.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus

GUAN ZhiLin1,2(), JIN FengWei1, LIU TingTing1, WANG Yi1, TAN YingYing2, YANG ChunHui2, LI RuiTong2, WANG Bo3, LIU KeDe2, DONG Yun1()   

  1. 1 Crop Research Institute of Gansu Academy of Agricultural Sciences, Lanzhou 730070
    2 National Key Laboratory of Crop Genetic and Improvement, Huazhong Agricultural University, Wuhan 430070
    3 Wuhan Genoseq Technology Co., Ltd., Wuhan 430070
  • Received:2023-07-14 Accepted:2023-08-30 Online:2024-02-16 Published:2024-02-20
  • Contact: DONG Yun

Abstract:

【Objective】Epicuticular waxes is a hydrophobic layer covering plant leaves and stems, playing an important role in stress resistance and affecting photosynthesis, growth and development. Rapeseed (Brassica napus L.) is one of the main oil crops in the world, but the mechanism of epicuticular waxes formation on its leaves is still unclear. This study aims to reveal the genetic mechanism of epicuticular wax on leaves through a mutant, which will help to achieve high and stable yield of rapeseed.【Method】In this study, leaf of glossy leaf mutant M8 and common waxy leaf inbred lines Zhongshuang 11 (ZS11) and the C20 were characterized, and its photosynthetic rate were measured by portable plant photosynthesis measurement system. Two F1 hybrids and F2 segregating populations were constructed by crossing the M8 with ZS11 and C20, respectively, and were used to analyze the heredity of leaf characters in rapeseed. The F2 population hybridized by M8 and ZS11 was constructed to analyze the genetic regulation of the glossy leaf trait in rapeseed by bulked segregation analysis (BSA) combined with Target-sequencing (Target-seq). Combined with comparative genome and transcriptome database, candidate genes were predicted and then verified by RT-PCR.【Result】The leaf stomatal conductance and photosynthetic efficiency were higher in the glossy leaf mutant M8, compared with ZS11 in rapeseed. The genetic analysis results showed that the glossy leaf was controlled by one pair of recessive genes and glossy leaf was recessive compared with waxy leaf. It was finally fine mapped in the physical region of 0.134-0.699 Mb on chromosome A08 by map based cloning method. Further analysis revealed that there was a large segmental deletion in the 0.22-0.58 Mb region of chromosome A08 in the M8 glossy leaf mutant compared to ZS11, and BnaA08G0006900ZS (BnaA08.SAGL1) in this region of the genome was identified as the candidate gene for the glossy leaf trait. This gene encodes a Kelch-F-box protein, and its deletion may lead to the observed glossy leaf trait in the M8 mutant, as it was highly expressed in ZS11 but none in M8. 【Conclusion】Compared with wild-type waxy leaves, the photosynthetic rate of the new glossy leaf mutant M8 was higher, and the glossy leaf phenotype was controlled by a recessive gene. In the picture, the glossy leaf phenotype regulatory gene was identified as BnaA08.SAGL1, and deletion of the gene resulted in glossy leaf in rapeseed.

Key words: Brassica napus L., glossy leaf, epicuticular wax, map-based gene cloning, BnaA08.SAGL1

Table 1

Test of Chi-square on segregation rate of F2 individuals between glossy-leaf and common waxy-leaf"

杂交组合
Combination
父本
Male parent
母本
Female parent
世代
Generation
光叶
Glossy leaf
蜡质叶
Waxy leaf
期望分离
Expect separation
卡方值
Chi-square value (χ2 0.05=3.84)
组合1
Group 1
M8 ZS11 F1 0 15
F2 95 348 1﹕3 2.80
组合2
Group 2
M8 C20 F1 0 13
F2 109 275 1﹕3 2.17

Fig. 1

Comparison of characteristics and net photosynthetic rate of cultivars with glossy- and waxy- leaf in B. napus a: Photographs of the front leaves; b: Photographs of the back leaves; c: The net CO2 assimilation rate; d: The stomatal conductance to water. bar=20 cm"

Fig. 2

Genetic mapping of candidate glossy leaf genes by BSA-seq in B.napus Red arrow indicates the region where the value of Δ(SNP-index) exceeds the threshold (gray line, P=0.0001)"

Table 2

Information of molecular markers on chromosome A08"

标记
Marker
物理位置
Physical position (bp)
参考基因型
Reference (ZS11)
变异类型
Alternative (M8)
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
产物大小
Product size (bp)
P1 133863 C T TTACAGCAACGAAGTATGGTGTTATTTCACTT AGTTTAAGTCTCATCAAACTCTTGATTTCTCC 249
P2 260976 A G GATGATCGTGCCAAGGAGTACGTAAG AACAAAGAAAGAGAATAGTCTAGGTAACTTGC 238
P3 374500 A T TACTTCTTCTATACATGGAACGTGACTTATGG GGCAACCCTATTAAGATCTACTAAGACCA 240
P4 495084 C T GTTATAAGTTGTGCTGATGTTTTTAAGTTGCT GTTCTATGCTTCTTCTTGCCATATCTTTTGAC 249
P5 698791 C G GCATATTCACAGGAACATTAAGAAAATGTGTT TCGGTTAGTTTGATTTGAAATTTGGTTAGTTC 241
P6 791230 A G CCCTGAAGGTAAAAGACAGTAAACAGATTTAG AGCTCTCTTGCTGGTCTTCTATTAATCTT 252
P7 926323 G C CTTGACGAACGATGATAGTTTGAAGAGGAT ATACAAGTTAAAGAAAGAGACTTTGCTCTGTT 265
P8 1105382 A T ATAATCGCTACCGATCAAGACGATATAAAGTT TTTCGTAGTAAACATAACCTTGATATTTTGCG 249
P9 1213167 A G AATAAGTCTAATCTCCCGTTACCTTTGAGATG AATCTTAAGTATGTGTTGGTGTTTTGTTTCAG 240
P10 1321158 A C CAGCACATCTTTGTCAAAATCAGATGAGAAAT GATCATAAGCTATTGATGTAACTACGAGAAGC 266
P11 2025748 T C ACTTCTTTTATTCCATTCCCAATCAATTTTGT GAGAGGTAGAGAACTTGGTCGATGG 230
P12 2315309 T C TAGAAGTAATTATCTAGACAACGGAGGAACA AAACATAACAATTAAGTTATCGAGACATGGGG 238
P13 2400688 G T ACAACACAGTTCCCTTATTCAAAAACTTATCT AAGTACTAATCTTTGTTGAATCTGTGGTCTTC 230
P14 2493038 T C GAAAACAAAACTAAAATTGTTTGGAATGTGG GATAATTCTACCATCATATGAGAATGCACGTC 255
P15 2579076 G T ATGTGGTTCTAATTTGCAATGCTACATTTCTG TTATTCACCCTATAGTTGATTTTGGTTGACAG 230
P16 2725088 A G GTTTATTTTATATTAGGCATGGGCATTTCACC TATACTAGAAGTTTCAGATTTTCGGATACCCT 191

Fig. 3

Fine mapping of candidate glossy leaf genes in B. napus The diagram shows the fine mapping markers and key exchange of single plant genotypes for rapeseed light leaf genes. M8 is the glossy leaf mutant, gs1205 is a common waxy leaf individual with heterozygous genotypes. The light green part represents the M8-genotype, the orange part represents the ZS11-genotype, and the light yellow part represents the heterozygotes. GL: Glossy leaf trait, WL: Waxy leaf trait"

Fig. 4

Fragment deletion on A08 chromosome in the B. napus glossy leaf mutant M8 a: The coverage and depth distribution map on of the sequencing data of 4 samples including ZS11, M8, Bulk-L and Bulk-G; b: The PCR amplification results of 9 fragments in ZS11 and M8; c: Schematic diagram of fragment deletion on A08 chromosome in the glossy leaf mutant M8, and the red arrow represents the target candidate gene"

Table 3

Information of primers for fragment deletion detection on chromosome A08"

片段
Fragment
物理位置
Physical position (bp)
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
产物大小
Product size (bp)
Fr.1 A08:229280..230322 CTTCCTACGATCACTGCGATTG CATCGTCTACTGCATAGCTGAGAAT 1042
Fr.2 A08:262560..263824 GCTTCTACCACGTACCCACTTC TTGGCAACTCGCACGTCT 1264
Fr.3 A08:311145..312544 CATATTCCTCGGTCAACATTGTC CGAAATTGTATCCACCTGCAT 1399
Fr.4 A08:351515..353298 TTGATTCGGGCTAGCTAAAAGG TGTTGACACGATTTAGCCTTAACC 1783
Fr.5 A08:395942..396849 TCAGATTCTCACTCTCACCATTG ATCCAAGTGTGCCATACAGAAC 907
Fr.6 A08:450159..452784 GATTAAATCCTTGGGTTGCAC GACGGCGTGTGATTCAGAAGC 2625
Fr.7 A08:482496..484254 TATCGTCTAACTCAGCTCCAAGTG GGTTCTAAGGTCATAGCGTCCAT 1758
Fr.8 A08:585642..586731 GGGCGTGATGAACTCTTTCTAT GCTCATGCCGCTTCTCAAC 1089
Fr.9 A08:631190..632007 TCATCCGCCTCGCATTGTG TCATTATTGACAAGTGCATACGTG 817

Table 4

Information of primers used in gene expression analysis"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
Actin-BnENTH-F GTTTAGACCCGTTGCTGCTC
Actin-BnENTH-R TTGTCCATCTCAGCCATTTG
qBnaA08.SAGL1-F ACCTGATATGCTCAGGAAGAGAC
qBnaA08.SAGL1-R CATCACTAACCGGACTCCATG
qBnaC03.SAGL1-F TATGGATTGGATTGTAGGGACG
qBnaC03.SAGL1-R TTACTGAGAATGCCCTTTGACT
qBnaA02.CER3-F TGCGAAGAGACTCTTTTGTTTG
qBnaA02.CER3-R TACATTTTGTTTCCCTGCTTGC
qBnaC02.CER3-F CGTTTACAACAACATGCTTTGG
qBnaC02.CER3-R TTCGTGATCAATCTGTTGAACG

Fig. 5

Expression level analysis of Bna.SAGL1s and Bna.CER3s genes in rapeseed a: The average expression level of the Bna.SAGL1s in different tissues of rapeseed ZS11; b: The average expression level of Bna.CER3s in different tissues of rapeseed ZS11; c: The relative expression level of the BnaA08.SAGL1 and BnaC03.SAGL1 in leaves of rapeseed ZS11 and M8; d: The relative expression level of the BnaA02.CER3 and BnaC02.CER3 in leaves of rapeseed ZS11 and M8; e and f: The expression levels of Bna.SAGL1s (e) and Bna.CER3s (f) in leaves at different lacations of ZS11, Among the 1-23, 1 is the new leaf at the top, descending in order, the 23 is the old leaf at the bottom of the stem of the rapeseed; g and h: The expression levels of Bna.SAGL1s (g) and Bna.CER3s (h) in silique wall at different development stages of ZS11"

[1]
JENKS M A, ANDERSEN L, TEUSINK R S, WILLIAMS M H. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiologia Plantarum, 2001, 112(1): 62-70.

doi: 10.1034/j.1399-3054.2001.1120109.x
[2]
WANG H H, HAO J J, CHEN X J, HAO Z N, WANG X, LOU Y G, PENG Y L, GUO Z J. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology, 2007, 65(6): 799-815.

doi: 10.1007/s11103-007-9244-x
[3]
KUNST L, SAMUELS A L. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 2003, 42(1): 51-80.
[4]
RIEDERER M, SCHREIBER L. Protecting against water loss: Analysis of the barrier properties of plant cuticles. Journal of Experimental Botany, 2001, 52(363): 2023-2032.

doi: 10.1093/jexbot/52.363.2023 pmid: 11559738
[5]
ZHU L, GUO J S, ZHU J, ZHOU C. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2014, 75: 24-35.

doi: 10.1016/j.plaphy.2013.11.028
[6]
LEE S B, SUH M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports, 2015, 34(4): 557-572.

doi: 10.1007/s00299-015-1772-2
[7]
SAMUELS L, KUNST L, JETTER R. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 2008, 59: 683-707.

doi: 10.1146/annurev.arplant.59.103006.093219 pmid: 18251711
[8]
JENKS M A, TUTTLE H A, EIGENBRODE S D, FELDMANN K A. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiology, 1995, 108(1): 369-377.

doi: 10.1104/pp.108.1.369
[9]
RASHOTTE A M, JENKS M A, FELDMANN K A. Cuticular waxes on eceriferum mutants of Arabidopsis thaliana. Phytochemistry, 2001, 57(1): 115-123.

doi: 10.1016/S0031-9422(00)00513-6
[10]
ROWLAND O, ZHENG H Q, HEPWORTH S R, LAM P, JETTER R, KUNST L. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiology, 2006, 142(3): 866-877.

doi: 10.1104/pp.106.086785
[11]
YANG X P, ZHAO H Y, KOSMA D K, TOMASI P, DYER J M, LI R J, LIU X L, WANG Z Y, PARSONS E P, JENKS M A, S Y. The acyl desaturase CER17 is involved in producing wax unsaturated primary alcohols and cutin monomers. Plant Physiology, 2017, 173(2): 1109-1124.

doi: 10.1104/pp.16.01956
[12]
POLLARD M, BEISSON F, LI Y H, OHLROGGE J B. Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science, 2008, 13(5): 236-246.

doi: 10.1016/j.tplants.2008.03.003 pmid: 18440267
[13]
SCHUSTER A C, BURGHARDT M, ALFARHAN A, BUENO A, HEDRICH R, LEIDE J, THOMAS J, RIEDERER M. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB PLANTS, 2016, 8: plw027.

doi: 10.1093/aobpla/plw027
[14]
ISAACSON T, KOSMA D K, MATAS A J, BUDA G J, HE Y H, YU B W, PRAVITASARI A, BATTEAS J D, STARK R E, JENKS M A, ROSE J K C. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. The Plant Journal, 2009, 60(2): 363-377.

doi: 10.1111/j.1365-313X.2009.03969.x pmid: 19594708
[15]
KOCH K, HARTMANN K D, SCHREIBER L, BARTHLOTT W, NEINHUIS C. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environment and Experimental Botany, 2006, 56(1): 1-9.

doi: 10.1016/j.envexpbot.2004.09.013
[16]
SUN W, LI Y, ZHAO Y X, ZHANG H. The TsnsLTP4, a nonspecific lipid transfer protein involved in wax deposition and stress tolerance. Plant Molecular Biology Reports, 2015, 33(4): 962-974.

doi: 10.1007/s11105-014-0798-x
[17]
BONAVENTURE G, SALAS J J, POLLARD M R, OHLROGGE J B. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. The Plant Cell, 2003, 15(4): 1020-1033.

doi: 10.1105/tpc.008946
[18]
LEWANDOWSKA M, KEYL A, FEUSSNER I. Wax biosynthesis in response to danger: Its regulation upon abiotic and biotic stress. The New Phytologist, 2020, 227(3): 698-713.

doi: 10.1111/nph.v227.3
[19]
FIEBIG A, MAYFIELD J A, MILEY N L, CHAU S, FISCHER R L, PREUSS D. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. The Plant Cell, 2000, 12(10): 2001-2008.

doi: 10.1105/tpc.12.10.2001
[20]
BERNARD A, JOUBÈS J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Progress in Lipid Research, 2013, 52(1): 110-129.

doi: 10.1016/j.plipres.2012.10.002
[21]
AHARONI A, DIXIT S, JETTER R, THOENES E, VAN ARKEL G, PEREIRA A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. The Plant Cell, 2004, 16(9): 2463-2480.

doi: 10.1105/tpc.104.022897
[22]
BROUN P, POINDEXTER P, OSBORNE E, JIANG C Z, RIECHMANN J L.WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 4706-4711.
[23]
BIRD D, BEISSON F, BRIGHAM A, SHIN J, GREER S, JETTER R, KUNST L, WU X W, YEPHREMOV A, SAMUELS L. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal, 2007, 52(3): 485-498.

doi: 10.1111/tpj.2008.52.issue-3
[24]
LIU D M, TANG J, LIU Z Z, DONG X, ZHUANG M, ZHANG Y Y, LV H H, SUN P T, LIU Y M, LI Z S, YE Z B, FANG Z Y, YANG L M.Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata). BMC Plant Biology, 2017, 17(1): 223-232.
[25]
ZHANG X, LIU Z Y, WANG P, WANG Q S, YANG S, FENG H.Fine mapping of BrWax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Molecular Breeding, 2013, 32(4): 867-874.
[26]
WANG X Y, ZHI P F, FAN Q X, ZHANG M, CHANG C. Wheat CHD 3 protein TaCHR729 regulates the cuticular wax biosynthesis required for stimulating germination of Blumeria graminis f.sp. tritici. Journal of Experimental Botany, 2019, 70(2): 701-713.
[27]
祝利霞. 甘蓝型油菜黄化和光叶突变体的基因定位及克隆[D]. 武汉: 华中农业大学, 2014.
ZHU L X. Mapping and cloning the gene in chlorophyii-deficient and glossy mutants in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[28]
刘杰. 甘蓝型油菜光叶基因的克隆和功能分析[D]. 华中农业大学, 2020.
LIU J. Map-based cloning and functional analysis of the glossy gene in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[29]
DOYLE J, DOYLE J L, DOYLE J, DOYLE F J. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15.
[30]
MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.
[31]
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.

doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[32]
VASIMUDDIN M, MISRA S, LI H, ALURU S.Efficient architecture-aware acceleration of BWA-MEM for multicore systems. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). May 20-24, 2019, Rio de Janeiro, Brazil. IEEE, 2019: 314-324.
[33]
SONG J M, GUAN Z L, HU J L, GUO C C, YANG Z Q, WANG S, LIU D X, WANG B, LU S P, ZHOU R, XIE W Z, CHENG Y F, ZHANG Y T, LIU K D, YANG Q Y, CHEN L L, GUO L A. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6(1): 34-45.

doi: 10.1038/s41477-019-0577-7
[34]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next- generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110
[35]
WANG K, LI M Y, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.

doi: 10.1093/nar/gkq603
[36]
MANSFELD B N, GRUMET R. QTLseqr: An R package for bulk segregant analysis with next-generation sequencing. The Plant Genome, 2018, 11(2): 180006.

doi: 10.3835/plantgenome2018.01.0006
[37]
YANG Z Q, WANG S B, WEI L L, HUANG Y M, LIU D X, JIA Y P, LUO C F, LIN Y C, LIANG C Y, HU Y, DAI C, GUO L, ZHOU Y M, YANG Q Y.BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Molecular Plant, 2023, 16(4): 775-789.
[38]
KIM H, YU S I, JUNG S H, LEE B H, SUH M C. The F-box protein SAGL1 and ECERIFERUM3 regulate cuticular wax biosynthesis in response to changes in humidity in Arabidopsis. The Plant Cell, 2019, 31(9): 2223-2240.

doi: 10.1105/tpc.19.00152
[39]
莫鉴国, 李万渠, 彭云强, 余勤. 甘蓝型油菜无蜡粉种质材料的改良以及在杂优育种上的应用. 种子, 1999, 18(5): 18-20.
MO J G, LI W Q, PENG Y Q, YU Q. Improvement and application of waxless germplasm material (B. napus L.) in heterosis. Seed, 1999, 18(5): 18-20. (in Chinese)
[40]
周熙荣, 李树林, 庄静, 顾龙弟. 甘蓝型油菜(Brassica napus L.)无蜡粉隐性核不育两型系的选育. 上海农业学报, 2002, 18(1): 20-24.
ZHOU X R, LI S L, ZHUANG J, GU L D. Selection and breeding of waxless two-type line of recessive genic male sterility in Brassica napus L.. Acta Agriculturae Shanghai, 2002, 18(1): 20-24. (in Chinese)
[1] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[2] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[3] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[4] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[5] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[6] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[7] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[8] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[9] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
[10] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[11] NI Yu, SONG Chao, WANG Xiao-Qing. Investigation on Response Mechanism of Epicuticular Wax on Arabidopsis thaliana Under Cold Stress [J]. Scientia Agricultura Sinica, 2014, 47(2): 252-261.
[12] LI Lin,LI Qing,WANG Li-bo,ZHANG Zu-xin,LI Jian-sheng,YAN Jian-bing
. Genetic Analysis of QTL Affecting Recombination Frequency in Whole Genome of Maize and Rice#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2262-2270 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!