Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2869-2884.doi: 10.3864/j.issn.0578-1752.2025.14.012

• HORTICULTURE • Previous Articles     Next Articles

Response Surface Methodology Optimization of Water, Fertilizer, and Pesticide Coupling on Chili Pepper Growth, Photosynthetic Characteristics, and Root Rot

XU JiaXin1,2,3(), HUA Nan4, WANG YongQiang5, XU Hao2, LIU Zhen2, ZHAO XiaoRui2, LI Yue2, CHEN QiWei2, YE Lin1,2,3,*()   

  1. 1 College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021
    2 College of Wine and Horticulture, Ningxia University, Yinchuan 750021
    3 Engineering Research Center of Efficient Utilization of Water Resources in Modern Agriculture in Arid Areas, Ministry of Education, Yinchuan 750021
    4 Agricultural Service Center of Zhangzheng Town, Xingqing District, Yinchuan City, Yinchuan 750021
    5 Shuifa Haohai Group Co., Ltd., Yinchuan 750021
  • Received:2025-03-11 Accepted:2025-04-21 Online:2025-07-17 Published:2025-07-17
  • Contact: YE Lin

Abstract:

【Objective】Aiming at the problems of yield decline and frequent root rot caused by unreasonable application of water and fertilizer in chili pepper production in solar greenhouse, the effects of reasonable application of water and fertilizer on yield increase and root rot control effect of chili pepper were discussed, and a scientific and reasonable management mode of water and fertilizer was screened out for high yield and high quality cultivation techniques of chili pepper in greenhouse.【Method】The experiment was conducted using the chili pepper variety ‘Huamei 105’. Three levels of irrigation amount (2 423, 3 230, 4 037 m3·hm-2), fertilizer application rate (330, 495, 660 kg·hm-2), and pesticide application rate (300, 450, 600 L·hm-2) were designed. Fertilizer was a high-potassium mix (N-P-K: 12-6-40), and the pesticide combination included chlorobromoisocyanuric acid, cymoxanil, and metalaxyl. A three-factor, three-level quadratic regression orthogonal experiment was conducted to analyze the effects of different water, fertilizer, and pesticide combinations on chili pepper growth, photosynthetic characteristics, and root rot occurrence.【Result】The interactions between irrigation amount and pesticide application rate, fertilizer application rate and pesticide application rate significantly impacted the growth comprehensive index and photosynthetic performance comprehensive index (P<0.05), and the interaction between irrigation amount and pesticide application rate had extremely significant effects on the growth comprehensive index (P<0.01). The interaction between irrigation amount and pesticide application rate had a significant effect on water and fertilizer use efficiency (P<0.05), while the interactions between irrigation amount and fertilizer application rate, fertilizer application rate and pesticide application rate had no significant effect on water and fertilizer use efficiency. The interaction between fertilizer application rate and pesticide application rate had a significant effect on the disease index of root rot (P<0.05), while the interactions between irrigation amount and fertilizer application rate, irrigation amount and pesticide application rate had no significant effect on the disease index of root rot. The interactions between irrigation amount and pesticide application rate, fertilizer application rate and pesticide application rate had significant effects on yield (P<0.05), while the interaction between irrigation amount and fertilizer application rate had no significant effect on yield.【Conclusion】The response regression model was used to optimize the yield and water and fertilizer use efficiency. The optimal combination of irrigation, fertilizer and pesticide application is irrigation amount 3 213 m3·hm-2, fertilizer application rate 493 kg·hm-2 and pesticide application rate 449 L·hm-2. This combination can effectively improve the growth index and photosynthetic parameters of chili pepper, and significantly reduce the disease index of root rot and improve the yield and water and fertilizer use efficiency. Therefore, this management mode of water, fertilizer and pesticide can provide important theoretical basis and reference for the scientific management and efficient production of chili pepper.

Key words: chili pepper (Capsicum annuum), water, fertilizer and pesticide coupling, photosynthetic characteristics, growth, root rot, response surface methodology

Table 1

The irrigation amount, fertilizer application rate, and pesticide application rate per application for each treatment"

处理
Treatment
灌水量
Irrigation
amount (m3)
施肥量
Fertilizer application rate (kg)
施药量
Pesticide application rate (L)
处理
Treatment
灌水量
Irrigation
amount (m3)
施肥量
Fertilizer application rate (kg)
施药量
Pesticide application rate (L)
T1 0.262 0.356 0.486 T10 0.349 0.712 0.327
T2 0.436 0.356 0.486 T11 0.349 0.356 0.648
T3 0.262 0.712 0.486 T12 0.349 0.712 0.648
T4 0.436 0.712 0.486 T13 0.349 0.534 0.486
T5 0.262 0.534 0.327 T14 0.349 0.534 0.486
T6 0.436 0.534 0.327 T15 0.349 0.534 0.486
T7 0.262 0.534 0.648 T16 0.349 0.534 0.486
T8 0.436 0.534 0.648 T17 0.349 0.534 0.486
T9 0.349 0.356 0.327

Table 2

Test factor codes"

水平
Level
灌水量
Irrigation amount (m3·hm-2)
施肥量
Fertilizer application rate (kg·hm-2)
施药量
Pesticide application rate (L·hm-2)
-1 2423 330 300
0 3230 495 450
1 4037 660 600

Table 3

Growth indicators of different treatments"

A B C 株高
Plant height (m)
茎粗
Stem diameter (mm)
叶面积
Leaf area (mm2)
展幅
Leaf spread (cm)
生长综合指数(PCA得分)
Growth comprehensive index (PCA score)
-1 -1 0 1.65±0.23de 13.54±1.96d 5440.40±875.75de 47.60±7.75de -0.90
1 -1 0 1.65±0.30def 13.38±2.23d 6351.38±957.35b 49.60±6.73cd -0.63
-1 1 0 1.53±0.19g 12.02±1.78e 4809.74±775.37fg 53.60±9.73b -0.74
1 1 0 1.74±0.27b 14.34±2.56c 4752.02±675.35fg 43.80±6.86fg -0.79
-1 0 -1 1.65±0.26de 13.36±1.95d 4677.73±865.73g 48.80±7.75d -0.47
1 0 -1 1.70±0.33bc 11.92±1.86e 4879.79±638.75f 44.00±7.73fg -1.25
-1 0 -1 1.61±0.31ef 12.12±2.03e 6624.25±975.35a 48.00±8.75d -1.38
1 0 -1 1.74±0.28b 15.56±2.67b 5247.67±983.63e 45.00±6.98f -0.49
0 -1 -1 1.60±0.23f 12.10±1.86e 6068.13±785.83c 45.40±7.83ef -1.17
0 1 -1 1.71±0.29bc 13.42±1.86d 6578.27±985.73a 51.60±6.85bc -0.60
0 -1 -1 1.68±0.25cd 15.70±2.57b 5596.19±875.35d 42.40±8.01g -0.72
0 1 -1 1.60±0.23f 13.20±1.57d 4679.49±895.35g 42.00±6.85g -1.46
0 0 0 1.98±0.35a 16.92±2.65a 6645.30±875.63a 61.25±9.85a 2.44

Table 4

Photosynthetic parameters of different treatments"

A B C 蒸腾速率
Tr (mmol·m-2·s-1)
净光合速率
Pn (μmol·m-2·s-1)
胞间CO2浓度
Ci (μmol·mol-1)
气孔导度Gs (mol·m-2·s-1) 光合性能综合指数(PCA得分)
Photosynthetic performance comprehensive index (PCA score)
-1 -1 0 2.21±0.32g 7.24±1.23e 380.35±58.63de 0.072±0.012i -1.32
1 -1 0 4.15±0.63e 6.17±0.85f 353.69±53.75i 0.091±0.015ef -0.25
-1 1 0 5.20±0.75c 3.41±0.52k 371.66±58.62g 0.084±0.012g -0.88
1 1 0 3.12±0.43h 7.58±0.92d 383.12±60.56d 0.092±0.016e -0.89
-1 0 -1 5.17±0.75c 5.34±0.72g 391.66±59.73b 0.075±0.014hi -1.20
1 0 -1 3.62±0.63g 8.09±1.43c 366.85±62.73h 0.077±0.014h -0.59
-1 0 1 2.54±0.42i 4.41±0.63i 393.59±57.36b 0.107±0.019d -1.41
1 0 1 6.98±0.92b 5.13±0.75h 377.75±59.38ef 0.087±0.016fg -0.42
0 -1 -1 4.39±0.72d 8.40±1.35b 386.60±52.62c 0.086±0.015g -0.70
0 1 -1 4.39±0.63d 6.25±0.92f 376.46±50.72f 0.124±0.021b -0.23
0 -1 1 3.96±0.57f 4.19±0.76j 369.27±61.23gh 0.116±0.016c -0.52
0 1 1 5.29±0.98c 6.88±1.02f 398.51±65.83a 0.087±0.015fg -0.97
0 0 0 8.08±1.01a 10.06±1.58a 349.55±56.83j 0.137±0.023a 1.71

Table 5

Water and fertilizer use efficiency, root rot disease index and yield of different treatments"

试验编号
Test No.
A B C 灌溉水利用效率
IWUE (kg·m-3)
肥料偏生产力
PFP (kg·kg-1)
根腐病病情指数
Disease index of root rot
小区产量
Yield (kg·11m-2)
1 1 0 -1 29.68±4.75hi 242.05±38.82ef 75.0±13.0a 131.7±17.8e
2 1 1 0 24.41±3.75jk 149.33±26.83ij 33.0±4.0fg 108.4±16.7i
3 0 0 0 41.67±6.55bcd 287.42±48.95c 0h 145.7±27.6bc
4 -1 -1 0 42.62±6.83bc 312.94±59.73b 32.0±4.0g 113.5±18.6hi
5 0 -1 -1 35.51±5.83fg 347.56±58.73a 68.0±9.0b 126.1±23.7ef
6 0 0 0 44.05±7.83b 267.66±40.73cd 0h 148.0±27.8b
7 0 1 -1 39.79±5.93cde 194.74±29.75h 45.0±6.0cd 141.3±23.6cd
8 1 0 1 27.42±4.02ij 223.60±38.83fg 38.0±7.0ef 121.7±22.8fg
9 0 0 0 42.25±6.83bc 271.87±47.38cd 0h 156.4±29.8a
10 1 -1 0 22.84±3.93k 279.42±49.01c 35.0±5.0fg 101.4±15.8j
11 -1 1 0 38.08±5.83def 139.79±18.23j 50.0±8.0c 103.4±19.6j
12 -1 0 1 51.92±7.93a 254.14±45.72de 42.0±7.0de 138.3±23.8d
13 -1 0 -1 43.96±6.93b 215.20±30.82gh 48.0±8.0c 117.1±18.8gh
14 0 -1 1 36.60±5.03efg 358.20±60.32a 46.0±6.0cd 130.0±19.2e
15 0 0 0 41.62±6.03bcd 271.60±48.83cd 0h 150.0±19.7b
16 0 1 1 33.30±5.01gh 162.97±27.83i 70.0±9.0ab 118.3±17.6gh
17 0 0 0 41.02±5.93bcd 275.66±49.92cd 0h 147.8±26.7b

Table 6

Analysis of variance for the growth comprehensive index and photosynthetic performance comprehensive index"

指标
Index
来源
Source
平方和
Sum of square
自由度
Degree of freedom
F P 指标
Index
平方和
Sum of
square
自由度
Degree of freedom
F P
生长综合指数
Growth comprehensive index
模型Model 33.186 9 73.862 <0.01** 光合性能综合指数Photosynthetic performance
comprehensive index
26.674 9 109.595 <0.01**
A-A 0.014 1 0.273 0.618 0.884 1 32.705 <0.01**
B-B 0.004 1 0.072 0.796 0.004 1 0.150 0.710
C-C 0.039 1 0.785 0.405 0.045 1 1.664 0.238
AB 0.026 1 0.513 0.497 0.292 1 10.783 0.013*
AC 0.697 1 13.966 0.007** 0.036 1 1.335 0.286
BC 0.429 1 8.594 0.022* 0.212 1 7.825 0.027*
8.235 1 164.956 <0.01** 9.569 1 353.833 <0.01**
9.329 1 186.871 <0.01** 6.139 1 227.017 <0.01**
11.064 1 221.620 <0.01** 6.872 1 254.101 <0.01**
残差Residual 0.349 7 0.189 7
失拟项Lack of fit 0.014 3 0.054 0.981 0.076 3 0.900 0.515
误差Pure error 0.336 4 0.113 4
总和Cor. total 33.536 16 26.863 16
调整R2 Adjusted R2 0.990 0.990

Table 7

Analysis of variance for water and fertilizer use efficiency, root rot disease index, and yield"

指标
Index
来源
Source
平方和
Sum of square
自由度
Degree of freedom
F P 指标
Index
平方和
Sum of square
自由度
Degree of freedom
F P
灌溉水利用率
Efficiency of irrigation water use
模型Model 938.626 9 27.747 <0.01** 肥料偏生产力
Partial factor productivity of fertilizer
63510.938 9 65.997 <0.01**
A-A 652.172 1 173.512 <0.01** 95.719 1 0.895 0.376
B-B 0.491 1 0.131 0.729 53020.035 1 495.861 <0.01**
C-C 0.010 1 0.003 0.960 0.051 1 0 0.983
AB 9.347 1 2.487 0.159 463.365 1 4.334 0.076
AC 26.093 1 6.942 0.034* 823.232 1 7.699 0.028*
BC 14.355 1 3.819 0.092 449.527 1 4.204 0.079
70.531 1 18.765 0.003** 7891.842 1 73.807 <0.01**
153.516 1 40.843 <0.01** 525.868 1 4.918 0.062
0.200 1 0.053 0.824 20.401 1 0.191 0.675
残差Residual 26.311 7 748.476 7
失拟项Lack of fit 20.917 3 5.170 0.073 518.806 3 3.012 0.157
误差Pure error 5.394 4 229.670 4
总和Cor. total 964.937 16 64259.414 16
调整R2 Adjusted R2 0.970 0.990
根腐病病情指数
Disease index of root rot
模型Model 0.850 9 10.010 <0.01** 产量
Yield
3923.388 9 19.043 <0.01**
A-A 0 1 0.110 0.750 5.435 1 0.237 0.641
B-B 0 1 0.380 0.560 0.268 1 0.012 0.917
C-C 0.020 1 2.120 0.190 6.685 1 0.292 0.606
AB 0.010 1 1.060 0.340 75.291 1 3.289 0.113
AC 0.020 1 2.540 0.150 201.712 1 8.811 0.021*
BC 0.060 1 5.840 0.046* 149.767 1 6.542 0.038*
0.070 1 7.330 0.03* 1770.537 1 77.343 <0.01**
0.160 1 16.630 <0.01** 1514.322 1 66.150 <0.01**
0.450 1 47.260 <0.01** 0.115 1 0.005 0.945
残差Residual 0.070 7 160.245 7
失拟项Lack of fit 0.050 3 3.120 0.150 103.970 3 2.463 0.202
误差Pure error 0.020 4 56.275 4
总和Cor. total 0.920 16 4083.633 16
调整R2 Adjusted R2 0.920 0.960

Fig. 1

Response surface of interaction effect on the growth comprehensive index A (A, 0, B); B (0, A, B)"

Fig. 2

Response surface of interaction effect on the photosynthetic performance comprehensive index A (A, B, 0); B (0, B, C)"

Fig. 3

Response surface of interaction effect on water and fertilizer use efficiency A (A, 0, C); B (A, 0, C)"

Fig. 4

Response surface of interaction effect on the root rot disease index (0, B, C)"

Fig. 5

Response surface of interaction effect on yield A (A, 0, C); B (0, B, C)"

Table 8

Correlation analysis among experimental factors"

灌水量Irrigation
amount
施肥量
Fertilizer
application rate
施药量
Pesticide
application rate
生长综合指数
Growth comprehensive index
光合性能综合指数
Photosynthetic performance comprehensive index
灌溉水利用效率
IWUE
肥料偏
生产力
PFP
根腐病
病情指数
Disease index of
root rot
产量
Yield
灌水量Irrigation amount 1.000
施肥量Fertilizer application rate 0 1.000
施药量Pesticide application rate 0 0 1.000
生长综合指数
Growth comprehensive index
0.034 -0.018 -0.058 1.000
光合性能综合指数
Photosynthetic performance comprehensive index
0.344 -0.023 -0.078 0.890** 1.000
灌溉水利用效率IWUE -0.864** -0.024 0.003 0.191 -0.060 1.000
肥料偏生产力PFP -0.039 -0.926** -0.001 0.151 0.200 0.189 1.000
根腐病病情指数
Disease index of root rot
0.047 0.089 -0.209 -0.798** -0.582* -0.199 -0.128 1.000
产量Yield -0.046 -0.010 -0.051 0.497 0.566* 0.517 0.332 -0.246 1.000

Table 9

Effects of treatment combinations on chili pepper yield"

处理
<BOLD>T</BOLD>reatment
灌水量
Irrigation amount (m3·hm-2)
施肥量
Fertilizer application rate (kg·hm-2)
施药量
Pesticide application rate (L·hm-2)
产量
Yield (t·hm-2)
CK1 3230 495 450 142
CK2 3230 330 600 136
T1 3213 493 449 138
[1]
BERHOLTZ N, LUKYANOV V, COHEN S, ZIPILEVITZ E, GILAD Z, SILVERMAN D, ADLER U, TANNY J. Irrigation of protected pepper crops according to growth stage using dynamic evapotranspiration estimates increases the water use efficiency. Scientia Horticulturae, 2023, 310: 111768.
[2]
WANG X L, HUANG Y, YANG N, WANG X, SHEN X Y, PEI L J, WANG Y, ZHANG H. First report of Fusarium falciforme causing fusarium wilt on pepper in Hainan, China. Plant Disease, 2024, 108(12): 3657.
[3]
周道明, 孙涛, 赵玉红, 贾媛婕, 杨铭菲, 屈锋, 胡晓辉. 基于品质、产量与水肥利用效率的基质栽培辣椒水肥管理优化. 中国农业科学, 2023, 56(12): 2354-2366. doi: 10.3864/j.issn.0578-1752.2023.12.010.
ZHOU D M, SUN T, ZHAO Y H, JIA Y J, YANG M F, QU F, HU X H. Optimization of water and fertilizer management of substrate cultivated peppers based on quality, yield, and water and fertilizer use efficiency. Scientia Agricultura Sinica, 2023, 56(12): 2354-2366. doi: 10.3864/j.issn.0578-1752.2023.12.010. (in Chinese)
[4]
WANG J, DUAN X, AN Y, HE J Y, LI J X, XIAN J Q, ZHOU D F. An analysis of capsaicin, dihydrocapsaicin, vitamin C and flavones in different tissues during the development of ornamental pepper. Plants, 2024, 13(15): 2038.
[5]
ZHOU C X, ZHANG W, YU B G, YANG H F, ZHAO Q Y, WANG Y, SUN K, LAKSHMANAN P, CHEN X P, ZOU C Q. Global analysis of spatio-temporal variation in mineral nutritional quality of pepper (Capsicum spp.) fruit and its regulatory variables: A meta-analysis. Food Research International, 2024, 193: 114855.
[6]
HOU Y, MA Y L, WANG X M, CHENG G X. Assessment of soil property in the Guyuan region from Ningxia Province of China and prediction of pepper blight. PLoS ONE, 2023, 18(11): e0293173.
[7]
孙权, 郭鑫年, 李建设, 王淑珍, 高艳明, 王丽, 王翰林. 宁夏引黄灌区日光温室辣椒高产施肥量及配比研究. 西北农业学报, 2010, 19(4): 110-114.
SUN Q, GUO X N, LI J S, WANG S Z, GAO Y M, WANG L, WANG H L. Optimum application amount and ratio of fertilizers for high yield of hot pepper in greenhouse of Ningxia. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(4): 110-114. (in Chinese)
[8]
NIBRAS H T, KHUDIER R G. Assessment the efficiency of the bioagent and the biohealth formula with fungicide beltanol in control of causing pepper root rot// IOP Conference Series: Earth and Environmental Science, 2023.
[9]
QIAO J Q, ZHANG R S, LIU Y F, LIU Y Z. Evaluation of the biocontrol efficiency of Bacillus subtilis wettable powder on pepper root rot caused by Fusarium solani. Pathogens, 2023, 12(2): 225.
[10]
AO N J, ZOU H Y, LI J W, SHAO H J, KAGEYAMA K, FENG W Z. First report of Pythium aphanidermatum and Pythium myriotylum causing root rot on chili pepper (Capsicum annuum L.) in Guizhou, China. Crop Protection, 2024, 181: 106704.
[11]
HAN S, ZHENG Z L, LI S J, LIU Y G, LI S Y, YANG C L, QIAO T M, LIN T T, ZHU T H. Impact of root rot disease of Zanthoxylum armatum on rhizosphere soil microbes and screening of antagonistic bacteria. Forests, 2023, 14(8): 1561.
[12]
BAGHERI L M, NASR-ESFAHANI M, ABDOSSI V, NADERI D. Analysis of candidate genes expression associated with defense responses to root and collar rot disease caused by Phytophthora capsici in peppers Capsicum annuum. Genomics, 2020, 112(3): 2309-2317.
[13]
ZHANG X J, YU D Z, WANG H. Pepper root rot resistance and pepper yield are enhanced through biological agent G15 soil amelioration. PeerJ, 2021, 9: e11768.
[14]
马永鑫, 谭军利, 韦广源, 王月梅, 田海梅, 王西娜. 减氮节水对引黄灌区春小麦耗水特征及水分利用效率的影响. 干旱地区农业研究, 2024, 42(6): 150-160.
MA Y X, TAN J L, WEI G Y, WANG Y M, TIAN H M, WANG X N. Effects of nitrogen reduction and water saving on water consumption characteristics and water use efficiency of spring wheat in Ningxia Yellow River irrigation area. Agricultural Research in the Arid Areas, 2024, 42(6): 150-160. (in Chinese)
[15]
张学科. 日光温室不同水肥措施下水氮迁移特性. 西北农业学报, 2016, 25(12): 1884-1889.
ZHANG X K. Migration characteristic of water and nitrogen by different water and fertilizer in sunlight greenhouse. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(12): 1884-1889. (in Chinese)
[16]
LI C Q, TONG B X, JIA M Y, XU H S, WANG J Q, SUN Z M. Integrated management strategies increased silage maize yield and quality with lower nitrogen losses in cold regions. Frontiers in Plant Science, 2024, 15: 1434926.
[17]
李若楠, 胡亚峰, 黄绍文, 史建硕, 王丽英, 唐继伟, 张怀志, 袁硕, 翟凤芝, 孙璇. 滴灌水肥管理对温室冬春茬辣椒产量与风味的影响. 植物营养与肥料学报, 2022, 28(12): 2239-2251.
LI R N, HU Y F, HUANG S W, SHI J S, WANG L Y, TANG J W, ZHANG H Z, YUAN S, ZHAI F Z, SUN X. Effects of water and fertilizer management on yield and flavor of drip-irrigated winter- spring pepper in greenhouse production. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2239-2251. (in Chinese)
[18]
吴科生, 车宗贤, 卢秉林, 张久东, 杨蕊菊, 崔恒. 水肥耦合对基质栽培番茄产量和水分利用效率的影响. 中国土壤与肥料, 2023(1): 104-109.
WU K S, CHE Z X, LU B L, ZHANG J D, YANG R J, CUI H. Effect of water and fertilizer coupling on yield and water use efficiency of tomato cultivated by organic substrate. Soil and Fertilizer Sciences in China, 2023(1): 104-109. (in Chinese)
[19]
缑兆辉, 秦启杰, 吕剑, 车旭升, 罗建, 张辉, 张国斌. 不同水肥组合对高原夏季露地紫甘蓝产量和土壤理化性状的影响. 干旱地区农业研究, 2021, 39(3): 137-144.
GOU Z H, QIN Q J, J, CHE X S, LUO J, ZHANG H, ZHANG G B. Effects of different water and fertilizer combinations on yield of purple cabbage and soil physical and chemical properties on plateau in summer. Agricultural Research in the Arid Areas, 2021, 39(3): 137-144. (in Chinese)
[20]
王勤礼, 闫芳, 侯梁宇, 张文斌, 华军. 辣椒根腐病发病因素与发病程度的相关性分析. 中国园艺文摘, 2017, 33(10): 53-55.
WANG Q L, YAN F, HOU L Y, ZHANG W B, HUA J. Correlation analysis between the influence factors and disease severity degree of capsicum root rot. Chinese Horticulture Abstracts, 2017, 33(10): 53-55. (in Chinese)
[21]
张志雄. 不同杀菌剂防治辣椒根腐病的效果对比. 南方农业, 2020, 14(18): 31-33.
ZHANG Z X. Control effect of different fungicides on pepper root rot. South China Agriculture, 2020, 14(18): 31-33. (in Chinese)
[22]
贾继宝, 代惠萍, 刘恒青, 田超, 孙权, 魏树和, LIDIA S. 放牧强度对宁夏盐池荒漠草地土壤与植被恢复的影响. 生态学杂志, 2024, 43(7): 2066-2074.
JIA J B, DAI H P, LIU H Q, TIAN C, SUN Q, WEI S H, LIDIA S. Effects of grazing intensity on soil and vegetation restoration of desert grassland in Yanchi, Ningxia. Chinese Journal of Ecology, 2024, 43(7): 2066-2074. (in Chinese)

doi: 10.13292/j.1000-4890.202407.039
[23]
孙倩, 吴宏亮, 陈阜, 康建宏. 不同作物轮作对谷田土壤酶活性和土壤细菌群落的影响. 生态环境学报, 2020, 29(12): 2385-2393.

doi: 10.16258/j.cnki.1674-5906.2020.012.009
SUN Q, WU H L, CHEN F, KANG J H. Effects of soil enzyme activity and bacterial community under different crop rotations. Ecology and Environmental Sciences, 2020, 29(12): 2385-2393. (in Chinese)
[24]
张会丽, 朱林, 许兴. 宁夏中部半干旱带不同灌溉量下的禾豆混播效果. 草业科学, 2017, 34(4): 777-787.
ZHANG H L, ZHU L, XU X. Effect of mixed sowing of graminaceous and leguminous forages under different water regimes in Ningxia central semi-arid belt. Pratacultural Science, 2017, 34(4): 777-787. (in Chinese)
[25]
张帆, 崔云浩, 石玉, 张毅, 王军娥. 不同氮素水平下外源硅对辣椒生长、光合作用及氮代谢的影响. 中国土壤与肥料, 2023(11): 145-154.
ZHANG F, CUI Y H, SHI Y, ZHANG Y, WANG J E. Effect of exogenous silicon on the growth, photosynthesis and nitrogen metabolism of pepper seedlings at different nitrogen levels. Soil and Fertilizer Sciences in China, 2023(11): 145-154. (in Chinese)
[26]
李树江, 张韵霞, 刘羽, 周闯闯, 张芝琴, 冯道, 杨友联, 吴迪, 张晓勇. 辣椒根腐病生防菌的筛选鉴定及生防作用. 中国蔬菜, 2023(9): 69-76.
LI S J, ZHANG Y X, LIU Y, ZHOU C C, ZHANG Z Q, FENG D, YANG Y L, WU D, ZHANG X Y. Screening identification and bio-control effect of antagonistic fungus against pepper root rot. China Vegetables, 2023(9): 69-76. (in Chinese)
[27]
庾琴, 封云涛, 张润祥, 刘中芳, 王振, 范仁俊. 喷雾压力与施药量对农药在苹果叶片沉积量的影响. 农药, 2012, 51(11): 844-845, 854.
YU Q, FENG Y T, ZHANG R X, LIU Z F, WANG Z, FAN R J. Influence of pressure and spray volume on deposition of pesticides on apple leaves. Agrochemicals, 2012, 51(11): 844-845, 854. (in Chinese)
[28]
JAMIOŁKOWSKA A, SKWARYŁO-BEDNARZ B, PATKOWSKA E, BUCZKOWSKA H, GAŁĄZKA A, GRZĄDZIEL J, KOPACKI M. Effect of mycorrhizal inoculation and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. Agronomy, 2020, 10(11): 1693.
[29]
ELIAS E, MEKONEN F, BIRATU G K, HAILE W. Effect of potassium fertilizer application in teff yield and nutrient uptake on Vertisols in the central highlands of Ethiopia. Open Agriculture, 2022, 7(1): 257-266.
[30]
ZHONG T, ZHANG J X, DU L L, DING L, ZHANG R, LIU X R, REN F F, YIN M, YANG R H, TIAN P L, GAN K Y, YONG T, LI Q R, LI F Q, LI X. Comprehensive evaluation of the water-fertilizer coupling effects on pumpkin under different irrigation volumes. Frontiers in Plant Science, 2024, 15: 1386109.
[31]
李卫芳, 王秀海, 王忠. 小麦旗叶Rubisco和Rubisco活化酶与光合作用日变化的关系. 安徽农业大学学报, 2006, 33(1): 30-34.
LI W F, WANG X H, WANG Z. Correlation between Rubisco, Rubisco activase and diurnal photosynthesis rate changes of flag leaf in wheat. Journal of Anhui Agricultural University, 2006, 33(1): 30-34. (in Chinese)
[32]
IBARRA-JIMENEZ L, FERNANDEZ-BRONDO J M, RODRIGUEZ-HERRERA S A. Growth analysis of muskmelon and bell pepper with mulch and rowcover// Revista Fitotecnia Mexicana. Saltillo: Centro de Investigación en Química Aplicada, 2022.
[33]
崔云浩. 不同氮肥水平下施硅对辣椒生长、产量和品质的影响[D]. 太谷: 山西农业大学, 2022.
CUI Y H. Effects of silicon application on pepper growth, yield and quality under different nitrogen fertilizer levels[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[34]
张俊峰. 基于外源褪黑素作用的辣椒耐低温弱光生理及分子响应机理研究[D]. 兰州: 甘肃农业大学, 2020.
ZHANG J F. Study on physiological and molecular response mechanism of low temperature and low light resistance of capsicum pepper based on exogenous melatonin[D]. Lanzhou: Gansu Agricultural University, 2020. (in Chinese)
[35]
代丽萍. 盐渍化灌区地下水埋深及限水控药对土壤环境和玉米生长影响[D]. 呼和浩特: 内蒙古农业大学, 2021.
DAI L P. Effects of groundwater depth and irrigation-herbicides limited on soil environment and maize growth in salinized irrigation district[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese)
[36]
邢英英, 张富仓, 张燕, 李静, 强生才, 吴立峰. 滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响. 中国农业科学, 2015, 48(4): 713-726. doi: 10.3864/j.issn.0578-1752.2015.04.09.
XING Y Y, ZHANG F C, ZHANG Y, LI J, QIANG S C, WU L F. Effect of irrigation and fertilizer coupling on greenhouse tomato yield, quality, water and nitrogen utilization under fertigation. Scientia Agricultura Sinica, 2015, 48(4): 713-726. doi: 10.3864/j.issn.0578-1752.2015.04.09. (in Chinese)
[37]
刘琅, 李文秀, 于凯波, 吴鹍伦, 周行, 褚晶, 吴朝晖. 控释肥与不同农药联合施用对水稻生长发育、产量和氮素利用率的影响. 江苏农业科学, 2025, 53(2): 68-74.
LIU L, LI W X, YU K B, WU K L, ZHOU X, CHU J, WU Z H. Impacts of combined application of controlled release fertilizer and different pesticides on rice growth, yield, and nitrogen utilization efficiency. Jiangsu Agricultural Sciences, 2025, 53(2): 68-74. (in Chinese)
[38]
毕艳孟, 孙振钧. 蚯蚓调控土壤微生态缓解连作障碍的作用机制. 生物多样性, 2018, 26(10): 1103-1115.

doi: 10.17520/biods.2018159
BI Y M, SUN Z J. Mechanisms of earthworms to alleviate continuous cropping obstacles through regulating soil microecology. Biodiversity Science, 2018, 26(10): 1103-1115. (in Chinese)

doi: 10.17520/biods.2018159
[39]
慕康国, 赵秀琴, 李健强, 刘西莉. 矿质营养与植物病害关系研究进展. 中国农业大学学报, 2000, 5(1): 84-90.
MU K G, ZHAO X Q, LI J Q, LIU X L. Progressing on the relation between mineral nutrients and plant disease. Journal of China Agricultural University, 2000, 5(1): 84-90. (in Chinese)
[40]
薛秀云, 许旭锋, 李震, 洪添胜, 谢家兴, 陈建泽, 宋淑然. 基于叶墙面积的果树施药量模型设计及试验. 农业工程学报, 2020, 36(2): 16-22.
XUE X Y, XU X F, LI Z, HONG T S, XIE J X, CHEN J Z, SONG S R. Design and test of variable spray model based on leaf wall area in orchards. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 16-22. (in Chinese)
[41]
朱辉, 王满意, 李宝聚, 石延霞. 辣椒根腐型疫病病原鉴定及防治药剂筛选. 植物保护学报, 2007, 34(4): 373-378.
ZHU H, WANG M Y, LI B J, SHI Y X. Screening of fungicide and identification of capsicum phytopathora root rot. Journal of Plant Protection, 2007, 34(4): 373-378. (in Chinese)
[42]
汤贯龙. 灌水方式与水稻植株作用下水土系统中新烟碱类农药的淋溶及消减规律研究[D]. 扬州: 扬州大学, 2023.
TANG G L. Study on leaching and dissipation of neonicotinoids in soil-water system under the effects irrigation methods and rice plants[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[43]
王军, 李久生, 关红杰. 北疆膜下滴灌棉花产量及水分生产率对灌水量响应的模拟. 农业工程学报, 2016, 32(3): 62-68.
WANG J, LI J S, GUAN H J. Modeling response of cotton yield and water productivity to irrigation amount under mulched drip irrigation in North Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 62-68. (in Chinese)
[44]
惠海滨, 林琪, 刘义国, 刘家斌, 张洪生, 翟延举. 灌水量和灌水期对超高产小麦灌浆期光合特性及产量的影响. 西北农业学报, 2012, 21(8): 77-83.
HUI H B, LIN Q, LIU Y G, LIU J B, ZHANG H S, ZHAI Y J. Effects of irrigation amount and stage on photosynthetic characteristics and yield of super-high-yield wheat at filling stage. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(8): 77-83. (in Chinese)
[45]
郭明亮. 中国水稻氮过量对农药用量的影响[D]. 北京: 中国农业大学, 2016.
GUO M L. The impact of excessive nitrogen fertilizer on pesticide usage on rice in China[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[46]
文一. 有机磷农药的联合毒性及其毒理学机理研究[D]. 北京: 中国农业科学院, 2008.
WEN Y. Studies on the interactive effect and poisoning mechanism of the organophorus pesticides[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[1] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[2] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[3] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[4] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[5] ZHAO Yong, ZHANG ZhongFu, WANG YuTong, AI Jing, LIU JiaYong, WU JianMing, DENG Jun, ZHANG YueBin. Effects of Potassium Application on Root Rhizosphere Microbial Community Changes and Growth of Sugarcane [J]. Scientia Agricultura Sinica, 2025, 58(13): 2630-2644.
[6] LI Hao, TIAN YuYang, ZHANG ZiMing, CAO YiFan, CIREN LuoBu, NIMA CangJue, DANZENG LuoSang, LEI ChuZhao, BASANG ZhuZha, CHEN NingBo. Research Progress on the Function of Bovine Thyroid Gene and Its Correlation with Environmental Adaptability [J]. Scientia Agricultura Sinica, 2025, 58(13): 2682-2692.
[7] DONG Ming, QI Hong, ZHANG Qian, WANG Yan, WANG ShuLin, FENG GuoYi, LIANG QingLong, GUO BaoSheng. The Impact of Sowing Methods on the Seed Germination Environment and Cotton Emergence and Growth [J]. Scientia Agricultura Sinica, 2025, 58(12): 2346-2357.
[8] WU YongBao, TANG Jing, CAO JunTing, WANG QiMeng, XIE Ming, ZHOU ZhengKui, HOU ShuiSheng, WEN ZhiGuo. Effects of Methionine Supplementation on Growth Performance, Carcass Trait, and Plasma Biochemical Indice of Growing Pekin Ducks Fed a Low-Energy and Low-Protein Diet [J]. Scientia Agricultura Sinica, 2025, 58(12): 2475-2486.
[9] CHEN HuiXian, HE Wen, RUAN LiXia, HUANG XiaoJuan, LAN Xiu, CAI ZhaoQin, LI HengRui, HUANG ZhenLing, WEI WanLing, LIANG ZhenHua, LI TianYuan, CAO Sheng, LI XiDi, WEI JunCan. Effects of Intercropping Soybean on Cassava Growth and Soil Characteristics [J]. Scientia Agricultura Sinica, 2025, 58(11): 2176-2189.
[10] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[11] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[12] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[13] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
[14] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[15] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!