Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 991-1003.doi: 10.3864/j.issn.0578-1752.2025.05.013

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Expression of BcDET2 Gene and Functional of Its Regulatory Effect on Bolting and Flowering in Wucai (Brassica campestris L.)

ZHENG YaQin1(), LIU XueQing1, WU SiWen1,2, TANG XiaoYan1, YANG DanNi1, WANG YongKang1, AHMAD Aftab1, KHAN Afrsyab1, WANG ChengGang1,2, CHEN GuoHu1,2()   

  1. 1 College of Horticulture, Anhui Agricultural University/Anhui Provincial Engineering Center of Horticultural Crop Breeding, Hefei 230036
    2 Anhui Provincial Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, Anhui
  • Received:2024-07-13 Accepted:2024-08-16 Online:2025-03-07 Published:2025-03-07
  • Contact: CHEN GuoHu

Abstract:

【Objective】 The steroid 5α-reductase gene BcDET2 (DE-ETIOLATED 2), involved in the brassinosteroid (BR) biosynthesis pathway, was cloned and analyzed in Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen). The functions of BcDET2 in regulating bolting and flowering were investigated through genetic transformation, thereby providing a molecular basis for the genetic breeding of Wucai. 【Method】The BcDET2 was obtained via homologous cloning, based on the DET2 (BraA10g023600.3C) sequence from the Chinese cabbage (B. rapa) genome. Bioinformatics analyses were performed using online tools such as Expasy, SOPMA, SWISS-MODEL, and TMHMM. The expression pattern of BcDET2 was analyzed using quantitative real-time PCR (qRT-PCR). Subcellular localization of BcDET2 was determined through Agrobacterium-mediated transient transformation in tobacco (Nicotiana tabacum) cells. The role of the BcDET2 in regulating bolting and flowering was studied through genetic transformation of Wucai. Yeast two-hybrid (Y2H) assay was utilized to screen and identify BcDET2-interacting proteins, followed by qRT-PCR analysis to examine the response of BrbHLH96 to vernalization and its expression levels in BcDET2 transgenic plants. 【Result】The cDNA sequence of BcDET2 (825 bp), encoding 274 amino acids, was successfully obtained through homologous cloning. Bioinformatics analysis indicated that the BcDET2 protein predominantly consists of α-helices, is predicted to be a weakly hydrophilic, non-secretory membrane protein, and contains 39 phosphorylation sites and 5 transmembrane domains. Phylogenetic analysis revealed that BcDET2 shares a close evolutionary relationship with DET2 from Brassica rapa and Brassica napus. Subcellular localization showed fluorescent signals of BcDET2 in both the nucleus and cell membrane. qRT-PCR analysis indicated the highest expression level of BcDET2 at 15 days of vernalization, suggesting its responsiveness to the vernalization process. Functional assay demonstrated that overexpression of BcDET2 significantly promoted early flowering in transgenic Wucai plants. Y2H analysis revealed that BcDET2 interacts with the transcription factor BcBHLH96, which exhibited high transcription levels in the late vernalization stage and significantly increased expression in BcDET2 transgenic plants. 【Conclusion】In this study, the cDNA of BcDET2 from Wucai was cloned, and it is likely involved in the regulation of bolting and flowering in Wucai via the vernalization pathway.

Key words: Wucai, BcDET2, gene cloning, yeast two-hybrid, bolting and flowering

Table 1

The primers used in this study"

引物 <BOLD>P</BOLD>rimer 序列 Sequences (5′-3′) 用途 Application
BcDET2-F ATGGAGATGGTGACGAGTTTT 基因克隆
Gene cloning
BcDET2-R CTAGAACACAAAGGGAATCAGAG
1300-BcDET2-F ggagaggacagggtacccgggATGGAGATGGTGACGAGTTTTGT 载体构建
Vector construction
1300-BcDET2-R ggtactagtgtcgactctagaGAACACAAAGGGAATCAGAGCC
35S-BcDET2-F TTCATTTTGGAGAGAACACGGGGGAC 转基因植株鉴定
Identification of transgenic plants
35S-BcDET2-R TCGGCCGTCGAGCTCCACGAGG
HTP-F AAATCCGCGTGCACGAGGT
HTP-R TCGTTATGTTTATCGGCACTTTGCA
BcDET2-qF AAAACTTCACGCTAGGACTACCC 实时荧光定量PCR
qRT-PCR
BcDET2-qR ATGGTGATACAGATTCCCAACG
BcFLC1-F CACGGCACAGAGACCTCTCG
BcFLC1-R AGAAGGTGACTTGTCTGCTACTGTTT
BcSOC1-F CGAGCAAGAAAGACTCAACTGTTTA
BcSOC1-R AGATCCCCACTTTTCAGTGAGC
Actin-F TGGGTTTGCTGGTGACGAT
Actin-R TGCCTAGGACGACCAACAATACT

Fig. 1

Cloning and analysis of BcDET2 gene A: cDNA and protein sequences of BcDET2; B: Protein hydrophobicity prediction of BcDET2; C: Multiple sequence alignment, * Glutamate is required for 5α-reductase; D: Phylogenetic tree analyses of DET2 proteins. AlDET2: Arabidopsis lyrata, Araly1|488450; AtDET2: A. thaliana, AT5G16010; CasDET2: Camelina sativa, Csa20g023550.1; CruDET2: Capsella rubella, XP_023636418.1; BcDET2: B. campestris, BcDET2; BnaDET2: B. napus, CAF2345619.1; BoDET2: B. oleracea, BolC09g057210.2J; BrDET2: B. rapa, BraA10g023600.3C; EsDET2: Eutrema salsugineum, XP_006400130.1; RsDET2: Raphanus sativus, Rsa10025279"

Fig. 2

Analysis of BcDET2 gene expression pattern A: Relative expression of BcDET2 gene in various tissues of Wucai; B: Relative expression of BcDET2 gene at 0, 15, and 30 days of vernalization; C-D: Transcription level and protein abundance of BcDET2 gene at 0, 15, and 30 days of vernalization. Different letters indicate significant differences at P<0.05"

Fig. 3

BcDET2 protein structure and bioinformatics analyses A: Tertiary structure modeling; B: Potential phosphorylation sites; C: Potential N-glycosylation sites; D: Transmembrane domain prediction; E: Signal peptide analysis"

Fig. 4

Subcellular localization of BcDET2 A: Vector construction; B: Fluorescence microscopy observation"

Fig. 5

Analysis of BcDET2 gene genetic transformation into Wucai A-B: PCR detection of BcDET2 (A) and HPTⅡ (B) in transgenic plants; M: Marker1000; N: Negative control (WT); P: Positive control (p1300-BcDET2); 0: (ddH2O); 1-2: Transgenic plants; C: Relative expression levels of BcDET2 gene in transgenic plant; D: Phenotype of BcDET2 gene transgenic Wucai; E-F: Analysis of flowering days and rosette leaf number at the initial bolting of OE#2 transgenic plants. G-H: Relative expression levels of BcSOC1 and BcFLC1 genes in OE#2 transgenic plant. *: Significant differences at P<0.05, ***: Significant differences at P<0.001. The same as below"

Fig. 6

BcBHLH96 interaction with BcDET2 and its expression analyses A-B: Yeast library screening using BcDET2 and transfection verification; +: Positive control (pGADT7-largeT+pGBKT7-p53); -: Negative control (pGADT7-largeT+pGBKT7-laminC); C: Yeast two-hybrid verification of the interaction between BcBHLH96 and BcDET2; D: Expression of BcBHLH96 gene in response to vernalization; E: Expression of BcBHLH96 gene in the BcDET2 transgenic Wucai plants. ns: No significant difference"

Table 2

Screening of candidate interacting proteins of BcDET2 from yeast cDNA library"

序号
Number
基因ID
Gene ID
基因名称
Gene name
拟南芥同源ID
Arabidopsis gene ID
E
E value
1 BraA08g004120.3C SRP54 AT1G48900 0.0
2 BraA05g014300.3C CYP5 AT2G29960 2e-129
3 BraA01g013480.3C PGRL1A AT4G22890 0.0
4 BraA07g036580.3C bHLH96 AT1G72210 7e-167
5 BraA06g043480.3C ADH2 AT5G43940 0.0
6 BraA08g022960.3C ATFP6 AT4G38580 2e-108
7 BraA03g015610.3C PABN1 AT5G51120 2e-88
8 BraA03g028470.3C ATHM2 AT4G03520 7e-88
[1]
桂尚枝, 刘雪晴, 王英, 唐小燕, 赵龙龙, 李广, 吴思文, 温宏伟, 汪承刚, 陈国户. 乌菜BcVIL2基因克隆及春化响应表达分析. 西南农业学报, 2023, 36(9): 1843-1851.
GUI S Z, LIU X Q, WANG Y, TANG X Y, ZHAO L L, LI G, WU S W, WEN H W, WANG C G, CHEN G H. Cloning and expression analysis of BcVIL2 gene in response to vernalization in Brassica campestris L.. Southwest China Journal of Agricultural Sciences, 2023, 36(9): 1843 -1851. (in Chinese)
[2]
CHEN G H, ZENG F L, WANG J, YE X Y, ZHU S D, YUAN L Y, HOU J F, WANG C G. Transgenic Wucai (Brassica campestris L.) produced via Agrobacterium-mediated anther transformation in planta. Plant Cell Reports, 2019, 38(5): 577-586.
[3]
TANG X Y, LIU M M, CHEN G H, YUAN L Y, HOU J F, ZHU S D, ZHANG B Y, LI G, PANG X K, WANG C G. TMT-based comparative proteomic analysis of the male-sterile mutant ms01 sheds light on sporopollenin production and pollen development in Wucai (Brassica campestris L.). Journal of Proteomics, 2022, 254: 104475.
[4]
CHEN G H, YE X Y, ZHANG S Y, ZHU S D, YUAN L Y, HOU J F, WANG C G. Comparative transcriptome analysis between fertile and CMS flower buds in Wucai (Brassica campestris L.). BMC Genomics, 2018, 19(1): 908.
[5]
桂尚枝, 尹倩, 温宏伟, 王浩, 李广, 吴思文, 王英, 刘雪晴, 赵龙龙, KHAN Afrasyab, 汪承刚, 唐小燕, 陈国户. 乌菜春化相关BcGRAS基因鉴定及表达分析. 植物生理学报, 2022, 58(12): 2273-2285.
GUI S Z, YIN Q, WEN H W, WANG H, LI G, WU S W, WANG Y, LIU X Q, ZHAO L L, KHAN A, WANG C G, TANG X Y, CHEN G H. Genome-wide identification and expression analysis of BcGRAS genes responded to vernalization in Wucai (Brassica campestris ssp. chinensis var. rosularis). Plant Physiology Journal, 2022, 58(12): 2273-2285. (in Chinese)
[6]
MERELO P, GONZÁLEZ-CUADRA I, FERRÁNDIZ C. A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis. Current Biology, 2022, 32(4): 749-762.
[7]
FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: Control of flowering in Arabidopsis. Cell, 2010, 141(3): 550.
[8]
ZHU P, LISTER C, DEAN C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature, 2021, 599(7886): 657-661.
[9]
LI X X, LIN C Y, LAN C H, TAO Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. Journal of Experimental Botany, 2024, 75(14): 4180-4194.
[10]
亓钰莹, 展妍丽, 王萃铂, 陈发棣, 蒋甲福. AtCPL1调控拟南芥开花的机制. 植物学报, 2016, 51(1): 9-15.

doi: 10.11983/CBB14188
QI Y Y, ZHAN Y L, WANG C B, CHEN F D, JIANG J F. Mechanism of AtCPL1 in regulating flowering of Arabidopsis. Chinese Bulletin of Botany, 2016, 51(1): 9-15. (in Chinese)
[11]
DONG X X, LI Y J, GUAN Y H, WANG S X, LUO H, LI X M, LI H, ZHANG Z H. Auxin-induced AUXIN RESPONSE FACTOR4 activates APETALA1 and FRUITFULL to promote flowering in woodland strawberry. Horticulture Research, 2021, 8(1): 115.
[12]
陈国户, 庞小可, 李广, 王浩, 吴思文, 温宏伟, 尹倩, 袁凌云, 侯金锋, 唐小燕, 汪承刚. 白菜NAC基因家族全基因组鉴定及其应答春化反应的表达分析. 南京农业大学学报, 2022, 45(4): 656-665.
CHEN G H, PANG X K, LI G, WANG H, WU S W, WEN H W, YIN Q, YUAN L Y, HOU J F, TANG X Y, WANG C G. Genome-wide identification of NAC gene family in Brassica rapa and its expression analysis of response to vernalization. Journal of Nanjing Agricultural University, 2022, 45(4): 656-665. (in Chinese)
[13]
王云梦, 宋贺云, 刘娟, 章明华, 杨美. FTTFL1基因调控植物开花的分子机理. 植物生理学报, 2022, 58(1): 77-90.
WANG Y M, SONG H Y, LIU J, ZHANG M H, YANG M. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering. Plant Physiology Journal, 2022, 58(1): 77-90. (in Chinese)
[14]
LU Q Q, SHI W W, ZHANG F, DING Y. ATX1 and HUB1/2 promote recruitment of the transcription elongation factor VIP2 to modulate the floral transition in Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2024, 118(6): 1760-1773.
[15]
ZHENG Y, LUO L D, LIU Y Y, YANG Y Q, WANG C T, KONG X X, YANG Y P. Effect of vernalization on tuberization and flowering in the Tibetan turnip is associated with changes in the expression of FLC homologues. Plant Diversity, 2018, 40(2): 50-56.
[16]
QÜESTA J I, SONG J, GERALDO N, AN H L, DEAN C. Arabidopsis transcriptional repressor VAL1 triggers polycomb silencing at FLC during vernalization. Science, 2016, 353(6298): 485-488.
[17]
HUANG S N, HOU L, FU W, LIU Z Y, LI C Y, LI X, FENG H. An insertion mutation in Bra032169encoding a histone methyltransferase is responsible for early bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Frontiers in Plant Science, 2020, 11: 547.
[18]
TAN C, REN J, WANG L, YE X L, FU W, ZHANG J M, QI M, FENG H, LIU Z Y. A single amino acid residue substitution in BraA04g017190.3C, a histone methyltransferase, results in premature bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Plant Biology, 2021, 21(1): 373.
[19]
WANG Y D, SONG S W, HAO Y W, CHEN C M, OU X, HE B, ZHANG J W, JIANG Z H, LI C M, ZHANG S W, SU W, CHEN R Y. Role of BraRGL1 in regulation of Brassica rapa bolting and flowering. Horticulture Research, 2023, 10(8): uhad119.
[20]
TILMES V, MATEOS J L, MADRID E, VINCENT C, SEVERING E, CARRERA E, LÓPEZ-DÍAZ I, COUPLAND G. Gibberellins act downstream of Arabis PERPETUAL FLOWERING1 to accelerate floral induction during vernalization. Plant Physiology, 2019, 180(3): 1549-1563.
[21]
CLOUSE S D. The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(21): 7345-7346.
[22]
LI J H, LI Y H, CHEN S Y, AN L Z. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. Journal of Experimental Botany, 2010, 61(15): 4221-4230.
[23]
LI Z C, OU Y, ZHANG Z C, LI J M, HE Y H. Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis. Molecular Plant, 2018, 11(9): 1135-1146.
[24]
DOMAGALSKA M A, SCHOMBURG F M, AMASINO R M, VIERSTRA R D, NAGY F, DAVIS S J. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development, 2007, 134(15): 2841-2850.
[25]
FUJIOKA S, LI J, CHOI Y H, SETO H, TAKATSUTO S, NOGUCHI T, WATANABE T, KURIYAMA H, YOKOTA T, CHORY J, SAKURAI A. The Arabidopsis deetiolated 2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell, 1997, 9(11): 1951-1962.
[26]
SZEKERES M, NÉMETH K, KONCZ-KÁLMÁN Z, MATHUR J, KAUSCHMANN A, ALTMANN T, RÉDEI G P, NAGY F, SCHELL J, KONCZ C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 1996, 85(2): 171-182.
[27]
VUKAŠINOVIĆ N, WANG Y W, VANHOUTTE I, FENDRYCH M, GUO B Y, KVASNICA M, JIROUTOVÁ P, OKLESTKOVA J, STRNAD M, RUSSINOVA E. Local brassinosteroid biosynthesis enables optimal root growth. Nature Plants, 2021, 7(5): 619-632.

doi: 10.1038/s41477-021-00917-x pmid: 34007032
[28]
HAN C, WANG L Y, LYU J Y, SHI W, YAO L M, FAN M, BAI M Y. Brassinosteroid signaling and molecular crosstalk with nutrients in plants. Journal of Genetics and Genomics, 2023, 50(8): 541-553.

doi: 10.1016/j.jgg.2023.03.004 pmid: 36914050
[29]
MOON J, PARK Y J, SON S H, ROH J, YOUN J H, KIM S Y, KIM S K. Brassinosteroids signaling via BZR1 down-regulates expression of ACC oxidase 4 to control growth of Arabidopsis thaliana seedlings. Plant Signaling & Behavior, 2020, 15(4): 1734333.
[30]
CUI J W, ZENG G H, GAO F F, JIANG Y, WANG Y T, LI D D, WANG X F, XI Z M. Cloning, characterization and expression analysis of a brassinosteroids biosynthetic gene VvDET2 in Cabernet Sauvignon (Vitis vinifera L.). Plant Cell, Tissue and Organ Culture, 2023, 154(1): 43-54.
[31]
ROSATI F, BARDAZZI I, DE BLASI P, SIMI L S, SCARPI D, GUARNA A, SERIO M, RACCHI M L, DANZA G. 5α-reductase activity in Lycopersicon esculentum: Cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes. The Journal of Steroid Biochemistry and Molecular Biology, 2005, 96(3/4): 287-299.
[32]
郑冰峰, 马玉柱, 卢华丹, 孙森, 安汶铠, 张富春. 喷施油菜素内酯对棉花类固醇5α-还原酶基因(GhDET2)在干旱胁迫下表达影响的分析. 基因组学与应用生物学, 2018, 37(2): 859-866.
ZHENG B F, MA Y Z, LU H D, SUN S, AN W K, ZHANG F C. Effects of spraying brassinolide on expression of steroid 5-alpha reductase gene (GhDET2) in cotton under drought stress. Genomics and Applied Biology, 2018, 37(2): 859-866. (in Chinese)
[33]
HUO W G, LI B D, KUANG J B, HE P G, XU Z H, WANG J X. Functional characterization of the steroid reductase genes GmDET2a and GmDET2b from Glycine max. International Journal of Molecular Sciences, 2018, 19(3): 726.
[34]
WANG Y, HAO Y, GUO Y K, SHOU H X, DU J. PagDET2 promotes cambium cell division and xylem differentiation in poplar stem. Frontiers in Plant Science, 2022, 13: 923530.
[35]
李泽华, 杜娟, 贺学娇, 赵树堂, 刘颖丽, 卢孟柱. 杨树油菜素内酯合成基因DET2的克隆与功能分析. 林业科学研究, 2020, 33(2): 85-92.
LI Z H, DU J, HE X J, ZHAO S T, LIU Y L, LU M Z. Cloning and characterization of brassinosteriod biosynthesis-related gene DET2 in poplar. Forest Research, 2020, 33(2): 85-92. (in Chinese)
[36]
SUZUKI S, MIYATA K, HARA M, NIINUMA K, TSUKAYA H, TAKASE M, HAYAMA R, MIZOGUCHI T. A loss-of-function mutation in the DWARF4/PETANKO5gene enhances the late- flowering and semi-dwarf phenotypes of the Arabidopsis clock mutant lhy-12;cca1-101 under continuous light without affecting FLC expression. Plant Biotechnology, 2016, 33(4): 315-321.
[37]
王楠. 烟草BR信号通路与成花相关基因在花芽分化响应苗期低温中的表达分析[D]. 重庆: 西南大学, 2019.
WANG N. Expression analysis of the gene in tobacco BR signaling pathway and flower-related in flower bud differentiation in response to low temperature in seedling stage[D]. Chongqing: Southwest University, 2019. (in Chinese)
[38]
MAO G L, QI X H, BAO Y, LI X, WU Y H, HOU L P, LI M L. Expression analysis of brassinolide-metabolism-related genes at different growth stages of Pak Choi. Horticulturae, 2022, 8(11): 1093.
[39]
WANG M L, YANG D Y, MA F L, ZHU M L, SHI Z Y, MIAO X X. OsHLH61-OsbHLH 96 influences rice defense to brown planthopper through regulating the pathogen-related genes. Rice, 2019, 12(1): 9.
[40]
SONG S S, TAO Y, GAO L H, LIANG H L, TANG D S, LIN J, WANG Y C, GMITTER F G Jr, LI C F. An integrated metabolome and transcriptome analysis reveal the regulation mechanisms of flavonoid biosynthesis in a purple tea plant cultivar. Frontiers in Plant Science, 2022, 13: 880227.
[41]
YIN Y B, YAN Z Q, GUAN J N, HUO Y Q, WANG T Q, LI T, CUI Z B, MA W H, WANG X X, CHEN W F. Two interacting basic helix-loop-helix transcription factors control flowering time in rice. Plant Physiology, 2023, 192(1): 205-221.

doi: 10.1093/plphys/kiad077 pmid: 36756926
[1] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[2] GUAN ZhiLin, JIN FengWei, LIU TingTing, WANG Yi, TAN YingYing, YANG ChunHui, LI RuiTong, WANG Bo, LIU KeDe, DONG Yun. Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(4): 650-662.
[3] ZHU YanTing, DANG Hao, NIU SiJie, LIN JingYi, YANG Hua, YANG Qiang, ZHANG Chong, CAI TieCheng, ZHUANG WeiJian, CHEN Hua. Screening of Interaction Proteins with AhSAP1 in Peanut Using the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(21): 4376-4390.
[4] ZHANG ShuHong, ZHANG YunFeng, GAO FengJu, WU QiuYing, XU Ke, LI YaZi, LI YanMei, GU ShouQin, FAN YongShan, GONG XiaoDong. Cloning and Expression Analysis of Genes of Small Heat Shock Protein in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2024, 57(17): 3384-3397.
[5] HE Yong, FAN XiaoZhu, CHEN XinYue, DUAN ShuJing, HU TingTing, XIE RuXue, WANG YuQing, CHEN Jing. Screening and Verification of Pepper Host Factors Interacting with the 126 kDa Protein of Pepper Mild Mottle Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(15): 2986-2996.
[6] BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong. Screening of the Host Factors Interacting with CP of Citrus Yellow Vein Clearing Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892.
[7] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[8] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[9] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[10] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[11] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[12] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[13] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[14] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[15] SUN YuChen,JIA RuiPu,FAN KuoHai,SUN Na,SUN YaoGui,SUN PanPan,LI HongQuan,YIN Wei. Detection of Interaction Between Porcine Type I Complement Receptor and C3b Active Fragment in Vitro [J]. Scientia Agricultura Sinica, 2021, 54(19): 4243-4254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!