Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 548-563.doi: 10.3864/j.issn.0578-1752.2025.03.011

• HORTICULTURE • Previous Articles     Next Articles

Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS)

ZHANG LinLin1,2(), GONG Rui1,2, CUI YanLing2, ZHONG XiongHui2, LI Ye3, LI RanHong1(), QIAN ZongWei2()   

  1. 1 College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang 157011, Heilongjiang
    2 Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences/State Key Laboratory of Vegetable Biobreeding/National Engineering Research Center for Vegetables/Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097
    3 Heilongjiang Agricultural Engineering Vocational College, Harbin 150070
  • Received:2024-06-20 Accepted:2024-09-11 Online:2025-02-01 Published:2025-02-11
  • Contact: LI RanHong, QIAN ZongWei

Abstract:

【Objective】The results showed that WRKY transcription factors play an important regulatory role in the process of plant disease resistance and stress resistance. Tomato SlWRKY30 is a key gene for Ralstonia solanacearum resistance, SmWRKY30 was the homologous gene as SlWRKY30 in eggplant. Through the induction of Ralstonia solanacearum and the establishment of gene silencing system, the regulatory effect of SmWRKY30 gene on Ralstonia solanacearum in eggplant was explored, which laid a foundation for the creation of Ralstonia solanacearum resistant resources and variety breeding of eggplant. 【Method】SmWRKY30 was cloned from eggplant disease-resistant material YS40 and disease-susceptible material ZP80 to analyze the differences in genes, amino acids and promoter sequences. After the induction of Ralstonia solanacearum fungus, the differences in the expression of SmWRKY30 in different tissues of the two materials were analyzed. The expression of STH2 in tomato and eggplant was compared, and the similarities and differences between SmWRKY30 and SlWRKY30 were analyzed. Virus-induced gene silencing system was constructed to compare the changes of disease index, phenotype and gene expression in the water group, the empty vector control and the experimental group. 【Result】The SmWRKY30 open reading frame is 891 bp and has a conserved domain of the WRKY gene family, The phylogenetic tree was constructed and it was found that SmWRKY30 was closely related to Solanum sisymbriifolium and Solanum melongena WRKY65. There were 6 SNPs and 1 Indel differences in the cDNA sequences of the disease-resistant material YS40 and the disease-susceptible material ZP80, the amino acid translation difference was large, and the promoter region was significantly different, and YS40 had one lack of GT1-motif promoter element than ZP80. After inoculation with Ralstonia solanacearum and the expression of SmWRKY30 in roots, stems and leaves of disease-susceptible materials were analyzed, the results showed that the expression of SmWRKY30 in YS40 was significantly higher than that of ZP80 in roots after 14 days of inoculation with Ralstonia solanacearum. However, there was no significant difference in the expression of SmWRKY30 in stems. After 5 and 14 days of inoculation with Ralstonia solanacearum, the expression level of SmWRKY30 in YS40 leaves was significantly higher than that of ZP80, indicating that SmWRKY30 high expression may be related to the resistance of Ralstonia solanacearum in eggplant. The qRT-PCR results showed that the expression level of SmWRKY30 in pTRV1/pTRV2::SmWRKY30 silenced plants was significantly lower than that in clean water treatment and pTRV1/pTRV2::00 no-load treatment plants, indicating that SmWRKY30 in the disease-resistant material YS40 was successfully silenced. Phenotypic observation showed that the leaves of pTRV1/pTRV2::SmWRKY30 silenced plants were obviously yellowish wilted, and the disease index was 2.07 at 14 days after inoculation with Ralstonia solanacearum fungus, indicating that they were susceptible to Ralstonia solanacearum. Through the quantitative analysis of four STH2 genes homologous to eggplant and tomato, it was found that the expression levels of STH2 genes increased firstly and then decreased. After 1 day of inoculation, only the expression level of STH2-3 in the disease-resistant materials was significantly higher than that in the disease-susceptible materials. After 5 days of inoculation, the expression levels of STH2-3 and STH2-4 in the disease-resistant materials were significantly lower than those in the disease-susceptible materials. After 7 and 14 days of inoculation, there was no significant difference in the expression levels of the four STH2 genes in the disease-resistant materials and disease-susceptible materials. Moreover, the expression trends of the four STH2 genes in the resistant materials were significantly different from those of SmWRKY30. 【Conclusion】SmWRKY30 may be involved in and positively regulate the response process of Ralstonia solanacearum resistance in eggplant, but may not make eggplant resistant to Ralstonia solanacearum by interacting with STH2 gene.

Key words: eggplant, Ralstonia solanacearum, WRKY transcription factor, VIGS, gene expression analysis

Fig 1

Phenotypes of plants and fruits of disease-resistant and disease-susceptible materials A: Disease-resistant materials YS40; B: Disease-susceptible materials ZP80"

Table 1

Primer sequences"

引物名称Primer name 序列Sequence (5′-3′)
SmWRKY30-F ATGGAGAAAGTTAAAGCTTGGGATAAAG
SmWRKY30-R CTACTCGAAATATTCAGAAATGTCAATCATCAAG
pTRV2-WRKY30-F GTGAGTAAGGTTACCGAATTCCCTCACAACCATCCATATTCATTT
pTRV2-WRKY30-R CGTGAGCTCGGTACCGGATCCAATCCGAATGTGCATAGAATGGC
SmActionF TTCCTTGTATGCTAGTGGTCGTACAA
SmActionR CTCAGCACCAATGGTAATAACTTGTC
SmWRKY30DLF GTCTTCTTGTCCATCTATTGTTGACTTG
SmWRKY30DLR CCCTGTGAGTGCATCTATAATAAGCC
STH2-1F GAAGATGAATTTTGTTGAAGGTGGTCC
STH2-1R CACCTTTTGTGTGGTACTCAGTTTTTGTC
STH2-2F GACCCTAAAAGGCTATTCAAAGCTTTGG
STH2-2R GTTTCTAGGTTCTTGTCATCAATCACATGAATC
STH2-3F ATGGGTGTCTTTTCCTATACACATGATGTC
STH2-3R CATGGATCTTGTGCTTCAAGTACTTGATTG
STH2-4F ATGGGTGTCACTTCCTACACACATG
STH2-4R CATCAACAACATGGATCTTGTGCTTCAAG
WRKY30 Q-F GAAGAATGAAGGATAAACAAATTTGTACCCAC
WRKY30 Q-R CCAGAGGATCAAACTGGTTTTTTAGCC

Fig. 2

The SmWRKY30 protein conserves the domain"

Fig. 3

Subcellular localization prediction of SmWRKY30 protein"

Fig. 4

Phylogenetic tree of SmWRKY30 homologous protein"

Fig. 5

The PCR product of SmWRKY30 gene and promoter M: DNA Marker DL2000; 1: Disease-resistant materials YS40; 2: Disease-susceptible materials ZP80"

Fig. 6

Comparison result of SmWRKY30 sequences"

Fig. 7

Comparison result of SmWRKY30 amino acid sequences"

Fig. 8

SmWRKY30 promoter sequences alignment result"

Table 2

Promoter element of disease-resistant and disease-susceptible materials"

材料
<BOLD>M</BOLD>aterial
元件名称
Cis element
核心序列
Sequence
功能
Function
位置
Position (bp)
数目
Number
YS40 GT1-motif GGTTAA 光响应元件 Light responsive element 209 1
ZP80 GT1-motif GGTTAA 光响应元件 Light responsive element 209/1006 2

Fig. 9

Plant phenotype after inoculation with Ralstonia solanacearum YS40CK: Control group, disease-resistant materials YS40 inoculated with sterile water; YS40: Experimental group, disease-resistant materials YS40 inoculated with Ralstonia solanacearum; ZP80CK: Control group, disease-susceptible materialsZP80 inoculated with sterile water; ZP80: Experimental group, disease-resistant ZP80 inoculated with Ralstonia solanacearum. The same as below"

Fig. 10

Expression analysis of SmWRKY30 in different tissue parts of disease-resistant and disease-susceptible materials Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 11

PCR detection of recombinant plasmids M: DNA MarkerⅡ(700); 1: pTRV2::SmWRKY30 plasmid"

Fig. 12

Phenotype of VIGS silent plants CK: Contro group, trans-infected with water; pTRV2::00: Control group, trans-infected with empty virus vector; pTRV2::SmWRKY30: Experimental group, trans-infected SmWRKY30 with recombinant virus vectors. The same as below"

Fig. 13

Detection of silencing efficiency (left) and Disease index of plants (right)"

Fig. 14

Analysis of STH2 gene expression in disease-resistant and disease-susceptible materials"

[1]
李植良, 黎振兴, 黄智文, 孙保娟. 我国茄子生产和育种现状及今后育种研究对策. 广东农业科学, 2006, 33(1): 24-26.
LI Z L, LI Z X, HUANG Z W, SUN B J. Development of eggplant production and breeding and strategies for future eggplant breeding in China. Guangdong Agricultural Sciences, 2006, 33(1): 24-26. (in Chinese)
[2]
XIAO X O, LIN W Q, FENG E Y, OU X C. Transcriptome and metabolome response of eggplant against Ralstonia solanacearum infection. PeerJ, 2023, 11: e14658.
[3]
WANG L, GAO Y, JIANG N H, YAN J, LIN W P, CAI K Z. Silicon controls bacterial wilt disease in tomato plants and inhibits the virulence-related gene expression of Ralstonia solanacearum. International Journal of Molecular Sciences, 2022, 23(13): 6965.
[4]
SHI J L, SHUI D J, SU S W, XIONG Z L, ZAI W S. Gene enrichment and co-expression analysis shed light on transcriptional responses to Ralstonia solanacearum in tomato. BMC Genomics, 2023, 24(1): 159.
[5]
陈娜, 詹文文, 刘兴雨, 石磊鑫, 李若楠, 谢镕, 却志群. 番茄WRKY转录因子SlWRKY75的克隆、表达及功能分析. 华北农学报, 2023, 38(6): 1-10.

doi: 10.7668/hbnxb.20194162
CHEN N, ZHAN W W, LIU X Y, SHI L X, LI R N, XIE R, QUE Z Q. Cloning, expression, and functional analysis of WRKY transcription factor SlWRKY75 in tomato. Acta Agriculturae Boreali-Sinica, 2023, 38(6): 1-10. (in Chinese)

doi: 10.7668/hbnxb.20194162
[6]
杜超. WRKY转录因子家族在植物响应逆境胁迫中的功能及应用. 草业科学, 2021, 38(7): 1287-1300.
DU C. Function and application of the WRKY transcription factor superfamily in plant response to stresses. Pratacultural Science, 2021, 38(7): 1287-1300. (in Chinese)
[7]
叶相相, 毕永江, 冉琼, 张晓辉, 王邦俊. 植物WRKY转录因子在应对盐胁迫中的作用研究进展. 生物工程学报, 2023, 39(7): 2600-2611.
YE X X, BI Y J, RAN Q, ZHANG X H, WANG B J. The role of plant WRKY transcription factors against salt stress: A review. Chinese Journal of Biotechnology, 2023, 39(7): 2600-2611. (in Chinese)
[8]
SARRIS P F, DUXBURY Z, HUH S U, MA Y, SEGONZAC C, SKLENAR J, DERBYSHIRE P, CEVIK V, RALLAPALLI G, SAUCET S B, WIRTHMUELLER L, MENKE F L H, SOHN K H, JONES J D G. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 2015, 161(5): 1089-1100.

doi: S0092-8674(15)00441-9 pmid: 26000484
[9]
禹阳, 贾赵东, 马佩勇, 郭小丁, 谢一芝, 边小峰. WRKY转录因子在植物抗病反应中的功能研究进展. 分子植物育种, 2018, 16(21): 7009-7020.
YU Y, JIA Z D, MA P Y, GUO X D, XIE Y Z, BIAN X F. Research progress on the role of WRKY transcription factors in plant defense. Molecular Plant Breeding, 2018, 16(21): 7009-7020. (in Chinese)
[10]
王淑叶, 伍国强, 魏明. WRKY转录因子调控植物逆境胁迫响应的作用机制. 生物工程学报, 2024, 40(1): 35-52.
WANG S Y, WU G Q, WEI M. Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses. Chinese Journal of Biotechnology, 2024, 40(1): 35-52. (in Chinese)
[11]
NAOUMKINA M A, HE X Z, DIXON R A. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 2008, 8: 132.
[12]
王磊, 高晓清, 朱苓华, 周永力, 黎志康. 植物WRKY转录因子家族基因抗病相关功能的研究进展. 植物遗传资源学报, 2011, 12(1): 80-85.

doi: 10.13430/j.cnki.jpgr.2011.01.014
WANG L, GAO X Q, ZHU L H, ZHOU Y L, LI Z K. Advances in research on function of WRKY transcription factor genes in plant resistance. Journal of Plant Genetic Resources, 2011, 12(1): 80-85. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2011.01.014
[13]
YU X Q, NIU H Q, LIU C, WANG H L, YIN W L, XIA X L. PTI-ETI synergistic signal mechanisms in plant immunity. Plant Biotechnology Journal, 2024, 22(8): 2113-2128.
[14]
彭喜旭, 胡耀军, 唐新科, 周平兰, 邓小波, 王海华. 茉莉酸和真菌病原诱导的水稻WRKY30转录因子基因的分离及表达特征. 中国农业科学, 2011, 44(12): 2454-2461. doi:10.3864/j.issn.0578-1752.2011.12.006.
PENG X X, HU Y J, TANG X K, ZHOU P L, DENG X B, WANG H H. Isolation and expression profiles of rice WRKY30 induced by jasmonic acid application and fungal pathogen infection. Scientia Agricultura Sinica, 2011, 44(12): 2454-2461. doi:10.3864/j.issn.0578-1752.2011.12.006. (in Chinese)
[15]
陈晓婷, 刘军, 林桂芳, 孙翠霞. AtWRKY63基因过表达拟南芥对核盘菌抗性的研究. 西北植物学报, 2014, 34(9): 1721-1726.
CHEN X T, LIU J, LIN G F, SUN C X. AtWRKY63-overexpression in Arabidopsis confers resistance to Sclerotinia sclerotiorum. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9): 1721-1726. (in Chinese)
[16]
雷煜, 张振楠, 胡广, 刘建芬, 唐叶, 张宁, 司怀军, 吴家和. 棉花WRKY22基因分离及其对黄萎病的抗性分析. 华北农学报, 2018, 33(6): 160-168.

doi: 10.7668/hbnxb.2018.06.022
LEI Y, ZHANG Z N, HU G, LIU J F, TANG Y, ZHANG N, SI H J, WU J H. GhWRKY22 isolation and function analysis in cotton resistance to Verticillium wilt. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 160-168. (in Chinese)

doi: 10.7668/hbnxb.2018.06.022
[17]
栾倩倩. 黄瓜CsWRKY50基因的克隆与功能研究[D]. 泰安: 山东农业大学, 2019.
LUAN Q Q. Cloning and functional analysis of CsWRKY50 in cucumber[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
[18]
钟晨丽, 王文絮, 廖莉娜, 刘建中. 沉默大豆GmWRKY33B基因导致大豆抗病性降低. 生物工程学报, 2024, 40(1): 163-176.
ZHONG C L, WANG W X, LIAO L N, LIU J Z. Silencing of the soybean GmWRKY33B genes leads to reduced disease resistance in soybean. Chinese Journal of Biotechnology, 2024, 40(1): 163-176. (in Chinese)
[19]
蒋文明. 葡萄WRKY30转录因子对生物与非生物胁迫的响应[D]. 北京: 中国农业大学, 2015.
JIANG W M. Response of grape WRKY30 to biotic and abiotic stresses[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[20]
尹梦莹. 蒜芥茄SsWRKY1SsWRKY22SsWRKY33基因在黄萎病抗性中的功能解析[D]. 昆明: 云南大学, 2022.
YIN M Y. Functional analysis of SsWRKY1, SsWRKY22 and SsWRKY33 in Solanum sisymbriifolium resistance to Verticillium wilt[D]. Kunming: Yunnan University, 2022. (in Chinese)
[21]
李笑. 水茄抗黄萎病相关StWRKY-1基因的克隆与功能分析[D]. 扬州: 扬州大学, 2019.
LI X. Cloning and functional analysis of the SWRKY-1 genefrom Solanum toryum[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[22]
刘开, 余炳伟, 李丹丹, 陈娜, 曹必好. 茄子SmWRKY65基因克隆及其对青枯病的抗性分析. 广东农业科学, 2021, 48(3): 42-52.
LIU K, YU B W, LI D D, CHEN N, CAO B H. Cloning of SmWRKY65 gene and its resistance to bacterial wilt in eggplant. Guangdong Agricultural Sciences, 2021, 48(3): 42-52. (in Chinese)
[23]
DANG F F, LIN J H, LI Y J, JIANG R Y, FANG Y D, DING F, HE S L, WANG Y F. SlWRKY30 and SlWRKY81 synergistically modulate tomato immunity to Ralstonia solanacearum by directly regulating SlPR-STH2. Horticulture Research, 2023, 10(5): uhad050.
[24]
DU H S, CHEN B, ZHANG X F, ZHANG F L, MILLER S A, RAJASHEKARA G, XU X L, GENG S S. Evaluation of Ralstonia solanacearum infection dynamics in resistant and susceptible pepper lines using bioluminescence imaging. Plant Disease, 2017, 101(2): 272-278.
[25]
刘红艳. 马蹄莲佛焰苞返青转录组测序分析及离体VIGS体系构建[D]. 秦皇岛: 河北科技师范学院, 2024.
LIU H Y. Sequencing and analysis of the transcriptome of Calla lily Spatula turning green and construction of VIGS system in vitro[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2024. (in Chinese)
[26]
李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用. 生物技术通报, 2023, 39(7): 143-150.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-1449
LI W C, LIU X, KANG Y, LI W, QI Z Z, YU L, WANG F. Optimization and application of tobacco rattle virus-induced gene silencing system in soybean. Biotechnology Bulletin, 2023, 39(7): 143-150. (in Chinese)
[27]
刘开. 茄子抗青枯病相关基因的克隆及功能鉴定分析[D]. 广州: 华南农业大学, 2020.
LIU K. Cloning and functional identification of genes related to resistance to bacterial wilt resistance in eggplant[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[28]
陈娜, 李晓鹏, 刘进法, 邵勤. 番茄病程相关蛋白SlPR1b基因的克隆、表达及其在青枯菌胁迫下的功能分析. 农业生物技术学报, 2023, 31(12): 2477-2489.
CHEN N, LI X P, LIU J F, SHAO Q. Cloning, expression, and function analysis under Ralstonia solanacearum stress of pathogenesis-related protein SlPRlb gene in tomato (Solanum lycopersicum). Journal of Agricultural Biotechnology, 2023, 31(12): 2477-2489. (in Chinese)
[29]
李世斌, 耿锐梅, 肖志亮, 刘正文, 任民, 冯全福. 烟草青枯病抗性育种研究进展. 分子植物育种, 2024, 22(1): 1-11.
LI S B, GENG R M, XIAO Z L, LIU Z W, REN M, FENG Q F. Research progresses on breeding for resistance to bacterial wilt of tobacco (Nicotiana tabacum L.). Molecular Plant Breeding, 2024, 22(1): 1-11. (in Chinese)
[30]
马丽娜, 张雄, 窦道龙, 柴春月. 本氏烟NbWRKY40亚家族转录因子抗病相关功能研究. 植物病理学报, 2016, 46(6): 791-802.
MA L N, ZHANG X, DOU D L, CHAI C Y. Functional analysis of NbWRKY40 transcription factors of Nicotiana benthamiana. Acta Phytopathologica Sinica, 2016, 46(6): 791-802. (in Chinese)
[31]
XIAO S H, MING Y Q, HU Q, YE Z X, SI H, LIU S M, ZHANG X J, WANG W R, YU Y, KONG J, KLOSTERMAN S J, LINDSEY K, ZHANG X L, AIERXI A, ZHU L F. GhWRKY41 forms a positive feedback regulation loop and increases cotton defence response against Verticillium dahliae by regulating phenylpropanoid metabolism. Plant Biotechnology Journal, 2023, 21(5): 961-978.
[32]
马丽荣, 商桑, 田丽波, 范晨伟, 杨怡. 苦瓜McWRKY16基因克隆及表达分析. 分子植物育种, 2022, 20(24): 8051-8063.
MA L R, SHANG S, TIAN L B, FAN C W, YANG Y. Cloning and expression analysis of McWRKY16 gene in Momordica charantia. Molecular Plant Breeding, 2022, 20(24): 8051-8063. (in Chinese)
[33]
GAO Y F, LIU J K, YANG F M, ZHANG G Y, WANG D, ZHANG L, OU Y B, YAO Y A. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 2020, 168(1): 98-117.
[34]
JIAO Z G, SUN J L, WANG C Q, DONG Y M, XIAO S H, GAO X L, CAO Q W, LI L B, LI W D, GAO C. Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species and assessment of its roles in resisting to powdery mildew disease. PLoS ONE, 2018, 13(12): e0199851.
[35]
罗晶晶, 张仁英, 齐晓花, 徐强, 陈学好. 黄瓜几丁质酶基因克隆及与白粉病抗性关系的初步研究. 分子植物育种, 2015, 13(7): 1584-1591.
LUO J J, ZHANG R Y, QI X H, XU Q, CHEN X H. A preliminary study on cloning of chitinase gene and relationships to resistance of powdery mildew in Cucumber (Cucumis sativus L.). Molecular Plant Breeding, 2015, 13(7): 1584-1591. (in Chinese)
[36]
ZHANG B, LI P, SU T B, LI P R, XIN X Y, WANG W H, ZHAO X Y, YU Y J, ZHANG D S, YU S C, ZHANG F L. BrRLP48, encoding a receptor-like protein, involved in downy mildew resistance in Brassica rapa. Frontiers in Plant Science, 2018, 23(9): 1708.
[37]
LI N, WEI S T, CHEN J, YANG F F, KONG L G, CHEN C X, DING X H, CHU Z H. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. Plant Biotechnology Journal, 2018, 16(3): 771-783.

doi: 10.1111/pbi.12827 pmid: 28869785
[38]
梁梦迪. 茄子抗青枯病遗传分析及抗病基因初步定位[D]. 南宁: 广西大学, 2021.
LIANG M D. Genetic analysis of resistance to bacterial wilt and preliminary mapping of resistance genes in eggplant[D]. Nanning: Guangxi University, 2021. (in Chinese)
[39]
潘晓英, 张振臣, 袁清华, 李集勤, 马柱文, 陈俊标, 黄振瑞. 植物抗青枯病的分子机制研究进展. 植物生理学报, 2022, 58(4): 607-621.
PAN X Y, ZHANG Z C, YUAN Q H, LI J Q, MA Z W, CHEN J B, HUANG Z R. Research advances on molecular mechanisms of resistance to bacteria wilt in plants. Plant Physiology Journal, 2022, 58(4): 607-621. (in Chinese)
[40]
MESSIHA N A S, VAN BRUGGEN A H C, FRANZ E, JANSE J D, SCHOEMAN-WEERDESTEIJN M E, TERMORSHUIZEN A J, VAN DIEPENINGEN A D. Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum. Applied soil Ecology, 2009, 43(2/3): 206-215.
[41]
刘帅康, 黎听, 丰慧, 张翼飞, 黄宁, 周栗禾, 刘忠伟, 蔡璘. 青枯病生物防治研究进展. 植物医学, 2023, 2(4): 39-46.
LIU S K, LI T, FENG H, ZHANG Y F, HUANG N, ZHOU S H, LIU Z W, CAI L. Advances in biological control of bacterial wilt. Phytomedicine, 2023, 2(4): 39-46. (in Chinese)
[42]
张根莲, 郭广君, 潘宝贵, 刁卫平, 刘金兵, 戈伟, 王述彬. 辣椒抗黄瓜花叶病毒病候选基因功能鉴定. 分子植物育种, 2020, 18(17): 5537-5543.
ZHANG G L, GUO G J, PAN B G, DIAO W P, LIU J B, GE W, WANG S B. Functional identification of candidate genes of resistance to Cucumber mosaic virus in pepper. Molecular Plant Breeding, 2020, 18(17): 5537-5543. (in Chinese)
[43]
郭亚路, 刘征, 严婷, 杜羽, 单卫星. 寄主诱导的基因沉默对辣椒疫霉菌的影响. 西北农业学报, 2019, 28(12): 2053-2059.
GUO Y L, LIU Z, YAN T, DU Y, SHAN W X. Host-induced gene silencing is effective against Phytophthora capsici in Nicotiana benthamiana. Acta Botanica Boreali-Occidentalia Sinica, 2019, 28(12): 2053-2059. (in Chinese)
[44]
汤淑亚, 李子桀, 侯启华, 郭坚华, 蒋春号. 转录因子SlERF1a调控蜡质芽胞杆菌AR156诱导番茄对青枯病系统抗性作用机制研究. 南京农业大学学报, 2022, 45(6): 1150-1161.
TANG S Y, LI Z J, HOU Q H, GUO J H, JIANG C H. The study on the mechanism of transcription factor SlERF1a regulating the Bacillus cereus AR156 triggered systemic resistance to Ralstonia solanacearum in tomato. Journal of Nanjing Agricultural University, 2022, 45(6): 1150-1161. (in Chinese)
[45]
CHENG X G, WAN M Y, SONG Y Q, LIU Q, HU X H, CHEN X F, ZHANG X J, ZHANG Y P, WU R J, LU Q L, HUANG Y, LV J G, CAI W W, GUAN D Y, YANG S, HE S L. CaSTH2 disables CaWRKY40 from activating pepper thermotolerance and immunity against Ralstonia solanacearum via physical interaction. Horticulture Research, 2024, 11(5): uhae066.
[1] LIAO XinLin, GUO Xin, YANG JiXue, SHAO JiaZhu, YUAN XinYu, HU JiaYan, CHEN XiaoXiao, JIANG DongHua. Screening of Actinomycetes Against Ralstonia solanacearum and Its Disease Prevention Function [J]. Scientia Agricultura Sinica, 2024, 57(7): 1319-1334.
[2] LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482.
[3] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[4] CHEN JinRong, LÜ ZiJian, FAN LiSha, YOU Qian, LI Tao, GONG Chao, SUN GuangWen, LI ZhiLiang, SUN BaoJuan. Analysis of Genetic Effect of Fruit Color Controlled by Epistatic Genes in Eggplant [J]. Scientia Agricultura Sinica, 2023, 56(23): 4729-4741.
[5] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[6] ZHANG Jie, JIANG ChangYue, WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[7] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[8] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[9] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[10] LI Jie,LUO JiangHong,YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables [J]. Scientia Agricultura Sinica, 2021, 54(10): 2154-2166.
[11] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[12] WANG XiaoNing,LIANG Huan,WANG Shuai,FANG WenSheng,XU JingSheng,FENG Jie,XU Jin,CAO AoCheng. Function of Copper-Resistant Gene copA of Ralstonia solanacearum [J]. Scientia Agricultura Sinica, 2019, 52(5): 837-848.
[13] Yue CHEN, TianXingZi WANG, Shuo YANG, Tong ZHANG, JinJiao MA, GaoWei YAN, YuQing LIU, Yan ZHOU, JiaNan SHI, JinPing LAN, Jian WEI, ShiJuan DOU, LiJuan LIU, Ming YANG, LiYun LI, GuoZhen LIU. Expression Profiling and Functional Characterization of Rice Transcription Factor OsWRKY68 [J]. Scientia Agricultura Sinica, 2019, 52(12): 2021-2032.
[14] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[15] XU HaiFeng,YANG GuanXian,ZHANG Jing,ZOU Qi,WANG YiCheng,QU ChangZhi,JIANG ShengHui,WANG Nan,CHEN XueSen. Molecular Mechanism of Apple MdWRKY18 and MdWRKY40 Participating in Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(23): 4514-4521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!