Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2427-2438.doi: 10.3864/j.issn.0578-1752.2025.12.012

• HORTICULTURE • Previous Articles     Next Articles

Screening of Transcription Factors for Key Enzyme Gene CsAlaDC Involved in Ethylamine Synthesis in Yinghong 9 (Camellia sinensis)

RUAN QiaoJun(), MAO MiaoMiao, ZHANG YuanYuan, LIN XiaoRong, CHEN ZhongZheng()   

  1. College of Food Science, South China Agricultural University, Guangzhou 510642
  • Received:2025-02-19 Accepted:2025-04-14 Online:2025-06-19 Published:2025-06-19
  • Contact: CHEN ZhongZheng

Abstract:

【Objective】Theanine is synthesized from substrates ethylamine and glutamic acid catalyzed by theanine synthase. Ethylamine, the primary limiting factor in theanine biosynthesis in tea plants (Camellia sinensis), is generated via the decarboxylation of alanine catalyzed by alanine decarboxylase (CsAlaDC). This study aims to identify transcription factors regulating CsAlaDC through yeast one-hybrid screening of a tea plant cDNA library, thereby elucidating the molecular mechanisms underlying ethylamine biosynthesis regulation from a transcriptional perspective. The findings provide a theoretical foundation and technical references for advancing theanine biosynthesis and genetic improvement in tea plants.【Method】Using the Yinghong 9 tea cultivar, the promoter of CsAlaDC was cloned via PCR and employed as bait for yeast one-hybrid screening to identify candidate transcription factors from a cDNA library. Coding sequences (CDS) of candidate transcription factors were cloned and reversed to validate them. Bioinformatics analyses were conducted to characterize protein domains, molecular weights, and solubility of the candidates. Dual-luciferase assays were performed to assess transcriptional regulation of CsAlaDC by the candidate transcription factors, while subcellular localization experiments determined their cellular distribution.【Result】The CsAlaDC promoter cloned from the Yinghong 9 tea cultivar contained core eukaryotic promoter elements such as TATA-box and CAAT-box, along with light-responsive motifs (I-box, G-Box, TCT-motif, TCCC-motif, Box4), a meristem-specific CAT-box cis-element, stress-responsive elements (ABRE, TC-rich repeats), and binding sites for transcription factor families including MYB, MYC, and WRKY. Using the CsAlaDC promoter as bait, yeast one-hybrid screening of the Yinghong 9 cDNA library identified 17 potential binding proteins. After preliminary screening, five candidate transcription factors were selected for CDS cloning and reverse validation, ultimately confirming three transcription factors: CsFBX, CsBBX, and CsASR. Dual-luciferase assays demonstrated that CsBBX and CsASR significantly activated CsAlaDC expression, whereas CsFBX exhibited no regulatory effect. Subcellular localization revealed nuclear localization of CsFBX and CsBBX, while CsASR was localized in both the nucleus and cytoplasm.【Conclusion】Three transcription factors (CsFBX, CsBBX, and CsASR) regulating the ethylamine biosynthesis gene CsAlaDC were identified from the Yinghong 9 cDNA library. All three factors bound to the CsAlaDC promoter, with CsBBX and CsASR demonstrating transcriptional activation capabilities.

Key words: Camellia sinensis, theanine, ethylamine, alanine decarboxylase (CsAlaDC), transcription factors (TFs), transcriptional regulation

Fig. 1

Electrophoresis figure of proCsAlaDC"

Table 1

Analysis of CsAlaDC promoter regulatory elements"

位点名称
Site name
数量
Quantity
序列
Sequence
功能描述
Function description
CAAT-box 46 CAAAT/CAAT/CAACCAACTCC 启动子和增强子区域常见的顺式作用元件
Common cis-acting element in promoter and enhancer regions
TATA-box 121 TATA 启动子核心序列Core promoter element
I-box 1 AAGATAAGGCT 部分光响应元件Part of a light responsive element
G-Box 2 CACGTT 参与光反应的顺式作用调控元件
Cis-acting regulatory element involved in light responsiveness
TCT-motif 1 TCTTAC 部分光响应元件Part of a light responsive element
TCCC-motif 1 TCTCCCT 部分光响应元件Part of a light responsive element
Box4 6 ATTAAT 部分参与光响应的保守DNA模块
Part of a conserved DNA module involved in light responsiveness
A-box 1 CCGTCC 顺式作用元件Cis-acting regulatory element
CAT-box 1 GCCACT 分生组织表达相关顺式作用元件
Cis-acting regulatory element related to meristem expression
TC-rich repeats 2 ATTCTCTAAC 防御和压力反应的顺式作用元件
Cis-acting element involved in defense and stress responsiveness
ABRE 6 CGTACGTGCA 脱落酸响应元件
Cis-acting element involved in the abscisic acid responsiveness
MYB 1 CAACCA MYB转录因子识别位点Binding sites for MYB transcription factors
MYC 2 CATTTG MYC转录因子识别位点Binding sites for MYC transcription factors
ERE 2 ATTTCATA 雌激素反应元件Estrogen response element
W-Box 2 TTGACC WRKY转录因子识别位点Binding sites for WRKY transcription factors

Fig. 2

Growth of yeast Y187 (proCsAlaDC-pHIS2) on SD/-Trp/-His medium containing different concentrations of 3-AT"

Table 2

Candidate proteins that interact with proCsAlaDC are screened from the library"

序号
Sequence number
基因ID
Gene ID
功能描述
Function description
1 XM_002269237.5 欧亚葡萄亚硫酸盐氧化酶样蛋白Vitis vinifera sulfite oxidase-like
2 XM_028226709.1 茶树LIMR家族蛋白At5g01460样Camellia sinensis LIMR family protein At5g01460-like
3 XM_028196337.1 茶树锌指蛋白CONSTANS样4类似物Camellia sinensis zinc finger protein CONSTANS-LIKE 4-like
4 XM_028200475.1 茶树果胶酯酶抑制剂3 Camellia sinensis pectinesterase inhibitor 3
5 XM_028252569.1 茶树未表征蛋白Camellia sinensis uncharacterized
6 XM_028216177.1 茶树器官特异性蛋白P4样Camellia sinensis organ-specific protein P4-like
7 XM_028234224.1 茶树60S核糖体蛋白L13-1样Camellia sinensis 60S ribosomal protein L13-1-like
8 XM_028266808.1 茶树可能的核酮糖-5-磷酸异构酶3(叶绿体型)
Camellia sinensis probable ribose-5-phosphate isomerase 3, chloroplastic
9 XM_028214394.1 茶树40S核糖体蛋白S3a-2样Camellia sinensis 40S ribosomal protein S3a-2-like
10 KF880380.1 茶树脱落酸胁迫成熟蛋白ASR Camellia sinensis abscisic stress-ripening protein ASR (ASR)
11 XM_028204029.1 茶树F-box蛋白At5g03970样Camellia sinensis F-box protein At5g03970-like
12 XM_034853669.1 河岸葡萄未表征蛋白Vitis riparia uncharacterized
13 NM_001378517.1 欧亚葡萄60S酸性核糖体蛋白P2B样Vitis vinifera 60S acidic ribosomal protein P2B-like
14 XM_028233642.1 茶树可能的半乳糖醛酸转移酶样7 Camellia sinensis probable galacturonosyltransferase-like 7
15 XM_028196820.1 茶树谷氨酸受体2.7样Camellia sinensis glutamate receptor 2.7-like
16 XM_028232263.1 茶树琥珀酸脱氢酶组装因子4(线粒体型样)
Camellia sinensis succinate dehydrogenase assembly factor 4, mitochondrial-like
17 XM_010652188.2 欧亚葡萄可能的E3泛素蛋白连接酶XERICO Vitis vinifera probable E3 ubiquitin-protein ligase XERICO

Fig. 3

Cloning of candidate transcription factor genes"

Fig. 4

Analysis of the conserved functional structural domains of candidate transcription factors a:CsFBX;b:CsBBX;c:CsASR;d:CsLIMR;e:CsOrgan"

Table 3

Property prediction of candidate transcription factors"

名称
Name
长度
Length
(bp)
分子量
Molecular weight (Da)
氨基酸总数
Number of amino acids
等电点
Theoretical pI
亲疏水性
Hydrophilicity
稳定性
Stability
亚细胞定位
Subcellular localization
CsFBX 1407 54366.06 468 6.73 亲水Hydrophilic 不稳定Unstable 细胞核Nucleus
CsBBX 1080 39446.05 359 5.90 亲水Hydrophilic 不稳定Unstable 细胞核Nucleus
CsASR 546 19889.19 181 5.69 亲水Hydrophilic 稳定Stable 细胞质/细胞核Cytoplasm/Nucleus
CsLIMR 1533 56247.61 510 9.10 疏水Hydrophobic 稳定Stable 质膜Plasma membrane
CsOrgan 375 13840.49 124 4.97 亲水Hydrophilic 稳定Stable 细胞外基质Extracellular matrix

Fig. 5

Yeast one-hybrid analysis to verify candidate transcription factors binding to proCsAlaDC +: Positive control pGAD53m+pHIS2-p53; -: Negative control pGADT7+proCsAlaDC-pHIS2"

Fig. 6

Vector construction and regulatory activity of Dual-luciferase transient expression a: A schematic illustration of the construction of the effector and reporter. REN: Renilla luciferase gene; proCsAlaDC: Alanine decarboxylase gene promoter; LUC: Firefly luciferase gene; b, c, d: LUC chemiluminescence imaging of CsFBX, CsBBX, CsASR with relative fluorescence ratio (LUC/REN). * indicates P <0.05; ** indicates P<0.01; ns indicates no significant difference P>0.05"

Fig. 7

Subcellular localization of cloned transcription factors"

[1]
王锡洪, 梁慧玲, 毛斌瑀, 胡晨, 唐德松. 茶氨酸的开发利用现状与展望. 中国茶叶, 2021, 43(3): 6-10.
WANG X H, LIANG H L, MAO B Y, HU C, TANG D S. The current situation and prospect of the utilization of theanine. China Tea, 2021, 43(3): 6-10. (in Chinese)
[2]
LI M Y, LIU H Y, WU D T, KENAAN A, GENG F, LI H B, GUNARATNE A, LI H, GAN R Y. L-theanine: A unique functional amino acid in tea (Camellia sinensis L.) with multiple health benefits and food applications. Frontiers in Nutrition, 2022, 9: 853846.
[3]
ASHIHARA H. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: A comprehensive review. Natural Product Communications, 2015, 10(5): 803-810.

pmid: 26058162
[4]
CHENG S H, FU X M, WANG X Q, LIAO Y Y, ZENG L T, DONG F, YANG Z Y. Studies on the biochemical formation pathway of the amino acid l-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7210-7216.

doi: 10.1021/acs.jafc.7b02437 pmid: 28796499
[5]
CROCOMO O J, FOWDEN L. Amino acid decarboxylases of higher plants: The formation of ethylamine. Phytochemistry, 1970, 9(3): 537-540.
[6]
张梁, 陈琪, 宛晓春, 李大祥. 中国茶叶生物化学研究40年. 中国茶叶, 2019, 41(9): 1-10.
ZHANG L, CHEN Q, WAN X C, LI D X. 40 years’ research on tea biochemistry in China. China Tea, 2019, 41(9): 1-10. (in Chinese)
[7]
岳婕, 李丹, 杨春, 马蕊, 奉展英, 罗军武. 不同茶树品种氨基酸组分及含量分析. 湖南农业科学, 2010(23): 141-143.
YUE J, LI D, YANG C, MA R, FENG Z Y, LUO J W. Analysis of content and composition of amino acid in different varieties of tea-plant. Hunan Agricultural Sciences, 2010(23): 141-143. (in Chinese)
[8]
DENG W W, OGITA S, ASHIHARA H. Ethylamine content and theanine biosynthesis in different organs of Camellia sinensis seedlings. Zeitschrift Fur Naturforschung C, Journal of Biosciences, 2009, 64(5/6): 387-390.
[9]
FU X M, LIAO Y Y, CHENG S H, XU X L, GRIERSON D, YANG Z Y. Nonaqueous fractionation and overexpression of fluorescent- tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal, 2021, 19(1): 98-108.
[10]
BAI P X, WEI K, WANG L Y, ZHANG F, RUAN L, LI H L, WU L Y, CHENG H. Identification of a novel gene encoding the specialized alanine decarboxylase in tea (Camellia sinensis) plants. Molecules, 2019, 24(3): 540.
[11]
ZHANG Y R, LI P H, SHE G B, XU Y J, PENG A Q, WAN X C, ZHAO J. Molecular basis of the distinct metabolic features in shoot tips and roots of tea plants (Camellia sinensis): Characterization of MYB regulator for root theanine synthesis. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3415-3429.
[12]
XIANG F, SU Y, ZHOU L Y, DAI C T, JIN X, LIU H Y, LUO W G, YANG W B, LI W. Gibberellin promotes theanine synthesis by relieving the inhibition of CsWRKY71 on CsTSI in tea plant (Camellia sinensis). Horticulture Research, 2024, 12(2): uhae317.
[13]
WEN B B, LUO Y, LIU D M, ZHANG X N, PENG Z, WANG K B, LI J, HUANG J N, LIU Z H. The R2R3-MYB transcription factor CsMYB73 negatively regulates l-Theanine biosynthesis in tea plants (Camellia sinensis L.). Plant Science, 2020, 298: 110546.
[14]
XIE N C, HUANG X X, ZHOU J X, SONG X F, LIN J M, YAN M H, ZHU M Z, LI J, WANG K B. The R2R3-MYB transcription factor CsMYB42 regulates theanine biosynthesis in albino tea leaves. Plant Science, 2023, 336: 111850.
[15]
GUO J Y, ZHU B Y, CHEN Y, LIN S J, QIAO S M, MA F L, ZHANG S H, YANG T Y, CHEN Q, LIU L L, ZHANG Z L, WAN X C. Potential ‘accelerator’ and ‘brake’ regulation of theanine biosynthesis in tea plant (Camellia sinensis). Horticulture Research, 2022, 9: uhac169.
[16]
ZHOU Z W, LUO X Z, FU M Y, LI S Y, CHENG Y H, LI Y Y, ZHANG X C. Ethylamine, beyond the synthetic precursor of theanine: CsCBF4-CsAlaDC module promoted ethylamine synthesis to enhance osmotic tolerance in tea plants. The Plant Journal, 2024, 120(5): 1920-1932.
[17]
WANG D, CHEN X B, ZHANG Z L, LIU D M, SONG G Y, KONG X C, GENG S F, YANG J Y, WANG B N, WU L, LI A L, MAO L. A MADS-box gene NtSVP regulates pedicel elongation by directly suppressing a KNAT1-like KNOX gene NtBPL in tobacco (Nicotiana tabacum L.). Journal of Experimental Botany, 2015, 66(20): 6233-6244.
[18]
CAO K F, ZHANG S Y, CHEN Y, YE J F, WEI Y Y, JIANG S, SHAO X F. ERF transcription factor PpRAP2.12 activates PpVIN2 expression in peach fruit and reduces tolerance to cold stress. Postharvest Biology and Technology, 2023, 199: 112276.
[19]
LIU H B, CUI P, ZHANG B X, ZHU J B, LIU C, LI Q Y. Binding of the transcription factor MYC2-like to the ABRE of the OsCYP2 promoter enhances salt tolerance in Oryza sativa. PLoS ONE, 2022, 17(10): e0276075.
[20]
CAO Y W, BI M M, YANG P P, SONG M, HE G R, WANG J, YANG Y, XU L F, MING J. Construction of yeast one-hybrid library and screening of transcription factors regulating LhMYBSPLATTER expression in Asiatic hybrid lilies (Lilium spp.). BMC Plant Biology, 2021, 21(1): 563.
[21]
NAEEM UL HASSAN M, ZAINAL Z, ISMAIL I. Plant kelch containing F-box proteins: Structure, evolution and functions. RSC Advances, 2015, 5(53): 42808-42814.
[22]
ZHOU B K, SHENG Q, YAO X Z, LI T, LU L T. Overexpression of CsBRC, an F-box gene from Camellia sinensis, increased the plant branching in tobacco and rice. Plant Direct, 2024, 8(7): e618.
[23]
WEI K, WANG L Y, CHENG H, ZHANG C C, MA C L, ZHANG L Q, GONG W Y, WU L Y. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Gene, 2013, 514(2): 91-98.
[24]
GANGAPPA S N, BOTTO J F. The BBX family of plant transcription factors. Trends in Plant Science, 2014, 19(7): 460-470.

doi: 10.1016/j.tplants.2014.01.010 pmid: 24582145
[25]
XU D Q. COP1 and BBXs-HY5-mediated light signal transduction in plants. New Phytologist, 2020, 228(6): 1748-1753.
[26]
LI C F, PEI J L, YAN X, CUI X, TSURUTA M, LIU Y, LIAN C L. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. Plant, Cell & Environment, 2021, 44(9): 3015-3033.
[27]
AN J P, WANG X F, ESPLEY R V, KUI L W, BI S Q, YOU C X, HAO Y J. An apple B-box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant & Cell Physiology, 2020, 61(1): 130-143.
[28]
程维舜, 孙玉宏, 曾红霞, 杜念华, 施先锋, 蔡新忠. ASR蛋白与植物的抗逆性研究进展. 园艺学报, 2013, 40(10): 2049-2057.
CHENG W S, SUN Y H, ZENG H X, DU N H, SHI X F, CAI X Z. ASR protein and plant stress tolerance. Acta Horticulturae Sinica, 2013, 40(10): 2049-2057. (in Chinese)
[29]
ZHANG Y, WANG M F, KITASHOV A V, YANG L. Development history, structure, and function of ASR (Abscisic acid-stress-ripening) transcription factor. International Journal of Molecular Sciences, 2024, 25(19): 10283.
[30]
岳川, 曹红利, 郝心愿, 郭玉琼, 叶乃兴, 王新超, 杨亚军. 茶树CsASR基因的克隆及其表达分析. 茶叶科学, 2017, 37(4): 399-410.
YUE C, CAO H L, HAO X Y, GUO Y Q, YE N X, WANG X C, YANG Y J. Cloning and expression analysis of CsASR gene in tea plant (Camellia sinensis). Journal of Tea Science, 2017, 37(4): 399-410. (in Chinese)
[31]
张驰, 王艳芳, 陈静, 王义, 张美萍. 植物MYB转录因子调控次生代谢的研究进展. 基因组学与应用生物学, 2020, 39(9): 4171-4177.
ZHANG C, WANG Y F, CHEN J, WANG Y, ZHANG M P. Research advances on the regulation of secondary metabolism by plant MYB transcription factors. Genomics and Applied Biology, 2020, 39(9): 4171-4177. (in Chinese)
[32]
马雪祺, 阴艳红, 冯婧娴, 陈万生, 孙连娜, 肖莹. 植物NAC转录因子研究进展. 植物生理学报, 2021, 57(12): 2225-2234.
MA X Q, YIN Y H, FENG J X, CHEN W S, SUN L N, XIAO Y. Research progress of NAC transcription factors in plant. Plant Physiology Journal, 2021, 57(12): 2225-2234. (in Chinese)
[33]
SCHLUTTENHOFER C, YUAN L. Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 2015, 167(2): 295-306.

doi: 10.1104/pp.114.251769 pmid: 25501946
[34]
HAN H, WANG C N, YANG X Y, WANG L N, YE J B, XU F, LIAO Y L, ZHANG W W. Role of bZIP transcription factors in the regulation of plant secondary metabolism. Planta, 2023, 258(1): 13.

doi: 10.1007/s00425-023-04174-4 pmid: 37300575
[35]
WU H L, PAN Y Y, NI E D, QIN D D, FANG K X, WANG Q, YANG C W, LUO M, LIU J. CsRAB, a R2R3-MYB transcription factor from purple tea (Camellia sinensis), positively regulates anthocyanin biosynthesis. Frontiers in Plant Science, 2024, 15: 1514631.
[36]
CHENG X, SUN Y, WANG Y J, LIU X Y, CAO J J, LI D D, YANG D, ZHUO C, WAN X C, LIU L L. CsCBF2 contributes to cold repression of chlorophyll and carotenoid biosynthesis in albino Camellia sinensis cv. Baiye 1 . Tree Physiology, 2024, 44(12): tpae149.
[37]
LIU X Y, CHENG X, CAO J J, ZHU W F, WAN X C, LIU L L. GOLDEN 2-LIKE transcription factors regulate chlorophyll biosynthesis and flavonoid accumulation in response to UV-B in tea plants. Horticultural Plant Journal, 2023, 9(5): 1055-1066.
[38]
XU J M, LI J Y, LIU Y H, ZHENG P, LIU S Q, SUN B M. A genus-specific R2R3 MYB transcription factor, CsMYB34, regulates galloylated catechin biosynthesis in Camellia sinensis. Plant Physiology and Biochemistry, 2025, 219: 109401.
[39]
MA W H, KANG X, LIU P, SHE K X, ZHANG Y Y, LIN X R, LI B, CHEN Z Z. The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis. Horticulture Research, 2022, 9: uhab046.
[40]
DU J K, HE X L, ZHOU Y M, ZHAI C C, YU D E, ZHANG S H, CHEN Q, WAN X C. Gene coexpression network reveals insights into the origin and evolution of a theanine-associated regulatory module in non- Camellia and Camellia species. Journal of Agricultural and Food Chemistry, 2021, 69(1): 615-626.
[41]
ZHANG S H, CHEN Y, HE X L, DU J K, ZHANG R, MA Y, HU X Y, ZHANG Z L, CHEN Q, WAN X C. Identification of MYB transcription factors regulating theanine biosynthesis in tea plant using omics-based gene coexpression analysis. Journal of Agricultural and Food Chemistry, 2020, 68(3): 918-926.
[42]
LI P H, XIA E H, FU J M, XU Y J, ZHAO X C, TONG W, TANG Q, TADEGE M, FERNIE A R, ZHAO J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). The Plant Journal, 2022, 110(4): 1144-1165.

doi: 10.1111/tpj.15729 pmid: 35277905
[43]
WEN B B, LI J, LUO Y, ZHANG X N, WANG K B, LIU Z H, HUANG J N. Identification and expression profiling of MYB transcription factors related to l-theanine biosynthesis in Camellia sinensis. International Journal of Biological Macromolecules, 2020, 164: 4306-4317.
[1] ZHANG Jian, ZHAO BinSen, FENG Hao, HUANG LiLi. Function and Mechanism Analysis of Vm-milRN7 Regulating the Pathogenicity of Valsa mali [J]. Scientia Agricultura Sinica, 2024, 57(10): 1930-1942.
[2] GE TianCheng, YIN Fei, HU QiongBo, PENG ZhengKe, LI ZhenYu. Function of MBF2 Transcriptionally Regulating Glutathione S-transferase Metabolizing Chlorantraniliprole in Plutella xylostella [J]. Scientia Agricultura Sinica, 2023, 56(4): 665-673.
[3] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[4] ZHANG Jie, JIANG ChangYue, WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[5] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[6] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[7] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[8] MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131.
[9] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[10] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[11] ZHOU Rong-yan, WEI Yan-hui, XI Jian-zhong, LI Lan-hui, CHEN Hui, GAO Li-jie, ZHANG Zhen-hong. Transcriptional Activity of Goat PRNP Gene Promoter [J]. Scientia Agricultura Sinica, 2016, 49(10): 1990-1997.
[12] WANG Ya-xian, YANG Fan, WANG Hua-yan. Expression and Regulation of Sall4 and Screening Core Regulation Region of Sall4 Promoter [J]. Scientia Agricultura Sinica, 2016, 49(1): 176-185.
[13] LIU Hui, LI De-jun, DENG Zhi. Advances in Research of Transcriptional Regulatory Network in Response to Cold Stress in Plants [J]. Scientia Agricultura Sinica, 2014, 47(18): 3523-3533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!