[1] |
BARTHWAL-DATTA M.. Food security in Asia: Challenges, policies and implications. London: International Institute for Strategic Studies, 2017
|
[2] |
张家秀. 浅谈我国优质稻米产业的现状及其发展. 粮食加工, 2008, 33(3): 49-50, 60.
|
|
ZHANG J X. On the present situation and development of high-quality rice industry in China. Grain Processing, 2008, 33(3): 49-50, 60. (in Chinese)
|
[3] |
宋群, 韦柳利, 王增澔, 陈海鹏, 孙艳春. 粮食储藏环境对储粮害虫影响的研究进展. 中国农学通报, 2024, 40(11): 127-133.
doi: 10.11924/j.issn.1000-6850.casb2023-0813
|
|
SONG Q, WEI L L, WANG Z H, CHEN H P, SUN Y C. Effects of grain storage environment on stored grain pests: Research progress. Chinese Agricultural Science Bulletin, 2024, 40(11): 127-133. (in Chinese)
doi: 10.11924/j.issn.1000-6850.casb2023-0813
|
[4] |
XIE C, MAO X Z, HUANG J J, DING Y, WU J M, DONG S, KONG L, GAO G, LI C Y, WEI L P. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39(suppl_2): W316-W322.
|
[5] |
LIN C J, LI C Y, LIN S K, YANG F H, HUANG J J, LIU Y H, LUR H S. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2010, 58(19): 10545-10552.
|
[6] |
周显青, 张玉荣, 赵秋红, 周展明, 卞科, 钟丽玉. 稻谷新陈度的研究(四): 稻谷储藏过程中挥发性物质的变化及其与新陈度的关系. 粮食与饲料工业, 2005(2): 1-3.
|
|
ZHOU X Q, ZHANG Y R, ZHAO Q H, ZHOU Z M, BIAN K, ZHONG L Y. Study on the freshness of paddy (IV): The change of volatile matters during rice storage and its relation with the freshness and aging of rice. Cereal & Feed Industry, 2005(2): 1-3. (in Chinese)
|
[7] |
WANG Q, ZHANG D, ZHAO L Y, LIU J L, SHANG B, YANG W Q, DUAN X L, SUN H. Metabolomic analysis reveals insights into deterioration of rice quality during storage. Foods, 2022, 11(12): 1729.
|
[8] |
HU H, LI S P, PAN D J, WANG K J, QIU M M, QIU Z Z, LIU X Q, ZHANG J J. The variation of rice quality and relevant starch structure during long-term storage. Agriculture, 2022, 12(8): 1211.
|
[9] |
ZHU D W, SHAO Y F, FANG C Y, LI M, YU Y H, QIN Y B. Effect of storage time on chemical compositions, physiological and cooking quality characteristics of different rice types. Journal of the Science of Food and Agriculture, 2023, 103(4): 2077-2087.
|
[10] |
ZHAO C J, XIE J Q, LI L, CAO C J. Comparative transcriptomic analysis in paddy rice under storage and identification of differentially regulated genes in response to high temperature and humidity. Journal of Agricultural and Food Chemistry, 2017, 65(37): 8145-8153.
doi: 10.1021/acs.jafc.7b03901
pmid: 28846395
|
[11] |
WANG Y B, WANG Y F, LIU X, ZHOU J Q, DENG H B, ZHANG G L, XIAO Y H, TANG W B. WGCNA analysis identifies the hub genes related to heat stress in seedling of rice (Oryza sativa L.). Genes, 2022, 13(6): 1020.
|
[12] |
许惠滨. 转反义LOX-3基因水稻的耐储藏分子机制研究[D]. 福州: 福建农林大学, 2013.
|
|
XU H B. Molecular mechanism research on rice seed longevity with antisense LOX-3 gene[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese)
|
[13] |
MA L, ZHU F G, LI Z W, ZHANG J F, LI X, DONG J L, WANG T. TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS ONE, 2015, 10(12): e0143877.
|
[14] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
|
[15] |
KARLOWSKI W M, HIRSCH A M. The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development. Plant Molecular Biology, 2003, 52(1): 121-133.
|
[16] |
XU R Q, QUINN LI Q. A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Molecular Biology, 2003, 53(1): 37-50.
|
[17] |
BI Y, WANG H, YUAN X, YAN Y Q, LI D Y, SONG F M. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. Journal of Integrative Plant Biology, 2023, 65(3): 854-875.
|
[18] |
LI Y L, QIN P, SUN A L, XIAO W J, CHEN F L, HE Y, YU K Y, LI Y, ZHANG M, GUO X H. Genome-wide identification, new classification, expression analysis and screening of drought & heat resistance related candidates in the RING zinc finger gene family of bread wheat (Triticum aestivum L.). BMC Genomics, 2022, 23(1): 696.
|
[19] |
TIAN M M, LOU L J, LIU L J, YU F F, ZHAO Q Z, ZHANG H W, WU Y R, TANG S Y, XIA R, ZHU B G, SERINO G, XIE Q. The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana. The Plant Journal, 2015, 82(1): 81-92.
|
[20] |
THANGASAMY S, CHEN P W, LAI M H, CHEN J, JAUH G Y. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. The Plant Journal, 2012, 71(2): 288-302.
doi: 10.1111/j.1365-313X.2012.04989.x
pmid: 22409537
|
[21] |
SHIMADA T L, SHIMADA T, TAKAHASHI H, FUKAO Y, HARA-NISHIMURA I. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. The Plant Journal, 2008, 55(5): 798-809.
|
[22] |
MIQUEL M, TRIGUI G, D’ANDRÉA S, KELEMEN Z, BAUD S, BERGER A, DERUYFFELAERE C, TRUBUIL A, LEPINIEC L, DUBREUCQ B. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiology, 2014, 164(4): 1866-1878.
|
[23] |
WANG X S, ZHU H B, JIN G L, LIU H L, WU W R, ZHU J. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Science, 2007, 172(2): 414-420.
|
[24] |
WANG H, NIU Q W, WU H W, LIU J, YE J, YU N, CHUA N H. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. The Plant Journal, 2015, 84(2): 404-416.
doi: 10.1111/tpj.13018
pmid: 26387578
|
[25] |
SUN J Q, WANG W N, ZHENG H Q. ROOT HAIR DEFECTIVE3 is a receptor for selective autophagy of the endoplasmic reticulum in Arabidopsis. Frontiers in Plant Science, 2022, 13: 817251.
|
[26] |
SIMONINI S, BEMER M, BENCIVENGA S, GAGLIARDINI V, PIRES N D, DESVOYES B, VAN DER GRAAFF E, GUTIERREZ C, GROSSNIKLAUS U. The Polycomb group protein MEDEA controls cell proliferation and embryonic patterning in Arabidopsis. Developmental Cell, 2021, 56(13): 1945-1960.
|
[27] |
ZHAO H, YIN C C, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. Journal of Integrative Plant Biology, 2021, 63(1): 102-125.
|
[28] |
HUANG S Z, MA Z M, HU L J, HUANG K, ZHANG M X, ZHANG S H, JIANG W Z, WU T, DU X L. Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses. Plant Physiology and Biochemistry, 2021, 167: 22-30.
doi: 10.1016/j.plaphy.2021.07.027
pmid: 34329842
|
[29] |
JUNG S E, BANG S W, KIM S H, SEO J S, YOON H B, KIM Y S, KIM J K. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. International Journal of Molecular Sciences, 2021, 22(14): 7656.
|
[30] |
HSIEH Y S Y, KAO M R, TUCKER M R. The knowns and unknowns of callose biosynthesis in terrestrial plants. Carbohydrate Research, 2024, 538: 109103.
|
[31] |
WANG B, ANDARGIE M, FANG R Q. The function and biosynthesis of callose in high plants. Heliyon, 2022, 8(4): e09248.
|
[32] |
LOCHER K P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nature Structural & Molecular Biology, 2016, 23(6): 487-493.
|
[33] |
TAYLOR N L. Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. Journal of Experimental Botany, 2003, 55(394): 1-10.
|
[34] |
DVOŘÁKOVÁ-HOLÁ K, MATUŠKOVÁ A, KUBALA M, OTYEPKA M, KUČERA T, VEČEŘ J, HEŘMAN P, PARKHOMENKO N, KUTEJOVA E, JANATA J. Glycine-rich loop of mitochondrial processing peptidase α-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20. Journal of Molecular Biology, 2010, 396(5): 1197-1210.
|
[35] |
NAGAO Y, KITADA S, KOJIMA K, TOH H, KUHARA S, OGISHIMA T, ITO A. Glycine-rich region of mitochondrial processing peptidase α-subunit is essential for binding and cleavage of the precursor proteins. Journal of Biological Chemistry, 2000, 275(44): 34552-34556.
|
[36] |
VINSON V. How ribosomes are made. Science, 2020, 369(6510): 1443.
|
[37] |
GONZÁLEZ B, VERA P. Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement. Molecular Plant, 2019, 12(9): 1227-1242.
doi: S1674-2052(19)30163-7
pmid: 31077872
|
[38] |
HE L, HUANG H, BRADAI M, ZHAO C, YOU Y, MA J, ZHAO L, LOZANO-DURÁN R, ZHU J K. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nature Communications, 2022, 13: 1335.
|
[39] |
LÓPEZ SÁNCHEZ A, STASSEN J H M, FURCI L, SMITH L M, TON J. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. The Plant Journal, 2016, 88(3): 361-374.
|
[40] |
ZHOU H R, ZHANG F F, MA Z Y, HUANG H W, JIANG L, CAI T, ZHU J K, ZHANG C, HE X J. Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylation and histone H3K9 dimethylation in Arabidopsis. The Plant Cell, 2013, 25(7): 2545-2559.
|
[41] |
FAN D M, HU B, LIN L F, HUANG L L, WANG M F, ZHAO J X, ZHANG H. Rice protein radicals: Growth and stability under microwave treatment. RSC Advances, 2016, 6(100): 97825-97831.
|
[42] |
NANDI S, SEN-MANDI S, SINHA T P. Active oxygen and their scavengers in rice seeds (Oryza sativacv. IET 4094) aged under tropical environmental conditions. Seed Science Research, 1997, 7(3): 253-260.
|
[43] |
WANG R L, XIAO L, YANG L S, LU Q. Oxidative stress with the damage of scavenging system: A mechanism for the nutrients loss in rice seeds during post-harvest storage. CyTA - Journal of Food, 2019, 17(1): 260-271.
|
[44] |
BURGE S, KELLY E, LONSDALE D, MUTOWO-MUELLENET P, MCANULLA C, MITCHELL A, SANGRADOR-VEGAS A, YONG S Y, MULDER N, HUNTER S. Manual GO annotation of predictive protein signatures: The InterPro approach to GO curation. Database, 2012, 2012: bar068.
|
[45] |
IVANOVA A, GILL-HILLE M, HUANG S B, BRANCA R M, KMIEC B, TEIXEIRA P F, LEHTIÖ J, WHELAN J, MURCHA M W. A mitochondrial LYR protein is required for complex I assembly. Plant Physiology, 2019, 181(4): 1632-1650.
doi: 10.1104/pp.19.00822
pmid: 31601645
|
[46] |
WANG L K, QIAO H. New insights in transcriptional regulation of the ethylene response in Arabidopsis. Frontiers in Plant Science, 2019, 10: 790.
|
[47] |
XIONG F, YU X R, ZHOU L, WANG Z, WANG F, XIONG A S. Structural development of aleurone and its function in common wheat. Molecular Biology Reports, 2013, 40(12): 6785-6792.
doi: 10.1007/s11033-013-2795-9
pmid: 24057188
|
[48] |
ZHANG W T, SUN J, ZHAO G X, WANG J G, LIU H L, ZHENG H L, ZHAO H W, ZOU D T. Association analysis of the glutelin synthesis genes GluA and GluB1 in a Japonica rice collection. Molecular Breeding, 2017, 37(10): 129.
|
[49] |
MORITA R, KUSABA M, IIDA S, NISHIO T, NISHIMURA M. Knockout of glutelin genes which form a tandem array with a high level of homology in rice by gamma irradiation. Genes & Genetic Systems, 2007, 82(4): 321-327.
|
[50] |
BLAUTH S L, KIM K N, KLUCINEC J, SHANNON J C, THOMPSON D, GUILTINAN M. Identification of Mutator insertional mutants of starch-branching enzyme1 (sbe1) in Zea mays L. Plant Molecular Biology, 2002, 48(3): 287-297.
|
[51] |
FUJITA N, YOSHIDA M, KONDO T, SAITO K, UTSUMI Y, TOKUNAGA T, NISHI A, SATOH H, PARK J H, JANE J L, MIYAO A, HIROCHIKA H, NAKAMURA Y. Characterization of SSIIIa- deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiology, 2007, 144(4): 2009-2023.
|
[52] |
REVILLA P, GARZÓN R, ROSELL C M, MALVAR R A. Effects of high amylopectin (waxy1) and high-quality protein (opaque2) maize mutants in agronomic performance and bakery quality. Journal of Cereal Science, 2019, 89: 102796.
|
[53] |
TALUKDER Z A, CHHABRA R, BASU S, GAIN N, MISHRA S J, KUMAR A, ZUNJARE R U, MUTHUSAMY V, HOSSAIN F. High amylopectin in waxy maize synergistically affects seed germination and seedling vigour over traditional maize genotypes. Journal of Applied Genetics, 2025, 66(2): 267-278.
|
[54] |
HELMER N, WOLF S, STOCK G. Energy transport and its function in heptahelical transmembrane proteins. The Journal of Physical Chemistry B, 2022, 126(43): 8735-8746.
|
[55] |
VINSON V. A pathway for helical membrane proteins. Science, 2019, 366(6469): 1090.
|
[56] |
WANG Q C, JIANG M Q, ISUPOV M N, CHEN Y Y, LITTLECHILD J A, SUN L F, WU X L, WANG Q, YANG W D, CHEN L F, LI Q, WU Y K. The crystal structure of Arabidopsis BON1 provides insights into the copine protein family. The Plant Journal, 2020, 103(3): 1215-1232.
|
[57] |
HARTL F U. Heat shock proteins in protein folding and membrane translocation. Seminars in Immunology, 1991, 3(1):5-16.
pmid: 1680013
|
[58] |
UNGELENK S, MOAYED F, HO C T, GROUSL T, SCHARF A, MASHAGHI A, TANS S, MAYER M P, MOGK A, BUKAU B. Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nature Communications, 2016, 7: 13673.
doi: 10.1038/ncomms13673
pmid: 27901028
|
[59] |
ZAMORA-BRISEÑO J A, DE JIMÉNEZ E S. A LEA 4 protein up-regulated by ABA is involved in drought response in maize roots. Molecular Biology Reports, 2016, 43(4): 221-228.
|
[60] |
ZHAO W, YAO F, ZHANG M C, JING T, ZHANG S, HOU L, ZOU X Y. The potential roles of the G1LEA and G3LEA proteins in early embryo development and in response to low temperature and high salinity in Artemia sinica. PLoS ONE, 2016, 11(9): e0162272.
|
[61] |
KIKUCHI S, SATOH K, NAGATA T, KAWAGASHIRA N, DOI K, KISHIMOTO N, YAZAKI J, ISHIKAWA M, YAMADA H, OOKA H, NAGATA T, et al. Collection, mapping, and annotation of over 28, 000 cDNA clones from Japonica rice. Science, 2003, 301(5631): 376-379.
|
[62] |
LIAN J H, NELSON R, LEHNER R. Carboxylesterases in lipid metabolism: From mouse to human. Protein & Cell, 2018, 9(2): 178-195.
|
[63] |
DONG X, SHAO J, WU X Y, DONG J L, TANG P A. Lipidomic profiling reveals the protective mechanism of nitrogen-controlled atmosphere on brown rice quality during storage. Food Chemistry, 2025, 473: 143081.
|
[64] |
GUO Z W, KUNDU S Y. Recent research progress in glycosylphosphatidylinositol-anchored protein biosynthesis, chemical/ chemoenzymatic synthesis, and interaction with the cell membrane. Current Opinion in Chemical Biology, 2024, 78: 102421.
|
[65] |
AZE A, ZHOU J C, COSTA A, COSTANZO V. DNA replication and homologous recombination factors: Acting together to maintain genome stability. Chromosoma, 2013, 122(5): 401-413.
doi: 10.1007/s00412-013-0411-3
pmid: 23584157
|
[66] |
KOENIG A M, LIU B, HU J P. Visualizing the dynamics of plant energy organelles. Biochemical Society Transactions, 2023, 51(6): 2029-2040.
doi: 10.1042/BST20221093
pmid: 37975429
|
[67] |
MAJERUS P W, CONNOLLY T M, DECKMYN H, ROSS T S, BROSS T E, ISHII H, BANSAL V S, WILSON D B. The metabolism of phosphoinositide-derived messenger molecules. Science, 1986, 234(4783): 1519-1526.
pmid: 3024320
|
[68] |
RANCOUR D M, DICKEY C E, PARK S, BEDNAREK S Y. Characterization of AtCDC48. evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiology, 2002, 130(3): 1241-1253.
|
[69] |
HU Y, ZHONG R Q, MORRISON W H, YE Z H. The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta, 2003, 217(6): 912-921.
|
[70] |
WANG H Y, LEE M M, SCHIEFELBEIN J W. Regulation of the cell expansion gene RHD3 during Arabidopsis development. Plant Physiology, 2002, 129(2): 638-649.
|