Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3648-3663.doi: 10.3864/j.issn.0578-1752.2025.18.006

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning and Expression Analysis of Heat Shock Protein HSP 9/12 Genes in Setosphaeria turcica

ZHANG ShuHong1(), GAO FengJu1, WU QiuYing1, JI JingXin1, ZHANG YunFeng1, XU Ke1, GU ShouQin2, FAN YongShan1()   

  1. 1 Department of Life Sciences, Tangshan Normal University/Hebei Key Laboratory of Plant Biotechnology Research and Application/ Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Tangshan 063000, Hebei
    2 College of Life Sciences, Hebei Agricultural University/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Baoding 071000, Hebei
  • Received:2025-05-18 Accepted:2025-06-15 Online:2025-09-18 Published:2025-09-18
  • Contact: FAN YongShan

Abstract:

【Objective】The objective of this study is to clone HSP 9/12 genes of small heat shock proteins without ACD domain from Setosphaeria turcica and analyze their expression patterns during fungal development, infection, and HT-toxin induction processes. 【Method】The coding genes of heat shock protein HSP 9/12 were screened and cloned from the whole genome of S. turcica. Bioinformatics methods were employed to analyze the physicochemical properties, subcellular localization, structural prediction, and phylogenetic analysis of HSP 9/12 proteins. RNA-seq and RT-qPCR were used to examine the expression of HSP 9/12 genes during fungal development, infection, and HT-toxin induction. 【Result】Two HSP 9/12 genes were screened and cloned from the S. turcica genome, encoding proteins with 99 and 100 amino acids, respectively. Based on their molecular weights, they were named StHsp10.1 and StHsp10.7. Physicochemical analysis revealed that both HSP 9/12 proteins are hydrophilic, with subcellular localization predictions indicating they are located in the cytoplasm with nuclear localization signals. They lack transmembrane domains and signal peptides, and both contain the HSP9_HSP12 (PF04119) domain. StHSP10.1 is an acidic unstable protein, while StHSP10.7 is an alkaline stable protein, both existing predominantly in α-helix-dominated secondary and tertiary structural forms. StHSP10.1 shows closer phylogenetic relationship with Saccharomyces cerevisiae HSP12, whereas StHSP10.7 exhibits closer affinity to Schizosaccharomyces pombe HSP9. The StHSP10.1 exhibited the highest expression during conidial development, followed by hypha, appressoria, and penetration peg, with the lowest expression in germ tubes. After inoculation, the fungal StHSP10.1 expression rapidly increased, reaching 6.37-fold higher FPKM at 72 h compared to 24 h post inoculation. The results of RT-qPCR analysis during the HT-toxin induction process showed that, as the induction time increased, the relative gene expression level of StHSP10.1 in the wild-type strain (WT) significantly increased being 2.9-, 14.1-, and 39.8-fold higher at 14, 21, and 28 d compared to 7 d, respectively, but remained extremely low in the STK1 gene knockout mutant (ΔSTK1). StHSP10.7 showed extremely low expression levels during fungal development, infection, and HT-toxin induction. AlphaFold 3 predicted that the region from -38 to -24 bp upstream of the transcription start site of the StHSP10.1 contains TATA-box, and binding sites for cell differentiation proteins RCD1 and bZIP transcription factor StbZIP11, simultaneously. Using the STRING online platform to construct the protein-protein interaction network for StHSP10.1, two regulatory pathways of StHSP10.1 were proposed: Ras1→STK1→StbZIP11→StHSP10.1 and Ras1→UBE2→CUE1→RCD1-like→StHSP10.1, suggesting important roles in HT-toxin synthesis and stress induction, respectively. 【Conclusion】There are significant differences in the expression patterns of HSP 9/12 genes in S. turcica. StHSP10.1 serves as a key regulatory gene in the processes of pathogen development, infection, and HT-toxin induction, whereas StHSP10.7 has no regulatory effect.

Key words: Setosphaeria turcica, HSP 9/12, small heat shock protein (sHSP), gene cloning, transcriptional regulation

Table 1

The sequence of primers"

引物名称
Primer name
基因特异性引物序列
Gene specific primer sequence (5′-3′)
引物名称
Primer name
表达分析用引物序列
Sequence for gene expression analysis (5′-3′)
StHSP10.1 F ATGTCTGACTCCATGCGCAA StHSP10.1 qF CAGGCCTCGGAGAAGATCAC
StHSP10.1 R TTACTTCTTCTGGCCGCCAG StHSP10.1 qR CACGCCGGAGCTCTTGTTAG
StHSP10.7 F ATGACCTCTGCCTTCCGC StHSP10.7 qF CTCGGTGAAGCAATGCAACC
StHSP10.7 R TTACAACCCATTCCCATGCG StHSP10.7 qR CACATTGCGGTCGTAGGAGC
β-tubulin qF CAACGAAGCCTCCAACAACA
β-tubulin qR CTCGGTGTAGTGACCCTTTGC

Fig. 1

PCR amplification (A) and structure analysis (B) of HSP 9/12 genes in S. turcica M: DL1000 DNA Marker; 1: StHSP10.1 DNA; 2: StHSP10.1 cDNA; 3: StHSP10.7 cDNA; 4: StHSP10.7 DNA"

Fig. 2

Homology alignment (A), structure analysis (B) and conserved motif Logo (C) of HSP 9/12 in S. turcica"

Table 2

Physicochemical properties and subcellular localization prediction of HSP 9/12 in S. turcica"

项目Item StHSP10.1 StHSP10.7
氨基酸数目Number of amino acids 99 100
等电点pI 4.98 9.65
疏水性系数Grand average of hydropathicity -1.06 -1.04
不稳定系数Instability index 44.95 23.63
亚细胞定位Subcellular localization 细胞质Cytoplasm(可能性Probability 0.7207>阈值Threshold 0.4761) 细胞质Cytoplasm(可能性Probability 0.7646>阈值Threshold 0.4761)
细胞核Nucleus(可能性Probability 0.4289<阈值Threshold 0.5014) 细胞核Nucleus(可能性Probability 0.4142<阈值Threshold 0.5014)
膜关联Membrane association:可溶Soluble(可能性Probability 0.604>阈值Threshold 0.500) 膜关联Membrane association:外周Peripheral(可能性Probability 0.730>阈值Threshold 0.600),可溶Soluble(可能性Probability 0.660>阈值Threshold 0.500)
核定位信号Nuclear localization signal 核定位信号Nuclear localization signal

Table 3

Secondary structure prediction of HSP 9/12 in S. turcica"

HSP 9/12 α-螺旋α-helix 无规则卷曲Random coil
数目Number 比例Ratio (%) 数目Number 比例Ratio (%)
StHSP10.1 71 71.72 28 28.28
StHSP10.7 61 61.00 39 39.00

Fig. 3

Prediction of tertiary structure model of HSP 9/12 in S. turcica and two yeast species"

Fig. 4

Phylogenetic analysis of fungal HSP 9/12"

Fig. 5

Expression of HSP 9/12 genes during development stages (A) and infection process (B) in S. turcica *: P<0.05; **: P<0.01"

Fig. 6

Expression of HSP 9/12 genes during HT-toxin induction in S. turcica"

Table 4

Transcription factors with the positive correlation coefficient greater than 0.9 for StHSP10.1 expression"

蛋白质ID
Protein ID
相关系数
r_pearson
相关系数P
<BOLD>P </BOLD>val_pearson
注释
Annotation
178071 0.9620 6.79E-14 PF00583乙酰转移酶(GNAT)家族Acetyltransferase (GNAT) family
162963 0.9513 9.83E-13 PF04082真菌特异性转录因子结构域Fungal specific transcription factor domain
168401 0.9352 2.13E-11 PF00397 WW结构域WW domain
111166 0.9237 1.22E-10 PF07716碱性亮氨酸拉链Basic region leucine zipper
184968 0.9208 1.81E-10 KOG2422未表征的保守蛋白Uncharacterized conserved protein
39934 0.9204 1.92E-10 KOG2177预测的E3泛素连接酶Predicted E3 ubiquitin ligase
181354 0.9150 3.83E-10 KOG3036参与细胞分化/有性发育的蛋白质Protein involved in cell differentiation/ sexual development
PF04078细胞分化家族,RCD1样蛋白Cell differentiation family, RCD1-like
1022253 0.9027 1.60E-09 PF00856 SET结构域SET domain
162257 0.9009 1.95E-09 PF13523乙酰转移酶(GNAT)结构域Acetyltransferase (GNAT) domain

Fig. 7

Interaction prediction of StHSP10.1 promoter sequences with transcription factors RCD1-like and StbZIP11"

Table 5

Upstream cis-regulatory elements prediction of the StHSP10.1"

作用顺式元件cis-regulatory element 数目Number
Short_function 31
参与茉莉酸甲酯响应的顺式作用调控元件cis-acting regulatory element involved in the MeJA-responsiveness 20
参与光响应性的顺式作用调控元件cis-acting regulatory element involved in light responsiveness 9
启动子和增强子区域常见的顺式作用元件Common cis-acting element in promoter and enhancer regions 8
参与脱落酸响应的顺式作用元件cis-acting element involved in the abscisic acid responsiveness 7
转录起始位点上游约-30处的核心启动子元件Core promoter element around -30 of transcription start site 7
光响应元件的一部分Part of a light responsive element 4
光响应元件Light responsive element 3
生长素响应元件Auxin-responsive element 1
参与低温响应的顺式作用元件cis-acting element involved in low-temperature responsiveness 1
参与干旱诱导性的MYB结合位点MYB binding site involved in drought-inducibility 1
MYBHv1结合位点MYBHv1 binding site 1

Fig. 8

Protein-protein interaction network of the StHSP10.1"

Fig. 9

Interacting protein prediction of StHSP10.1, STK1, CUE1 and Ras1 in S. turcica using AlphaFold 3"

Table 6

Information of genes in protein-protein interaction networks of StHSP10.1"

基因名称
Gene name
蛋白质ID
Protein ID
相关系数
r_pearson
相关系数P
<BOLD>P</BOLD>val_pearson
注释
Annotation
Cluster
STK1 47519 0.4551 0.0254 cd07856 STKc_Sty1_Hog1 1
Ras1 169673 0.5297 0.0077 PF00071 Ras1 1
StbZIP11 155297 0.4830 0.0167 IPR004827 bZIP 1
UBE2 92314 0.3633 0.0809 PF00179泛素结合酶Ubiquitin-conjugating enzyme 2
CUE1 172535 0.7563 1.90E-05 IPR040192 CUE结构域蛋白1 CUE domain-containing protein 1 2
RCD1-like 181354 0.9150 3.83E-10 PF04078细胞分化家族,Rcd1样蛋白Cell differentiation family, Rcd1-like 2
Ish1 77830 0.6733 0.0003 IPR018803 Ish1/Msc1-like 3
Sdo1 162233 0.9381 1.30E-11 PF09377 SBDS蛋白质结构域II SBDS protein domain II 3
Gad1 125179 0.7178 7.85E-05 IPR010107谷氨酸脱羧酶Glutamate decarboxylase 3
StHSP10.7 26210 0.4599 0.0237 PF04119热激蛋白9/12 Heat shock protein 9/12 HSP 9_HSP12 3
GH63 166579 0.0178 0.9342 IPR004888糖苷水解酶家族63 Glycoside hydrolase family 63 3
AGP1 169279 -0.6122 0.0014 IPR011834 α-葡聚糖磷酸化酶Alpha-glucan phosphorylase 4
PGM1 95885 0.2355 0.2678 PTHR45955磷酸己糖异构酶Phosphohexose mutase 4
Gtf20 174551 -0.4498 0.0273 PF00982糖基转移酶家族20 Glycosyltransferase family 20 4
CBM32 165151 0.2612 0.2175 PF18344碳水化合物结合模块家族32 Carbohydrate binding module family 32 4
TPS1 164742 -0.4354 0.0334 cd03788海藻糖-6-磷酸合成酶Trehalose-6-phosphate synthase 4
[1]
WELKER S, RUDOLPH B, FRENZEL E, HAGN F, LIEBISCH G, SCHMITZ G, SCHEURING J, KERTH A, BLUME A, WEINKAUF S, HASLBECK M, KESSLER H, BUCHNER J. Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Molecular Cell, 2010, 39(4): 507-520.

doi: 10.1016/j.molcel.2010.08.001 pmid: 20797624
[2]
PRAEKELT U M, MEACOCK P A. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: Analysis of structure, regulation and function. Molecular & General Genetics, 1990, 223(1): 97-106.
[3]
ORLANDI I, CAVADINI P, POPOLO L, VAI M. Cloning, sequencing and regulation of a cDNA encoding a small heat-shock protein from Schizosaccharomyces pombe. Biochimica et Biophysica Acta, 1996, 1307(2): 129-131.
[4]
DE GROOT E, BEBELMAN J, MAGER W H, PLANTA R J. Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae. Microbiology, 2000, 146(2): 367-375.
[5]
ZARA S, ANTONIO FARRIS G, BUDRONI M, BAKALINSKY A T. HSP12 is essential for biofilm formation by a Sardinian wine strain of S. cerevisiae. Yeast, 2002, 19(3): 269-276.
[6]
FU M S, DE SORDI L, MÜHLSCHLEGEL F A. Functional characterization of the small heat shock protein Hsp12p from Candida albicans. PLoS ONE, 2012, 7(8): e42894.
[7]
SAGINI J P N, LIGABUE-BRAUN R. Fungal heat shock proteins: Molecular phylogenetic insights into the host takeover. Naturwissenschaften, 2024, 111(2): 16.

doi: 10.1007/s00114-024-01903-x pmid: 38483597
[8]
范永山, 曹志艳, 谷守芹, 董金皋. 不同诱导因素对玉米大斑病菌附着胞产生的影响. 中国农业科学, 2004, 37(5): 769-772.
FAN Y S, CAO Z Y, GU S Q, DONG J G. Effect of different induction factors on appressorium of Setosphaeria turcica. Scientia Agricultura Sinica, 2004, 37(5): 769-772. (in Chinese)
[9]
范永山, 谷守芹, 董金皋, 董娜. MAPK途径对玉米大斑病菌 HT-毒素产生和生物学活性的调控作用. 中国农业科学, 2008, 41(1): 86-92.
FAN Y S, GU S Q, DONG J G, DONG N. Regulation of MAPK signal pathway on the production and biological activity of HT-toxin in Setosphaeria turcica. Scientia Agricultura Sinica, 2008, 41(1): 86-92. (in Chinese)
[10]
EDWARDS H V, CAMERON R T, BAILLIE G S. The emerging role of HSP20 as a multifunctional protective agent. Cellular Signalling, 2011, 23(9): 1447-1454.

doi: 10.1016/j.cellsig.2011.05.009 pmid: 21616144
[11]
MOTTA H, CATARINA VIEIRA REUWSAAT J, DAIDRÊ SQUIZANI E, DA SILVA CAMARGO M, WICHINE ACOSTA GARCIA A, SCHRANK A, HENNING VAINSTEIN M, CHRISTIAN STAATS C, KMETZSCH L. The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii. Fungal Genetics & Biology, 2023, 165: 103780.
[12]
GHOSH A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role in Ustilago maydis pathogenesis. FEMS Microbiology Letters, 2014, 361(1): 17-24.
[13]
MITRA A, BHAKTA K, KAR A, ROY A, MOHID S A, GHOSH A, GHOSH A. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp 12 of Ustilago maydis. Molecular Plant Pathology, 2023, 24(9): 1063-1077.
[14]
ENJALBERT B, SMITH D A, CORNELL M J, ALAM I, NICHOLLS S, BROWN A J, QUINN J. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Molecular Biology of the Cell, 2006, 17(2): 1018-1032.
[15]
HERBERT A P, RIESEN M, BLOXAM L, KOSMIDOU E, WAREING B M, JOHNSON J R, PHELAN M M, PENNINGTON S R, LIAN L Y, MORGAN A. NMR structure of Hsp12, a protein induced by and required for dietary restriction-induced lifespan extension in yeast. PLoS ONE, 2012, 7(7): e41975.
[16]
PACHECO A, PEREIRA C, ALMEIDA M J, SOUSA M J. Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress. Microbiology, 2009, 155(6): 2021-2028.
[17]
张淑红, 张运峰, 高凤菊, 武秋颖, 许可, 李亚子, 李艳梅, 谷守芹, 范永山, 巩校东. 玉米大斑病菌小分子热激蛋白基因克隆与表达分析. 中国农业科学, 2024, 57(17): 3384-3397. doi: 10.3864/j.issn.0578-1752.2024.17.006.
ZHANG S H, ZHANG Y F, GAO F J, WU Q Y, XU K, LI Y Z, LI Y M, GU S Q, FAN Y S, GONG X D. Cloning and expression analysis of genes of small heat shock protein in Setosphaeria turcica. Scientia Agricultura Sinica, 2024, 57(17): 3384-3397. doi: 10.3864/j.issn.0578-1752.2024.17.006. (in Chinese)
[18]
ØDUM M T, TEUFEL F, THUMULURI V, ALMAGRO ARMENTEROS J J, JOHANSEN A R, WINTHER O, NIELSEN H. DeepLoc 2.1: Multi-label membrane protein type prediction using protein language models. Nucleic Acids Research, 2024, 52(W1): W215-W220.
[19]
ABRAMSON J, ADLER J, DUNGER J, EVANS R, GREEN T, PRITZEL A, RONNEBERGER O, WILLMORE L, BALLARD A J, BAMBRICK J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630(8016): 493-500.
[20]
CHEN C, WU Y, LI J, WANG X, ZENG Z, XU J, LIU Y, FENG J, CHEN H, HE Y, XIA R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16(11): 1733-1742.
[21]
张晓雅, 李学然, 薛江芝, 王小敏, 刘玉卫, 谷守芹, 董金皋. 玉米大斑病菌StSLT2基因结构与表达模式分析. 河北农业大学学报, 2019, 42(3): 32-37.
ZHANG X Y, LI X R, XUE J Z, WANG X M, LIU Y W, GU S Q, DONG J G. Gene structure and expression pattern analysis of StSLT2 in Setosphaeria turcica. Journal of Hebei Agricultural University, 2019, 42(3): 32-37. (in Chinese)
[22]
LIU Y, GONG X, ZHOU Q, LIU Y, LIU Z, HAN J, DONG J, GU S. Comparative proteomic analysis reveals insights into the dynamic responses of maize (Zea mays L.) to Setosphaeria turcica infection. Plant Science, 2021, 304: 110811.
[23]
张运峰, 张淑红, 武秋颖, 范永山. STK1对玉米大斑病菌附着胞发育过程中糖原和脂肪积累的影响. 中国农业科学, 2017, 50(15): 2928-2935. doi: 10.3864/j.issn.0578-1752.2017.15.007.
ZHANG Y F, ZHANG S H, WU Q Y, FAN Y S. Effects of STK1 on glycogen and lipid accumulation during the appressorium development of Setosphaeria turcica. Scientia Agricultura Sinica, 2017, 50(15): 2928-2935. doi: 10.3864/j.issn.0578-1752.2017.15.007. (in Chinese)
[24]
OKAZAKI N, OKAZAKI K, WATANABE Y, KATO-HAYASHI M, YAMAMOTO M, OKAYAMA H. Novel factor highly conserved among eukaryotes controls sexual development in fission yeast. Molecular and Cellular Biology, 1998, 18(2): 887-895.

doi: 10.1128/MCB.18.2.887 pmid: 9447985
[25]
HIROI N, ITO T, YAMAMOTO H, OCHIYA T, JINNO S, OKAYAMA H. Mammalian Rcd1 is a novel transcriptional cofactor that mediates retinoic acid-induced cell differentiation. The EMBO Journal, 2002, 21(19): 5235-5244.
[26]
张淑红, 张运峰, 高凤菊, 武秋颖, 李亚子, 许可, 范永山, 刘玉卫. 玉米大斑病菌bZIP基因家族鉴定及HT-毒素诱导过程中的表达. 微生物学报, 2025, 65(1): 283-302.
ZHANG S H, ZHANG Y F, GAO F J, WU Q Y, LI Y Z, XU K, FAN Y S, LIU Y W. The bZIP gene family in Setosphaeria turcica: Identification and expression analysis during HT-toxin induction process. Acta Microbiologica Sinica, 2025, 65(1): 283-302. (in Chinese)
[27]
MANSO J A, CARABIAS A, SÁRKÁNY Z, DE PEREDA J M, PEREIRA P J B, MACEDO-RIBEIRO S. Pathogen-specific structural features of Candida albicans Ras1 activation complex: Uncovering new antifungal drug targets. mBio, 2023, 14(4): e0063823.
[28]
MASOOD N, ANJUM S, AHMED S. Inactivation of Ras1 in fission yeast aggravates the oxidative stress response induced by tert butyl hydroperoxide (tBHP). Molecular Biology, 2023, 57(4): 689-691.
[29]
COOK W J, JEFFREY L C, SULLIVAN M L, VIERSTRA R D. Three-dimensional structure of a ubiquitin-conjugating enzyme (E2). The Journal of Biological Chemistry, 1992, 267(21): 15116-15121.
[30]
KANG R S, DANIELS C M, FRANCIS S A, SHIH S C, SALERNO W J, HICKE L, RADHAKRISHNAN I. Solution structure of a CUE-ubiquitin complex reveals a conserved mode of ubiquitin binding. Cell, 2003, 113(5): 621-630.

pmid: 12787503
[31]
TARICANI L, TEJADA M L, YOUNG P G. The fission yeast ES2 homologue, Bis1, interacts with the Ish1 stress-responsive nuclear envelope protein. The Journal of Biological Chemistry, 2002, 277(12): 10562-10572.
[32]
MENNE T F, GOYENECHEA B, SÁNCHEZ-PUIG N, WONG C C, TONKIN L M, ANCLIFF P J, BROST R L, COSTANZO M, BOONE C, WARREN A J. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature Genetics, 2007, 39(4): 486-495.

doi: 10.1038/ng1994 pmid: 17353896
[33]
COLEMAN S T, FANG T K, ROVINSKY S A, TURANO F J, MOYE-ROWLEY W S. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 2001, 276(1): 244-250.
[34]
LIU S, LIU R, LV J, FENG Z, WEI F, ZHAO L, ZHANG Y, ZHU H, FENG H. The glycoside hydrolase 28 member VdEPG1 is a virulence factor of Verticillium dahliae and interacts with the jasmonic acid pathway-related gene GhOPR9. Molecular Plant Pathology, 2023, 24(10): 1238-1255.
[35]
PRADHAN A, YADAV S K, JHA G. Glycosyltransferase-like toxin of Burkholderia gladioli strain NGJ1 is a potent antifungal protein with potential for control of sheath blight disease in rice. Phytopathology, 2025, 115(5): 485-494.
[36]
DE SILVA-UDAWATTA M N, CANNON J F. Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Molecular Microbiology, 2001, 40(6): 1345-1356.
[37]
HSU C C, DAVIS K M, JIN H, FOOS T, FLOOR E, CHEN W, TYBURSKI J B, YANG C Y, SCHLOSS J V, WU J Y. Association of L-glutamic acid decarboxylase to the 70-kDa heat shock protein as a potential anchoring mechanism to synaptic vesicles. The Journal of Biological Chemistry, 2000, 275(27): 20822-20828.
[38]
DADI P, PAULING C W, SHRIVASTAVA A, SHAH D D. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. iScience, 2025, 28(4): 112289.
[39]
PARCELLIER A, BRUNET M, SCHMITT E, COL E, DIDELOT C, HAMMANN A, NAKAYAMA K, NAKAYAMA K I, KHOCHBIN S, SOLARY E, GARRIDO C. HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB Journal, 2006, 20(8): 1179-1181.

doi: 10.1096/fj.05-4184fje pmid: 16641199
[1] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[2] ZHENG YaQin, LIU XueQing, WU SiWen, TANG XiaoYan, YANG DanNi, WANG YongKang, AHMAD Aftab, KHAN Afrsyab, WANG ChengGang, CHEN GuoHu. Cloning and Expression of BcDET2 Gene and Functional of Its Regulatory Effect on Bolting and Flowering in Wucai (Brassica campestris L.) [J]. Scientia Agricultura Sinica, 2025, 58(5): 991-1003.
[3] WANG HuiLing, ZHANG YingYing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Multi-Omics Analysis Reveals the Changes of Monoterpenes and Anthocyanins Accumulation During Veraison in Red Muscat-Type Grape [J]. Scientia Agricultura Sinica, 2025, 58(13): 2645-2662.
[4] RUAN QiaoJun, MAO MiaoMiao, ZHANG YuanYuan, LIN XiaoRong, CHEN ZhongZheng. Screening of Transcription Factors for Key Enzyme Gene CsAlaDC Involved in Ethylamine Synthesis in Yinghong 9 (Camellia sinensis) [J]. Scientia Agricultura Sinica, 2025, 58(12): 2427-2438.
[5] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[6] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[7] ZHANG BoWen, ZHAO LiWen, XU Lu, LI Pan, ZENG FanLi, MENG YaNan, DONG JinGao. Identification and Gene Function Analysis of StCks1, a Cyclin- Dependent Kinase Subunit of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2024, 57(5): 900-908.
[8] GUAN ZhiLin, JIN FengWei, LIU TingTing, WANG Yi, TAN YingYing, YANG ChunHui, LI RuiTong, WANG Bo, LIU KeDe, DONG Yun. Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(4): 650-662.
[9] ZHANG ShuHong, ZHANG YunFeng, GAO FengJu, WU QiuYing, XU Ke, LI YaZi, LI YanMei, GU ShouQin, FAN YongShan, GONG XiaoDong. Cloning and Expression Analysis of Genes of Small Heat Shock Protein in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2024, 57(17): 3384-3397.
[10] ZHANG Jian, ZHAO BinSen, FENG Hao, HUANG LiLi. Function and Mechanism Analysis of Vm-milRN7 Regulating the Pathogenicity of Valsa mali [J]. Scientia Agricultura Sinica, 2024, 57(10): 1930-1942.
[11] GE TianCheng, YIN Fei, HU QiongBo, PENG ZhengKe, LI ZhenYu. Function of MBF2 Transcriptionally Regulating Glutathione S-transferase Metabolizing Chlorantraniliprole in Plutella xylostella [J]. Scientia Agricultura Sinica, 2023, 56(4): 665-673.
[12] ZOU JinPeng, YUE HaoFeng, LI HaiXiao, LIU Zheng, LIU Ning, CAO ZhiYan, DONG JinGao. Mechanism of StLAC2 and StLAC6 Differentially Affecting Setosphaeria turcica Based on Non-Targeted Metabonomics Analysis [J]. Scientia Agricultura Sinica, 2023, 56(16): 3110-3223.
[13] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[14] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[15] ZHANG Jie, JIANG ChangYue, WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!