Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (7): 1418-1433.doi: 10.3864/j.issn.0578-1752.2025.07.013

• HORTICULTURE • Previous Articles     Next Articles

Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana

TENG MengXin1(), XU Ya1, HE Jing1, WANG Qi1, QIAO Fei2, LI JingYang2, LI XinGuo1()   

  1. 1 School of Tropical Agriculture and Forestry, Hainan University/National Key Laboratory of Tropical Crop Biological Breeding, Haikou 570228
    2 Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, Haikou 571101
  • Received:2024-09-23 Accepted:2024-11-12 Online:2025-04-08 Published:2025-04-08
  • Contact: LI XinGuo

Abstract:

【Objective】Ca2+-ATPase is a vital Ca2+ efflux channel in plants, which plays an important role in maintaining cell homeostasis and inducing plant response to stress. In this study, bioinformatics and molecular biology were used to analyze the members of Ca2+-ATPase family in banana A genome, detect the changes of gene expression and verify gene function, so as to provide reference for exploring the mechanism of banana salt tolerance.【Method】BLAST the members of banana A genome in banana genome database by gene family name combined with Arabidopsis and rice Ca2+-ATPase sequences, and use Pfam, ExPASy, Cell-PLoc, NCBI, MEGA-X, TBtools and other online websites or software to predict and analyze the protein physicochemical properties, subcellular localization, conservative domain and cis-acting elements of banana Ca2+-ATPase. The expression of the family genes was analyzed by qRT-PCR, and the subcellular localization and prokaryotic expression of the key genes were analyzed.【Result】In this study, 20 members of Ca2+-ATPase family were identified in banana A genome, including 13 MaACAs and 7 MaECAs; proteins analysis of physicochemical properties showed that Ca2+-ATPase contained 6-11 transmembrane structures, encoding amino acids between 857 and 1 103. Subcellular localization predicted that MaACAs might be located on plasma membrane, chloroplast, endoplasmic reticulum and tonoplast, while MaECAs was located in endoplasmic reticulum. The conserved motifs are highly consistent, including four conserved domains peculiar to the family except MaACA13, responses to light, hormone, defense and stress. qRT-PCR results showed that other members of Ca2+-ATPase gene family except MaECA3 were up-regulated in Brazilian banana cells treated with 100 mmol·L-1 NaCl, in which MaACA5 and MaACA10 were up-regulated to a large extent, and the expression of these two genes was affected by Ca2+. The results of subcellular localization of tobacco leaves showed that MaACA5 and MaACA10 were located on the plasma membrane, and the recombinant plasmids pET28a-MaACA5, pET28a-MaACA10 and transformed into E. coli BL21 were superior to the control strains under the conditions of 800 mmol·L-1NaCl, 800 mmol·L-1 mannitol and 50 ℃. 【Conclusion】 20 Ca2+-ATPase family members were identified in banana A genome, the gene structure was highly conservative, including hormone, defense and stress-related responses, MaACA5 and MaACA10 related to banana salt tolerance were screened and prokaryotic expression to verify the gene function, which provides a reference for further study of banana salt tolerance.

Key words: brazil banana, salt stress, calcium, Ca2+-ATPase, expression analysis, gene cloning, subcellular localisation

Fig. 1

The developmental tree of banana Ca2+-ATPase gene family At: Arabidopsis thaliana; Os: Oryza sativa; Ma: Musa acuminata; Mb: Musa balbisiana"

Fig. 2

Chromosome locations of banana MaACAs and MaECAs gene family"

Table 1

Information and physicochemical properties of banana Ca2+-ATPase family"

蛋白
Protein
氨基酸数量
Amino acids size (aa)
分子量
Mw (Da)
等电点
pI
不稳定系数
The instability index (II)
脂肪系数Aliphatic
index
亲水性平均系数
Grand average
of hydropathicity
跨膜结构Transmembrane domain 亚细胞定位
Subcellular localization
MaACA1 1095 119281.68 8.36 38.1 101.13 0.05 8 A
MaACA2 1090 119195.56 8.27 36.89 100.53 0.04 11 A
MaACA3 1034 112541.57 5.87 35.13 103.09 0.22 6 B、C、D
MaACA4 1082 118244.8 8.47 40.33 101.71 0.066 7 A
MaACA5 1017 111767.31 5.7 31.68 99.45 0.121 7 A
MaACA6 1020 111212.01 5.88 35.51 103 0.2 6 B、C、D
MaACA7 1020 111518.14 5.91 32.3 102.91 0.158 6 B、C、D
MaACA8 1034 114138.1 6.74 31.15 107.53 0.169 10 B、C、D
MaACA9 1019 111002.4 5.26 32.57 104.26 0.201 6 B、C、D
MaACA10 1024 112321.63 5.85 34.05 95.55 0.091 8 A
MaACA11 1035 114343.58 8.3 30.9 106.03 0.144 10 B、C、D
MaACA12 1103 120673.88 8.87 35.9 102.1 0.072 9 A
MaACA13 857 92860.11 6.01 37.29 109.78 0.266 6 A
MaECA1 1064 116317.6 5.28 35.82 98.15 0.089 7 C
MaECA2 1059 115754.37 5.36 37.3 99.53 0.095 9 C
MaECA3 1051 116158.69 5.4 33.61 100.35 0.131 8 C
MaECA4 1058 115980.52 5.19 36.63 99.5 0.078 7 C
MaECA5 1000 109753.56 5.87 36.37 99.62 0.222 8 C
MaECA6 1070 118771.74 5.85 35.3 97.03 0.107 8 C
MaECA7 1059 115636.05 5.26 36.29 98.32 0.098 9 C

Fig. 3

Motif and gene structures of Ca2+-ATPase gene family in banana"

Fig. 4

Analysis of conserved domains of banana Ca2+-ATPase"

Table 2

Protein secondary structure of Ca2+-ATPase family genes in banana"

蛋白Protein α-螺旋Alpha-helix (%) β-折叠Beta strand (%) 无规则卷曲Loop (%)
MaACA1 44.20 12.24 43.56
MaACA2 46.42 11.83 41.74
MaACA3 49.13 12.38 38.49
MaACA4 47.41 12.20 40.39
MaACA5 46.02 15.44 38.54
MaACA6 48.73 14.51 36.76
MaACA7 50.49 13.14 36.37
MaACA8 48.55 14.02 37.43
MaACA9 50.54 13.35 36.11
MaACA10 46.97 15.43 37.60
MaACA11 48.79 14.30 36.91
MaACA12 47.60 10.79 41.61
MaACA13 49.01 13.54 37.46
MaECA1 51.13 10.90 37.97
MaECA2 51.65 10.86 37.49
MaECA3 52.71 10.56 36.73
MaECA4 50.85 11.15 38.00
MaECA5 47.30 13.30 39.40
MaECA6 53.64 10.84 35.51
MaECA7 47.69 11.43 40.89

Fig. 5

Prediction of the 3-three-dimensional shape of banana Ca2+-ATPase protein"

Fig. 6

Analysis of cis-acting elements of banana Ca2+-ATPase gene"

Fig. 7

Gene expression of banana Ca2+-ATPase under NaCl treatment"

Fig. 8

Effects of different calcium effectors on the expression of MaACA5 and MaACA10 under salt stress Different lowercase letters indicate significant differences between treatments (P<0.05). The same as below"

Fig. 9

Amplification of MaACA5 and MaACA10"

Fig. 10

Subcellular localization of MaACA5 and MaACA10 Bar=20 μm"

Fig. 11

Functional verification of MaACA5 and MaACA10 in Escherichia coli BL21 The upper row is the pET28 expression strain, the lower row is the pET28-MaACA5/MaACA10 expression strain"

[1]
顾天竹, 周启凡. 中国香蕉生产布局的时空演变分析. 江苏农业科学, 2017, 45(5): 315-319.
GU T Z, ZHOU Q F. Temporal and spatial evolution analysis of banana production layout in China. Jiangsu Agricultural Sciences, 2017, 45(5): 315-319. (in Chinese)
[2]
TURNER D W, FORTESCUE J A, THOMAS D S. Environmental physiology of the bananas (Musa spp.). Brazilian Journal of Plant Physiology, 2007, 19(4): 463-484.
[3]
KNIGHT H. Calcium signaling during abiotic stress in plants. International Review of Cytology, 1999, 195: 269-324.
[4]
周艳超, 沈应柏. Ca2+信号在植物细胞适应逆境中的调节作用. 北方园艺, 2010(3): 181-185.
ZHOU Y C, SHEN Y B. Regulation of Ca2+ signaling in plant cell acclimation to stresses. Northern Horticulture, 2010(3): 181-185. (in Chinese)
[5]
林建军, 魏幼璋. 植物细胞Ca2+的微调系统: Ca2+-ATPase. 植物学通报, 2001, 36(2): 190-196.
LIN J J, WEI Y Z. The fine tuning system of intracellular Ca2+ in plant: Ca2+-ATPase. Chinese Bulletin of Botany, 2001, 36(2): 190-196. (in Chinese)
[6]
BUCHANAN, BOB B. Biochemistry and Molecular Biology of Plants. 2nd Edition. Maryland: American Society of Plant Physiologists, 2015: 834-871.
[7]
卫涛涛. 质膜钙离子ATP酶. 生物物理学报, 2012, 28(7): 549-564.
WEI T T. Plasma membrane calcium ATPase. Acta Biophysica Sinica, 2012, 28(7): 549-564. (in Chinese)
[8]
WANG C, XU W T, JIN H L, ZHANG T J, LAI J B, ZHOU X, ZHANG S C, LIU S J, DUAN X W, WANG H B, PENG C L, YANG C W. A putative chloroplast-localized Ca2+/H+ antiporter CCHA1 is involved in calcium and pH homeostasis and required for PSII function in Arabidopsis. Molecular Plant, 2016, 9(8): 1183-1196.
[9]
DONG Q Y, WALLRAD L, ALMUTAIRI B O, KUDLA J. Ca2+ signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 2022, 64(2): 287-300.
[10]
LIMONTA M, ROMANOWSKY S, OLIVARI C, BONZA M C, LUONI L, ROSENBERG A, HARPER J F, DE MICHELIS M I. ACA12 is a deregulated isoform of plasma membrane Ca²⁺-ATPase of Arabidopsis thaliana. Plant Molecular Biology, 2014, 84(4/5): 387-397.
[11]
MØLLER J V, JUUL B, LE MAIRE M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochimica et Biophysica Acta, 1996, 1286(1): 1-51.

pmid: 8634322
[12]
SPALDING E P, HARPER J F. The ins and outs of cellular Ca2+ transport. Current Opinion in Plant Biology, 2011, 14(6): 715-720.
[13]
张红, 薛庆林, 李广敏, 简令成. 低温胁迫对黄瓜幼苗细胞内钙离子水平的影响及抗寒剂的调控作用. 电子显微学报, 1996, 15(5): 33.
ZHANG H, XUE Q L, LI G M, JIAN L C. Effect of low temperature stress on intracellular calcium level of cucumber seedlings and regulation of cold-resistant agents. Journal of Chinese Electron Microscopy Society, 1996, 15(5): 33. (in Chinese)
[14]
吕金印, 高俊凤, 曹翠玲. 渗透胁迫下小麦根质膜Ca2+-ATPase活性及动力学. 西北农业大学学报, 1997, 25(3): 41-45.
J Y, GAO J F, CAO C L. The Ca2+ ATPase activity and kinetics of winter wheat root plasma membrane under osmotic stress. Journal of Northwest A & F University (Natural Science Edition), 1997, 25(3): 41-45. (in Chinese)
[15]
刘君, 高俊凤, 王燕凌. 渗透胁迫下小麦幼苗根质膜ATP酶活性与膜透性的关系. 新疆农业大学学报, 2006, 29(3): 59-63.
LIU J, GAO J F, WANG Y L. The relationship between plasma membrane ATPase activity and membrane permeability in wheat seedling roots under osmotic stress. Journal of Xinjiang Agricultural University, 2006, 29(3): 59-63. (in Chinese)
[16]
李美茹, 杜延茹, 郭立波. 花生幼苗下胚轴质膜Ca2+-ATP酶及其对低温胁迫的反应. 武汉植物学研究, 1999, 17(2): 110-114.
LI M R, DU Y R, GUO L B. Plasmalemma ATPase of hypocotyl of peanut seedling and its reaction to low temperatuer stress. Journal of Wuhan Botanical Research, 1999, 17(2): 110-114. (in Chinese)
[17]
曾韶西, 李美茹. 冷和盐预处理提高水稻幼苗抗寒性期间细胞Ca2+-ATP酶活性的变化. 植物学报, 1999, 41(2): 156.
ZENG S X, LI M R. Changes of Ca2+-ATPase activities in cell of rice seedlings during the enhancement of chilling resistance induced by cold and salt pretreatment. Journal of Integrative Plant Biology, 1999, 41(2): 156. (in Chinese)
[18]
李阳生, 王建波. 淹水胁迫下水稻根尖细胞中Ca2+和Ca2+-ATP酶的分布. 中国水稻科学, 2001, 15(3): 237-240.
LI Y S, WANG J B. Distribution of Ca2+ and Ca2+ ATPase in root apical cells of rice under submergence stress. Chinese Journal of Rice Science, 2001, 15(3): 237-240. (in Chinese)
[19]
吴锦程, 陈宇, 吴毕莎, 黄玲玲, 张伟芳, 郑福明. 钙处理对低温胁迫下枇杷幼苗Ca2+-ATPase活性和膜脂过氧化水平的影响. 西北农林科技大学学报(自然科学版), 2016, 44(2): 121-128.
WU J C, CHEN Y, WU B S, HUANG L L, ZHANG W F, ZHENG F M. Effects of calcium on Ca2+-ATPase activity and lipid peroxidation level of loquat seedling under low temperature stress. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(2): 121-128. (in Chinese)
[20]
张美萍, 杨珺凯, 孙明哲, 贾博为, 孙晓丽. 基于家族分析的苜蓿逆境应答Ca2+ ATPase家族基因筛选与鉴定. 植物生理学报, 2017, 53(2): 198-208.
ZHANG M P, YANG J K, SUN M Z, JIA B W, SUN X L. Screening and identification of environmental stress responsive Medicago sativa Ca2+ ATPases based on gene family analyses. Plant Physiology Journal, 2017, 53(2): 198-208. (in Chinese)
[21]
PEREZ-PRAT E, NARASIMHAN M L, BINZEL M L, BOTELLA M A, CHEN Z, VALPUESTA V, BRESSAN R A, HASEGAWA P M. Induction of a putative Ca-ATPase mRNA in NaCl-adapted cells. Plant Physiology, 1992, 100(3): 1471-1478.
[22]
WIMMERS L E, EWING N N, BENNETT A B. Higher plant Ca(2+)-ATPase: Primary structure and regulation of mRNA abundance by salt. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(19): 9205-9209.
[23]
刘宇欣, 束艺, 张念, 陈秀玲, 王傲雪. 茄科植物Ca2+-ATPase基因家族鉴定及分析. 分子植物育种, 2021, 19(13): 4268-4277.
LIU Y X, SHU Y, ZHANG N, CHEN X L, WANG A X. Identification and analysis of Ca2+-ATPase gene family in Solanaceae. Molecular Plant Breeding, 2021, 19(13): 4268-4277. (in Chinese)
[24]
ANIL V S, RAJKUMAR P, KUMAR P, MATHEW M K. A plant Ca2+ pump, ACA2, relieves salt hypersensitivity in yeast. Modulation of cytosolic calcium signature and activation of adaptive Na+ homeostasis. Journal of Biological Chemistry, 2008, 283(6): 3497-3506.
[25]
GEISLER M, FRANGNE N, GOMÈS E, MARTINOIA E, PALMGREN M G. The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiology, 2000, 124(4): 1814-1827.
[26]
SINGH A, KANWAR P, YADAV A K, MISHRA M, JHA S K, BARANWAL V, PANDEY A, KAPOOR S, TYAGI A K, PANDEY G K. Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. The FEBS Journal, 2014, 281(3): 894-915.
[27]
HUDA K M K, BANU M A, GARG B, TULA S, TUTEJA R, TUTEJA N. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. The Plant Journal, 2013, 76(6): 997-1015.
[28]
ZHU X H, CAPLAN J, MAMILLAPALLI P, CZYMMEK K, DINESH-KUMAR S P. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. The EMBO Journal, 2010, 29(5): 1007-1018.
[29]
BOURSIAC Y, LEE S M, ROMANOWSKY S, BLANK R, SLADEK C, CHUNG W S, HARPER J F. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiology, 2010, 154(3): 1158-1171.
[30]
王海波, 苏新国, 邓鸿铃, 李银花, 张昭其. 香蕉Ca2+-ATPase的基因克隆与表达分析. 广东农业科学, 2013, 40(19): 146-149.
WANG H B, SU X G, DENG H L, LI Y H, ZHANG Z Q. Cloning and expression of Ca2+-ATPase gene from banana. Guangdong Agricultural Sciences, 2013, 40(19): 146-149. (in Chinese)
[31]
王文昌, 周双云, 乔飞, 吉福桑, 李元元, 李新国. 实时荧光定量检测盐胁迫下香蕉幼苗CaM和Ca2+-ATPase基因的相对表达量. 分子植物育种, 2017, 15(5): 1745-1751.
WANG W C, ZHOU S Y, QIAO F, JI F S, LI Y Y, LI X G. The relative expression of CaM and Ca2+-ATPase genes in banana seedlings under salt stress by real-time fluorescence quantitative assay. Molecular Plant Breeding, 2017, 15(5): 1745-1751. (in Chinese)
[32]
徐亚, 滕梦鑫, 何岳东, 乔飞, 李新国. 香蕉NHX基因家族的鉴定及表达分析. 植物生理学报, 2021, 57(3): 681-691.
XU Y, TENG M X, HE Y D, QIAO F, LI X G. Identification and expression analysis of NHX genes family in banana. Plant Physiology Journal, 2021, 57(3): 681-691. (in Chinese)
[33]
SUN M Z, JIA B W, CUI N, WEN Y D, DUANMU H Z, YU Q Y, XIAO J L, SUN X L, ZHU Y M. Functional characterization of a Glycine soja Ca(2+)ATPase in salt-alkaline stress responses. Plant Molecular Biology, 2016, 90(4/5): 419-434.
[34]
QUDEIMAT E, FALTUSZ A M C, WHEELER G, LANG D, HOLTORF H, BROWNLEE C, RESKI R, FRANK W. A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19555-19560.
[1] LI FangLiang, KONG QingBo, ZHANG Qing. Research on the Estimation Model of Calcium Content in Guanxi Honey Pomelo Leaves Based on Spectral Index [J]. Scientia Agricultura Sinica, 2025, 58(7): 1321-1332.
[2] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[3] ZHENG YaQin, LIU XueQing, WU SiWen, TANG XiaoYan, YANG DanNi, WANG YongKang, AHMAD Aftab, KHAN Afrsyab, WANG ChengGang, CHEN GuoHu. Cloning and Expression of BcDET2 Gene and Functional of Its Regulatory Effect on Bolting and Flowering in Wucai (Brassica campestris L.) [J]. Scientia Agricultura Sinica, 2025, 58(5): 991-1003.
[4] ZHANG LinLin, GONG Rui, CUI YanLing, ZHONG XiongHui, LI Ye, LI RanHong, QIAN ZongWei. Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS) [J]. Scientia Agricultura Sinica, 2025, 58(3): 548-563.
[5] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[6] WANG Wei, WU ChuanLei, HU XiaoYu, LI JiaJia, BAI PengYu, WANG GuoJi, MIAO Long, WANG XiaoBo. Genome-Wide Identification of Soybean LOX Gene Family and the Effect of GmLOX15A1 Gene Allele on 100-Seed Weight [J]. Scientia Agricultura Sinica, 2025, 58(1): 10-29.
[7] GUAN ZhiLin, JIN FengWei, LIU TingTing, WANG Yi, TAN YingYing, YANG ChunHui, LI RuiTong, WANG Bo, LIU KeDe, DONG Yun. Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(4): 650-662.
[8] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[9] TAN FangDai, HE YingXia, LIU JiaYue, LI AiHua, TAO YongSheng. Multidimensional Characterization of Astringency Quality in Dry Red Wine and Its Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4342-4355.
[10] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[11] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[12] ZHANG ShuHong, ZHANG YunFeng, GAO FengJu, WU QiuYing, XU Ke, LI YaZi, LI YanMei, GU ShouQin, FAN YongShan, GONG XiaoDong. Cloning and Expression Analysis of Genes of Small Heat Shock Protein in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2024, 57(17): 3384-3397.
[13] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[14] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[15] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!