Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1490-1505.doi: 10.3864/j.issn.0578-1752.2024.08.006

• PLANT PROTECTION • Previous Articles     Next Articles

The Transcription Factor NbMYB1R1 Inhibits Viral Infection by Promoting ROS Accumulation

JIANG XingLin1(), YU LianWei1(), FU Han1, AI Niu1, CUI YingJun5, LI HaoHai6, XIA ZiHao7, YUAN HongXia1, LI HongLian1,3,4, YANG Xue1,2(), SHI Yan1()   

  1. 1 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002
    2 Crop Science Postdoctoral Programme of Henan Agricultural University, Zhengzhou 450002
    3 Collaborative Innovation Centre of Henan Grain Crops, Zhengzhou 450002
    4 State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
    5 Henan Association for the Promotion of New Plant Protection Techniques, Zhengzhou 450002
    6 Henan Plant Protection and Quarantine Station, Zhengzhou 450002
    7 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866
  • Received:2023-12-06 Accepted:2024-02-04 Online:2024-04-16 Published:2024-04-24
  • Contact: YANG Xue, SHI Yan

Abstract:

【Background】Cucumber green mottle mosaic virus (CGMMV) is an important quarantine plant virus in China, which has seriously reduced the production of vegetables and melons worldwide. The MYB protein family is large, multifunctional and present in all eukaryotes. Most MYB proteins act as transcription factors that control development, and metabolism in plants, and regulate biotic and abiotic stress responses. Previous studies have shown that during CGMMV infection, the expression of transcription factor gene NbMYB1R1 was significantly up-regulated. 【Objective】The objective of this study is to clarify the mechanism of NbMYB1R1 involved in CGMMV infection, and to provide a theoretical basis for controlling CGMMV infection. 【Method】MEGA 7.0 was used to construct a phylogenetic tree to analyze the amino acid sequence of NbMYB1R1 protein. The expression vector NbMYB1R1-GFP was constructed, transformed into Agrobacterium GV3101 and infiltrated the tobacco leaves to observe the subcellular localization of NbMYB1R1 by confocal microscopy. The transcriptional levels of NbMYB1R1 at different stages of CGMMV infection and ROS related genes in silenced NbMYB1R1 plants were analyzed using qRT-PCR technology. TRV-mediated gene silencing (VIGS) was utilized to analyze the function of NbMYB1R1, NbAOX1a, and NbAOX1b during CGMMV infection. Transient overexpression of NbMYB1R1 and NbMYB1R1 mutant was conducted to analyze the effect of NbMYB1R1 on CGMMV infection. Trypan blue staining and DAB staining were used to observe whether the cell death caused by the transient overexpression of NbMYB1R1 was related to the programmed cell death (PCD) and the accumulation of ROS. Yeast two-hybrid system was used to verify whether NbMYB1R1 interacted with CGMMV related proteins. 【Result】Phylogenetic tree analysis showed that NbMYB1R1 belonged to the 1R MYB category and had high homology with MYB transcription factors in a variety of tobaccos. The results of subcellular localization showed that NbMYB1R1 was localized in the nucleus. In CGMMV-infected tobacco plants, the transcript level of NbMYB1R1 was significantly changed compared with healthy plants, which was significantly up-regulated at 8 and 12 d of CGMMV infection. CGMMV was inoculated into TRV:NbMYB1R1 and TRV:00 plants. The NbMYB1R1-silenced plants showed the mottled and curled symptoms at 3 dpi, while the control plant appeared the symptoms at 3.5 dpi. Silencing NbMYB1R1 could effectively promote the accumulation of CGMMV at mRNA and protein levels. The CGMMV accumulation in NbMYB1R1 and NbMYB1R1 mutant transiently overexpression leaves was detected, and the results showed that NbMYB1R1 overexpression could effectively inhibit CGMMV infection and DNA binding domain deletion mutant reduced the inhibition of CGMMV by NbMYB1R1. The results of trypan blue and DAB staining showed that NbMYB1R1 overexpression could induce the ROS accumulation and cell death. The transcription level of ROS-related genes in TRV:NbMYB1R1 and TRV:00 plant was also detected, and the results showed that silencing NbMYB1R1 could specifically up-regulate the transcription of AOX1a and AOX1b. After CGMMV inoculation on silencing endogenous genes NbAOX1a and NbAOX1b, the systemic leaves of silenced NbAOX1a and NbAOX1b plants showed mottled and curled symptoms at 4 dpi, while the control plants appeared symptoms at 3.5 d. Meanwhile, the results of CGMMV CP mRNA and protein levels also indicated that silencing NbAOX1a and NbAOX1b could effectively inhibit the accumulation of CGMMV. The yeast two-hybrid results showed that NbMYB1R1 did not directly interact with the CGMMV proteins. 【Conclusion】During the CGMMV infection, the defense-related gene NbMYB1R1 is up-regulated. It speculates that the upregulation of NbMYB1R1 inhibits the transcription of the downstream genes AOX1a and AOX1b and activates the production of ROS in cells, thereby inhibiting viral infection. However, NbMYB1R1 does not produce this effect through a direct interaction with the CGMMV viral protein. NbMYB1R1 plays an important role in CGMMV infection.

Key words: cucumber green mottle mosaic virus (CGMMV), NbMYB1R1, transcription factor, pathogenic mechanism, reactive oxygen species (ROS)

Table 1

Primers used in this study"

用途Use 引物名称Primer name 引物序列Primer sequence (5′-3′)
酵母双杂交系统
Yeast two-hybrid
pGADT7- NbMYB1R1-F ATATGGCCATGGAGGCCAGTGAATTCATGTCTAACGAATGCGGAAACAAAGA
pGADT7- NbMYB1R1-R ATCTGCAGCTCGAGCTCGATGGATCCAGCCACACTAATTATGCTATCCCC
pGBKT7-CP-F TGCATATGGCCATGGAGGCCGAATTCATGGCTTACAATCCGATCACACCTA
pGBKT7-CP-R TGCGGCCGCTGCAGGTCGACGGATCCAGCTTTCGAGGTGGTAGCC
pGBKT7-MP-F TGCATATGGCCATGGAGGCCGAATTCATGTCTCTAAGTAAGGTGTCAGTCG
pGBKT7-MP-R TGCGGCCGCTGCAGGTCGACGGATCCGGTGTGATCGGATTGTAAGCC
pGBKT7-129K-F TGCATATGGCCATGGAGGCCGAATTCATGGCAAACATTAATGAACAAATCA
pGBKT7-129K-R TGCGGCCGCTGCAGGTCGACGGATCCTTTGGTAGGCACAGTGGTAGC
pGBKT7-MET-F TGCATATGGCCATGGAGGCCGAATTCATGGCAAACATTAATGAACAAATCA
pGBKT7-MET-R TGCGGCCGCTGCAGGTCGACGGATCCCTCGATCTGTACCTTCCTAACCTTCA
pGBKT7-HEL-F TGCATATGGCCATGGAGGCCGAATTCACATTAGTTGACGGAGTGCC
pGBKT7-HEL-R TGCGGCCGCTGCAGGTCGACGGATCCTTTGGTAGGCACAGTGGTAGC
pGBKT7-P2-F TGCATATGGCCATGGAGGCCGAATTCCAATTAATGCAGAACTCGCTGTATG
pGBKT7-P2-R TGCGGCCGCTGCAGGTCGACGGATCCCTTAGAGACATCTATGTAAAGACTAC
瞬时过表达
Over-expression
NbMYB1R1-GFP-F ACGAGCTGTACAAGGGTACCATGTCTAACGAATGCGGAAACAAAGA
NbMYB1R1-GFP-R CGGACTCTAGTTCATCTAGAAGCCACACTAATTATGCTATCCCC
NbMYB1R1121-127-GFP-F CCTACTCAGGTGGCCCTCCGCCGAAATAACATCAA
NbMYB1R1121-127-GFP-R GTTATTTCGGCGGAGGGCCACCTGAGTAGGGGTC
基因沉默
Virus induced gene silencing (VIGS)
NbMYB1R1 VIGS-F AGTGGTCTCTGTCCAGTCCTCAAGACAAGGACCCCTACTC
NbMYB1R1 VIGS-R GGTCTCAGCAGACCACAAGTGGTATTGGCCTAATGGGCT
NbAOX1a/b VIGS-F AGTGGTCTCTGTCCAGTCCT GTAGGAGGAATGTTGTTGCACT
NbAOX1a/b VIGS-R GGTCTCAGCAGACCACAAGT ATTACCCTTGTCTAATTCCTTGAGG
实时荧光定量PCR
Quantitative real-time PCR
NbUBC-qPCR-F TTTCGGTCCTGATGATACTCCC
NbUBC-qPCR-R CACAGAGCAAAGACTGGATTGA
NbMYB1R1-qPCR-F GGGTTCATGCTCTTTGGTGT
NbMYB1R1-qPCR-R ACGGGTCCTAGCAGAAGGAT
NbAOX1a-qPCR-F TTGAGAACGTTCCTGCTCCT
NbAOX1a-qPCR-R TGGAGAGTCCCTTGAGCTGT
NbAOX1b-qPCR-F TTGAGAACGTTCCTGCTCCT
NbAOX1b-qPCR-R GGTGCTGGAGAGTCCTTGAG
NbGST-qPCR-F TGAAGGAAAGCGAAGCACAAT
NbGST-qPCR-R ACGACGGCGCGAATCAAACA
NbSOD-qPCR-F GCCGTCCTTAGCAGCAGTGAA
NbSOD-qPCR-R CCGGGTTTTAGGCCAGAGACAT
NbAPX1-qPCR-F GGAGTGGTTGCTGTTGAAGTC
NbAPX1-qPCR-R GGAGAGCCTTGTCTGATGG
NbCAT3-qPCR-F TGCGCATCACAATAATCACCAT
NbCAT3-qPCR-R TGTCGCGCTTTCCTGTCAA
NbGPX2-qPCR-F TTGTTTTGCCACTACCTTGTTCAG
NbGPX2-qPCR-R TTCATTTGGGGGTGTCAGATTAG
CP-qPCR-F ACAAGGTACCGCTTTCCAGA
CP-qPCR-R TACGACAGACGAGGGTAACG

Table 2

GenBank accession number used to establish a phylogenetic tree"

Fig. 1

Phylogenetic analysis of NbMYBIR1 based on its amino acid sequences"

Fig. 2

Subcellular localization of NbMYB1R1"

Fig. 3

Transcriptional level of NbMYB1R1 at different stages of CGMMV-inoculated N. benthamiana"

Fig. 4

The effect of NbMYBIR1 silencing on CGMMV infection"

Fig. 5

The effect of transient overexpression of NbMYB1R1 on CGMMV infection"

Fig. 6

Overexpression of NbMYB1R1 inducing ROS accumulation and cell death"

Fig. 7

The effect of NbMYBIR1 silencing on the transcription level of ROS related genes"

Fig. 8

The effect of NbAOX1a/b silencing on CGMMV infection"

Fig. 9

Yeast two-hybrid assay analyzing the interaction between NbMYB1RI and CGMMV encoded proteins"

[1]
赵文. 黄瓜栽培的现状及其发展趋势. 智慧农业导刊, 2022, 2(3): 32-34.
ZHAO W. The current situation and development trends of cucumber cultivation. Journal of Smart Agriculture, 2022, 2(3): 32-34. (in Chinese)
[2]
LING K S, LI R, ZHANG W. First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada. Plant Disease, 2014, 98(5): 701.
[3]
KLEMPNAUER K H, GONDA T J, BISHOP J M. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: The architecture of a transduced oncogene. Cell, 1982, 31(1): 453-463.

doi: 10.1016/0092-8674(82)90138-6
[4]
PAZ-ARES J, GHOSAL D, WIENAND U, PETERSON P A, SAEDLER H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO Journal, 1987, 6(12): 3553-3558.

doi: 10.1002/embj.1987.6.issue-12
[5]
KATIYAR A, SMITA S, LENKA S K, RAJWANSHI R, CHINNUSAMY V, BANSAL K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.

doi: 10.1186/1471-2164-13-544
[6]
SALIH H, GONG W, HE S, SUN G, SUN J, DU X. Genome- wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. BMC Genetics, 2016, 17(1): 129.

doi: 10.1186/s12863-016-0436-8
[7]
WEI Q, CHEN R, WEI X, LIU Y, ZHAO S, YIN X, XIE T. Genome- wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics, 2020, 21(1): 792.

doi: 10.1186/s12864-020-07175-9
[8]
ZHAO P, LI Q, LI J, WANG L, REN Z. Genome-wide identification and characterization of R2R3MYB family in Solanum lycopersicum. Molecular Genetics and Genomics, 2014, 289(6): 1183-1207.

doi: 10.1007/s00438-014-0879-4
[9]
CHEN G, HE W, GUO X, PAN J. Genome-wide identification, classification and expression analysis of the MYB transcription factor family in Petunia. International Journal of Molecular Sciences, 2021, 22(9): 4838.

doi: 10.3390/ijms22094838
[10]
OGATA K, MORIKAWA S, NAKAMURA H, SEKIKAWA A, INOUE T, KANAI H, SARAI A, ISHII S, NISHIMURA Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 1994, 79(4): 639-648.

doi: 10.1016/0092-8674(94)90549-5 pmid: 7954830
[11]
DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10): 573-581.

doi: 10.1016/j.tplants.2010.06.005
[12]
YU E Y, KIM S E, KIM J H, KO J H, CHO M H, CHUNG I K. Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. The Journal of Biological Chemistry, 2000, 275(31): 24208-24214.

doi: 10.1074/jbc.M003250200
[13]
HAGA N, KATO K, MURASE M, ARAKI S, KUBO M, DEMURA T, SUZUKI K, MÜLLER I, VOß U, JÜRGENS G, ITO M. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development, 2007, 134(6): 1101-1110.

doi: 10.1242/dev.02801
[14]
HOU X J, LI S B, LIU S R, HU C G, ZHANG J Z. Genome-wide classification and evolutionary and expression analyses of citrus MYB transcription factor families in sweet orange. PLoS ONE, 2014, 9(11): e112375.

doi: 10.1371/journal.pone.0112375
[15]
MATUS J T, AQUEA F, ARCE-JOHNSON P. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology, 2008, 8(1): 83.

doi: 10.1186/1471-2229-8-83
[16]
WILKINS O, NAHAL H, FOONG J, PROVART N J, CAMPBELL M M. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiology, 2009, 149(2): 981-993.

doi: 10.1104/pp.108.132795
[17]
LIU Z, LUAN Y, LI J, YIN Y. Expression of a tomato MYB gene in transgenic tobacco increases resistance to Fusarium oxysporum and Botrytis cinerea. European Journal of Plant Pathology, 2016, 144(3): 607-617.

doi: 10.1007/s10658-015-0799-0
[18]
LIU T, CHEN T, KAN J, YAO Y, GUO D, YANG Y, LING X, WANG J, ZHANG B. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnology Journal, 2022, 20(4): 722-735.

doi: 10.1111/pbi.v20.4
[19]
XIAO S, HU Q, SHEN J, LIU S, YANG Z, CHEN K, KLOSTERMAN S J, JAVORNIK B, ZHANG X, ZHU L. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. Plant Cell Reports, 2021, 40(4): 735-751.

doi: 10.1007/s00299-021-02672-x
[20]
QIU B, CHEN H, ZHENG L, SU L, CUI X, GE F, LIU D. An MYB transcription factor modulates Panax notoginseng resistance against the root rot pathogen Fusarium solani by regulating the jasmonate acid signaling pathway and photosynthesis. Phytopathology, 2022, 112(6): 1323-1334.

doi: 10.1094/PHYTO-07-21-0283-R
[21]
CUI J, JIANG N, ZHOU X, HOU X, YANG G, MENG J, LUAN Y. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta, 2018, 248(6): 1487-1503.

doi: 10.1007/s00425-018-2987-6
[22]
QIU Z, YAN S, XIA B, JIANG J, YU B, LEI J, CHEN C, CHEN L, YANG Y, WANG Y, TIAN S, CAO B. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. Journal of Experimental Botany, 2019, 70(19): 5343-5354.

doi: 10.1093/jxb/erz259 pmid: 31587071
[23]
LIU R, CHEN L, JIA Z, B, SHI H, SHAO W, DONG H. Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Molecular Plant-Microbe Interactions, 2011, 24(3): 377-389.

doi: 10.1094/MPMI-07-10-0170
[24]
YANG Y, KLESSIG D F. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25): 14972-14977.
[25]
ZHU T, ZHOU X, ZHANG J L, ZHANG W H, ZHANG L P, YOU C X, JAMESON P E, MA P T, GUO S L. Ethylene-induced NbMYB4L is involved in resistance against tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant Pathology, 2022, 23(1): 16-31.

doi: 10.1111/mpp.13139
[26]
ZHOU H, PENG Q, ZHAO J, OWITI A, REN F, LIAO L, WANG L, DENG X, JIANG Q, HAN Y. Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Frontiers in Plant Science, 2016, 7: 1557.

pmid: 27818667
[27]
KOUNDAL V, VINUTHA T, HAQ Q M R, PRAVEEN S. Modulation of plant development and MYB down regulation: Both during in planta expression of miR159a and in natural ToLCV infection. Journal of Plant Biochemistry and Biotechnology, 2010, 19: 171-175.

doi: 10.1007/BF03263337
[28]
SEO P J, XIANG F, QIAO M, PARK J Y, LEE Y N, KIM S G, LEE Y H, PARK W J, PARK C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiology, 2009, 151(1): 275-289.

doi: 10.1104/pp.109.144220
[29]
SLAVOKHOTOVA A, KOROSTYLEVA T, SHELENKOV A, PUKHALSKIY V, KOROTTSEVA I, SLEZINA M, ISTOMINA E, ODINTSOVA T. Transcriptomic analysis of genes involved in plant defense response to the cucumber green mottle mosaic virus infection. Life, 2021, 11(10): 1064.

doi: 10.3390/life11101064
[30]
EULGEM T. Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science, 2005, 10(2): 71-78.

doi: 10.1016/j.tplants.2004.12.006
[31]
YU Y, ZHANG S, YU Y, CUI N, YU G, ZHAO H, MENG X, FAN H. The pivotal role of MYB transcription factors in plant disease resistance. Planta, 2023, 258(1): 16.

doi: 10.1007/s00425-023-04180-6 pmid: 37311886
[32]
VAILLEAU F, DANIEL X, TRONCHET M, MONTILLET J L, TRIANTAPHYLIDÈS C, ROBY D. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 10179-10184.
[33]
RAFFAELE S, VAILLEAU F, LÉGER A, JOUBÈS J, MIERSCH O, HUARD C, BLÉE E, MONGRAND S, DOMERGUE F, ROBY D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. The Plant Cell, 2008, 20(3): 752-767.

doi: 10.1105/tpc.107.054858
[34]
NOMAN A, HUSSAIN A, ADNAN M, KHAN M I, ASHRAF M F, ZAINAB M, KHAN K A, GHRAMH H A, HE S. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen. Microbial Pathogenesis, 2019, 137: 103758.

doi: 10.1016/j.micpath.2019.103758
[35]
YAO L, YANG B, XIAN B, CHEN B, YAN J, CHEN Q, GAO S, ZHAO P, HAN F, XU J, JIANG Y Q. The R2R3-MYB transcription factor BnaMYB111L from rapeseed modulates reactive oxygen species accumulation and hypersensitive-like cell death. Plant Physiology and Biochemistry, 2020, 147: 280-288.

doi: S0981-9428(19)30543-1 pmid: 31891862
[36]
DANEVA A, GAO Z, VAN DURME M, NOWACK M K. Functions and regulation of programmed cell death in plant development. Annual Review of Cell and Developmental Biology, 2016, 32: 441-468.

pmid: 27298090
[37]
CHEN B, NIU F, LIU W Z, YANG B, ZHANG J, MA J, CHENG H, HAN F, JIANG Y Q. Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death. DNA Research, 2016, 23(2): 101-114.

doi: 10.1093/dnares/dsv040
[38]
NG D W, ABEYSINGHE J K, KAMALI M. Regulating the regulators: The control of transcription factors in plant defense signaling. International Journal of Molecular Sciences, 2018, 19(12): 3737.

doi: 10.3390/ijms19123737
[39]
VISWANATH K K, KUO S Y, TU C W, HSU Y H, HUANG Y W, HU C C. The role of plant transcription factors in the fight against plant viruses. International Journal of Molecular Sciences, 2023, 24(9): 8433.

doi: 10.3390/ijms24098433
[40]
李强, 康璠, 薛晴, 陈斌, 孙颖. 神农香菊R2R3-MYB转录因子CiMYB4在镉胁迫中的功能分析. 草业学报, 2024, 33(5): 128-142.

doi: 10.11686/cyxb2023236
LI Q, KANG F, XUE Q, CHEN B, SUN Y. Functional analysis of the R2R3-MYB transcription factor CiMYB4 of Chrysanthemum indicum var. aromaticum in response to cadmium stress. Acta Prataculturae Sinica, 2024, 33(5): 128-142. (in Chinese)
[41]
解振强, 许桓瑜, 黄金霞, 蔡善亚, 李刚, 赵鹏程. 葡萄MYB转录因子基因VvMYB30的克隆及其耐盐性分析. 中外葡萄与葡萄酒, 2024(1): 20-27.
XIE Z Q, XU H Y, HUANG J X, CAI S Y, LI G, ZHAO P C. Cloning and salt tolerance analysis of VvMYB30 from grape (V. vinifera). Sino-Overseas Grapevine & Wine, 2024(1): 20-27. (in Chinese)
[42]
姚利晓, 范海芳, 张庆雯, 何永睿, 许兰珍, 雷天刚, 彭爱红, 李强, 邹修平, 陈善春. 柑橘溃疡病抗性相关转录因子CitMYB20的功能. 中国农业科学, 2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578-1752.2020.10.007.
YAO L X, FAN H F, ZHANG Q W, HE Y R, XU L Z, LEI T G, PENG A H, LI Q, ZOU X P, CHEN S C. Function of citrus bacterial canker resistance-related transcription factor CitMYB20. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578-1752.2020.10.007. (in Chinese)
[43]
YANG L L, LI Q L, HAN X Y, JIANG X L, WANG H, SHI Y J, CHEN L L, LI H L, LIU Y Q, YANG X, SHI Y. A cysteine-rich secretory protein involves in phytohormone melatonin mediated plant resistance to CGMMV. BMC Plant Biology, 2023, 23(1): 215.

doi: 10.1186/s12870-023-04226-7
[44]
LI Y, ZHANG R, WU Y, WU Q, JIANG Q, MA J, ZHANG Y, QI P, CHEN G, JIANG Y, ZHENG Y, WEI Y, XU Q. TaRBP1 stabilizes TaGLTP and negatively regulates stripe rust resistance in wheat. Molecular Plant Pathology, 2023, 24(10): 1205-1219.

doi: 10.1111/mpp.13364 pmid: 37306522
[45]
陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性. 作物学报, 2021, 47(1): 19-29.

doi: 10.3724/SP.J.1006.2021.01050
CHEN T R, LUO Y J, ZHAO P T, JIA H Y, MA Z Q. Overexpression of TaJRL53 enhances the Fusarium head blight resistance in wheat. Acta Agronomica Sinica, 2021, 47(1): 19-29. (in Chinese)

doi: 10.3724/SP.J.1006.2021.01050
[46]
TIAN Z, ZHANG Z, KANG L, LI M, ZHANG J, FENG Y, YIN J, GONG X, ZHAO J. Small G protein StRab5b positively regulates potato resistance to Phytophthora infestans. Frontiers in Plant Science, 2022, 13: 1065627.

doi: 10.3389/fpls.2022.1065627
[47]
CVETKOVSKA M, VANLERBERGHE G C. Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant, Cell and Environment, 2013, 36(3): 721-732.

doi: 10.1111/pce.2013.36.issue-3
[48]
ZHANG X, IVANOVA A, VANDEPOELE K, RADOMILJAC J, VAN DE VELDE J, BERKOWITZ O, WILLEMS P, XU Y, NG S, VAN AKEN O, et al. The transcription factor MYB 29 is a regulator of ALTERNATIVE OXIDASE1a. Plant Physiology, 2017, 173(3): 1824-1843.

doi: 10.1104/pp.16.01494
[49]
GONG Q, LI S, ZHENG Y, DUAN H, XIAO F, ZHUANG Y, HE J, WU G, ZHAO S, ZHOU H, LIN H. SUMOylation of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally upregulating AOX1a in Arabidopsis. The Plant Journal, 2020, 102(6): 1157-1171.

doi: 10.1111/tpj.v102.6
[1] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[2] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[3] YAN PeiHan, LUO JianMing, HAO ChenXing, SUN ZiQing, YE RongChun, LI Yi, LIU Lian, SHENG Ling, MA XianFeng, DENG ZiNiu. Identification of the Transcription Factor WRKY75 of CmPR4A in Citron C-05 and Its Function Analysis in Resistance to Citrus Canker Disease [J]. Scientia Agricultura Sinica, 2023, 56(21): 4304-4317.
[4] HAN XiaoWen, HAN Shuo, HU YiFeng, WANG MengRu, CHEN ZhongYi, ZHU YongXing, YIN JunLiang. Genome-Wide Identification of AP2/ERF Gene Family in Alternanthera philoxeroides and Its Expression Patterns Under Herbicide Stresses [J]. Scientia Agricultura Sinica, 2023, 56(20): 4021-4034.
[5] DING GuoHua, XIAO GuangHui, ZHU LiPing. Genome-Wide Identification and Expression Analysis of NLP (NIN- Like Protein) Transcription Factor Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(19): 3723-3746.
[6] HA DanDan, ZHENG HongXia, ZHANG ZhenHao, ZHU LiHong, LIU Hao, WANG JiaoYu, ZHOU Lei. Fluorescent Labeling and Observation of Infection Structure of Fusarium verticillioides [J]. Scientia Agricultura Sinica, 2023, 56(18): 3556-3573.
[7] YU LianWei, JIANG XingLin, YANG LingLing, WANG He, ZHANG YuYang, XIE LiNa, XIA ZiHao, LI HongLian, YANG Xue, SHI Yan. Function of Transcription Factor NbERF RAP2-1 in Cucumber Green Mottle Mosaic Virus Infection [J]. Scientia Agricultura Sinica, 2023, 56(15): 2919-2928.
[8] ZHANG Nan, HAN GuangJie, LIU Qin, LI ChuanMing, QI JianHang, LU YuRong, XIA Yang, XU Jian. Response and Function of the Transcription Factor CncC in Cnaphalocrocis medinalis Infected with Baculovirus CnmeGV [J]. Scientia Agricultura Sinica, 2023, 56(13): 2491-2503.
[9] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[10] ZHANG Jie, JIANG ChangYue, WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[11] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[12] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[13] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[14] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[15] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!