Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1116-1130.doi: 10.3864/j.issn.0578-1752.2025.06.006

• PLANT PROTECTION • Previous Articles     Next Articles

Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing

ZOU XiaoWei1(), XIA Lei1, ZHU XiaoMin1, SUN Hui1, ZHOU Qi3, QI Ji1,2, ZHANG YaFeng4, ZHENG Yan1(), JIANG ZhaoYuan1()   

  1. 1 Institute of Plant Protection, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, Jilin
    2 School of Life Sciences, Jilin Normal University, Siping 136099, Jilin
    3 Agro-Tech Extension and Service Center of Jingyu County, Baishan 135200, Jilin
    4 Faculty of Agronomy, Jilin Agricultural University, Changchun 130118
  • Received:2024-11-11 Accepted:2025-01-09 Online:2025-03-25 Published:2025-03-25
  • Contact: ZHENG Yan, JIANG ZhaoYuan

Abstract:

【Objective】 The objective of this study is to investigate the mechanism of maize resistance to corn smut disease induced by the secreted protein gene UM01240 of Ustilago maydis.【Method】 The wild-type strain SG200 of U. maydis, the UM01240 overexpression strain SG200-OE-UM01240, and the UM01240 deletion strain SG200ΔUM01240 were individually inoculated onto the maize variety Jidan209, which is highly susceptible to U. maydis. The three inoculated maize samples were named as S1, S2, and S3, respectively. After 7 d of inoculation, the pathogenicity differences among the tested strains on maize were evaluated. Using high-throughput RNA-Seq technology, the differential expression of genes between the S2 maize leaves and the S1 and S3 maize leaves was compared. Resistance-related genes involved in plant-pathogen interactions, flavonoid biosynthesis, phenylpropane metabolism, and plant hormone signal pathways were screened and subsequently validated through qRT-PCR.【Result】 The overexpression strain SG200-OE-UM01240 exhibited significantly reduced pathogenicity compared to the SG200 strain, with the corresponding maize sample S2 displaying the mildest leaf symptoms. In contrast, the SG200ΔUM01240 strain demonstrated significantly increased pathogenicity, with the maize sample S3 displaying the most severe leaf symptoms. In comparison to the S1 and S3 maize leaves, the S2 maize leaves exhibited 1 613 differentially expressed genes. Among these genes, 31 were associated with the plant-pathogen interaction pathway, primarily including protein-coding genes such as WRKY1, WRKY33, WRKY52, PR1, and PIT5. Additionally, 15 genes were linked to the flavonoid biosynthesis pathway, primarily including the synthesis of pinocembrin, naringenin, luteolin, and dihydroquercetin. Furthermore, 23 genes related to the phenylpropane metabolism pathway were identified, mainly associated with the synthesis of lignin, cinnamaldehyde, p-hydroxycinnamic acid, coniferylaldehyde, and sinapaldehyde. Lastly, 33 genes connected to plant hormone signal transduction pathways were also found, primarily concerning the synthesis of salicylic acid, cytokinins, gibberellins, and jasmonic acid. The results of qRT-PCR analysis for the selected genes were consistent with the transcriptome data.【Conclusion】 The secreted protein gene UM01240 plays a crucial role in the pathogenicity of U. maydis in maize. The expression level of UM01240 is negatively correlated with the pathogenicity of U. maydis in maize. UM01240 achieves a balanced symbiotic relationship between U. maydis and the maize host by regulating pathways including plant-pathogen interaction, flavonoid and phenylpropanoid compound biosynthesis, and plant hormone signal transduction.

Key words: Ustilago maydis, maize, resistance gene, transcriptome sequencing

Table 1

Primer sequences used for qRT-PCR"

基因ID Gene ID 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′) 产物大小Product size (bp)
LOC100281769 AGATGGACGCCTTCTTCGAC GGGAGAGCATGGAGACGTTG 105
LOC100281244 CCGAGATCCTACTTCCGCTG GTTGCTCATGGTTGTGCTCG 124
LOC100284018 ACACCAGGTGAAAATGGGCT ATGTCCGTGATACCTGTGCC 117
LOC100272560 GCCTTACATCTGGTCTCCGT TGGATGTGGATGCAGCTCAG 87
LOC100192105 GCTCCAACAACGGACAGATAA CAACGCGACGATCTCACATA 135
LOC100191539 CTACATCAAGGTGCGCAAGC TGACGGCTTTGTAGACGGAC 122
LOC100502480 CAGGCACAGAGCTTCACAGA ATGAGAACGGCCTCAGTGTG 88
LOC103635561 CTGTGACGACCATCAGTGCT GTTCTTGTGCTGCGCTCTTT 112
U76259 GCCTGGTATGGTTGTTACT CATACCCACGCTTCAGATCC 155

Fig. 1

Disease rate of the tested strains"

Fig. 2

The symptoms of maize leaf infected by SG200, SG200-OE-UM01240 and SG200ΔUM01240 strains"

Table 2

Statistics of clean data"

样品
Sample
纯净数据
Clean reads
纯净碱基
Clean bases
GC含量
GC content (%)
Q30含量
Q30 content (%)
总读取数
Total reads
映射总数
Total mapped
S1-1 36037010 10006195830 54.42 93.72 77753256 68092533 (87.58%)
S1-2 35371086 10756440588 55.18 93.16 72962066 64176012 (87.96%)
S1-3 34830256 10583818126 53.72 93.42 69103372 61019566 (88.30%)
S2-1 33467645 10338642702 53.43 93.79 66935290 58565018 (87.49%)
S2-2 37146447 11115049820 54.56 93.93 74292894 66251495 (89.18%)
S2-3 36998045 11070925930 55.14 93.41 73996090 66114684 (89.35%)
S3-1 38876628 11585600834 53.50 93.77 72074020 63135502 (87.60%)
S3-2 36481033 10911121802 55.12 93.68 70742172 62436983 (88.26%)
S3-3 34551686 10420004118 53.72 93.45 69660512 61419088 (88.17%)

Table 3

Statistics of the function annotation"

注释数据库Annotation database 注释数Annotated number 注释百分比Annotated percent (%)
COG注释COG_Annotation 10556 27.21
GO注释GO_Annotation 29131 75.09
KEGG注释KEGG_Annotation 23944 61.72
KOG注释KOG_Annotation 17926 46.21
Pfam注释Pfam_Annotation 28286 72.91
Swiss注释Swiss-Prot_Annotation 23478 60.52
eggNOG注释eggNOG_Annotation 32786 84.51
NR注释NR_Annotation 38693 99.74
全部注释All_Annotation 38795

Fig. 3

Comparison of differentially expressed genes"

Table 4

The overlapping differentially expressed genes between S1-S2 and S3-S2 in the pathogen-plant interaction pathway"

基因ID
Gene ID
差异表达比率
Differential expression ratio
表达变化
Expression change
Pfam功能注释
Pfam annotation
S1-S2 S3-S2
LOC100147737 2.92 2.64 Up WRKY转录因子DNA结合结构域WRKY DNA-binding domain
LOC100277272 2.24 2.18 Up WRKY转录因子DNA结合结构域WRKY DNA-binding domain
LOC100281172 2.61 2.79 Up AP2结构域AP2 domain
LOC100281244 3.10 5.02 Up WRKY转录因子DNA结合结构域WRKY DNA-binding domain
LOC100382219 2.80 2.11 Up 豆科植物凝集素结构域Legume lectin domain
LOC103626179 2.27 3.04 Up 富含亮氨酸重复序列Leucine rich repeat
LOC103626398 2.12 2.60 Up NB-ARC结构域NB-ARC domain
LOC103631918 2.02 2.73 Up 富含半胱氨酸分泌蛋白家族Cysteine-rich secretory protein family
LOC103633564 2.80 3.15 Up WRKY转录因子DNA结合结构域WRKY DNA-binding domain
LOC103634641 2.98 3.72 Up WRKY转录因子DNA结合结构域WRKY DNA-binding domain
LOC103636195 2.03 2.06 Up 酪氨酸蛋白和丝氨酸/苏氨酸蛋白激酶 Protein tyrosine and serine/threonine kinase
LOC103639215 2.44 2.89 Up 蛋白激酶结构域Protein kinase domain
LOC103641459 2.38 2.36 Up 蛋白激酶结构域Protein kinase domain
LOC103653766 2.13 2.61 Up 富含亮氨酸重复序列Leucine rich repeat
LOC103654233 2.36 3.25 Up EF hand结构域EF hand domain
LOC109942268 2.73 3.44 Up WRKY转录因子DNA结合结构域WRKY DNA-binding domain
LOC542352 2.65 2.78 Up 富含半胱氨酸分泌蛋白家族Cysteine-rich secretory protein family
LOC542671 2.07 2.09 Up 蛋白激酶结构域Protein kinase domain
LOC100191595 -2.04 -2.03 Down 脂肪酸链延长酶1/Ⅲ型聚酮合成酶类蛋白 FAE1/Type Ⅲ polyketide synthase-like protein
LOC100193715 -2.36 -3.48 Down 酪氨酸蛋白和丝氨酸/苏氨酸蛋白激酶 Protein tyrosine and serine/threonine kinase
LOC100274438 -2.52 -2.60 Down 蛋白激酶结构域Protein kinase domain
LOC100281769 -2.55 -2.63 Down 脂肪酸链延长酶1/Ⅲ型聚酮合成酶类蛋白 FAE1/Type Ⅲ polyketide synthase-like protein
LOC100283031 -2.45 -2.27 Down 脂肪酸链延长酶1/Ⅲ型聚酮合成酶类蛋白 FAE1/Type Ⅲ polyketide synthase-like protein
LOC100283804 -2.29 -2.44 Down LysM结构域LysM domain
LOC100286138 -2.27 -2.57 Down 脂肪酸链延长酶1/Ⅲ型聚酮合成酶类蛋白 FAE1/Type Ⅲ polyketide synthase-like protein
LOC100381429 -2.68 -2.96 Down 酪氨酸蛋白和丝氨酸/苏氨酸蛋白激酶 Protein tyrosine and serine/threonine kinase
LOC100383536 -2.85 -3.57 Down 酪氨酸蛋白和丝氨酸/苏氨酸蛋白激酶 Protein tyrosine and serine/threonine kinase
LOC103639429 -2.02 -2.46 Down 脂肪酸链延长酶1/Ⅲ型聚酮合成酶类蛋白 FAE1/Type Ⅲ polyketide synthase-like protein
LOC103655094 -2.07 -2.09 Down 脂肪酸链延长酶1/Ⅲ型聚酮合成酶类蛋白 FAE1/Type Ⅲ polyketide synthase-like protein
LOC103656014 -2.40 -2.55 Down 酪氨酸蛋白和丝氨酸/苏氨酸蛋白激酶 Protein tyrosine and serine/threonine kinase
LOC542018 -2.31 -3.64 Down 脂肪酸链延长酶1/Ⅲ型聚酮合成酶类蛋白 FAE1/Type Ⅲ polyketide synthase-like protein

Table 5

The overlapping differentially expressed genes between S1-S2 and S3-S2 in the biosynthetic pathway of flavonoids"

基因ID
Gene ID
差异表达比率
Differential expression ratio
表达变化
Expression change
Pfam功能注释
Pfam annotation
S1-S2 S3-S2
LOC100191539 2.58 2.10 Up 细胞色素P450 Cytochrome P450
LOC100191750 3.29 2.39 Up 转移酶家族Transferase family
LOC100274269 4.40 3.33 Up 转移酶家族Transferase family
LOC100282642 2.02 2.92 Up 查尔酮和茋类化合物合成酶N末端结构域
Chalcone and stilbene synthases, N-terminal domain
LOC100284018 2.16 2.12 Up 查尔酮黄烷酮异构酶Chalcone-flavanone isomerase
LOC100284063 2.19 2.39 Up 转移酶家族Transferase family
LOC100383097 2.17 3.44 Up 转移酶家族Transferase family
LOC103639152 4.11 2.31 Up 转移酶家族Transferase family
LOC103640406 2.71 2.68 Up 氧位甲基转移酶结构域O-methyltransferase domain
LOC103641445 2.86 2.27 Up 细胞色素P450 Cytochrome P450
LOC103653707 2.72 2.03 Up 细胞色素P450 Cytochrome P450
LOC542712 4.42 3.68 Up 2OG-Fe(II)加氧酶超级家族2OG-Fe(II) oxygenase superfamily
LOC100272560 -2.63 -2.50 Down 转移酶家族Transferase family
LOC100304329 -4.17 -3.33 Down 转移酶家族Transferase family
LOC103645956 -2.22 -2.38 Down 转移酶家族Transferase family

Table 6

The overlapping differentially expressed genes between S1-S2 and S3-S2 in the phenylpropane metabolism pathway"

基因ID
Gene ID
差异表达比率
Differential expression ratio
表达变化
Expression change
Pfam功能注释
Pfam annotation
S1-S2 S3-S2
LOC100191539 2.58 2.10 Up 细胞色素P450 Cytochrome P450
LOC100191750 3.29 2.39 Up 转移酶家族Transferase family
LOC100191769 2.11 3.40 Up 过氧化物酶Peroxidase
LOC100273589 2.33 2.04 Up 细胞色素P450 Cytochrome P450
LOC100274269 4.40 3.33 Up 转移酶家族Transferase family
LOC100279348 2.95 2.02 Up 糖苷水解酶家族1 Glycosyl hydrolase family 1
LOC100280077 2.49 2.40 Up 过氧化物酶Peroxidase
LOC100284063 2.19 2.39 Up 转移酶家族Transferase family
LOC100383097 2.17 3.44 Up 转移酶家族Transferase family
LOC103632940 2.37 2.06 Up 依赖NAD的表异构酶/脱水酶家族 NAD dependent epimerase/dehydratase family
LOC103639086 3.45 2.45 Up 过氧化物酶Peroxidase
LOC103639152 4.11 2.31 Up 转移酶家族Transferase family
LOC100191905 -2.94 -2.70 Down 过氧化物酶Peroxidase
LOC100192105 -2.44 -2.17 Down 过氧化物酶Peroxidase
LOC100272560 -2.63 -2.50 Down 转移酶家族Transferase family
LOC100274288 -3.85 -3.85 Down 糖苷水解酶家族1 Glycosyl hydrolase family 1
LOC100281032 -6.25 -3.13 Down 过氧化物酶Peroxidase
LOC100283382 -3.85 -2.78 Down 过氧化物酶Peroxidase
LOC100284675 -2.17 -2.38 Down 过氧化物酶Peroxidase
LOC100381862 -2.86 -2.38 Down 糖苷水解酶家族1 Glycosyl hydrolase family 1
LOC100382272 -2.33 -2.17 Down AMP结合酶AMP-binding enzyme
LOC103645956 -2.22 -2.38 Down 转移酶家族Transferase family
LOC541913 -4.55 -3.70 Down 乙醛脱氢酶家族Aldehyde dehydrogenase family

Table 7

The overlapping differentially expressed genes between S1-S2 and S3-S2 in the plant hormone signal transduction pathway"

基因ID
Gene ID
相关植物激素
Related plant hormone
差异表达比率
Differential expression ratio
表达变化
Expression change
Pfam功能注释
Pfam annotation
S1-S2 S3-S2
LOC100193646 茉莉酸
Jasmonic acid
3.02 2.18 Up 螺旋-环-螺旋DNA结合域
Helix-loop-helix DNA-binding domain
LOC100282558 生长素Auxin 3.97 2.36 Up 生长素应答蛋白Auxin responsive protein
LOC103626859 水杨酸Salicylic acid 3.14 2.09 Up 种子休眠控制Seed dormancy control
LOC103631918 水杨酸Salicylic acid 2.73 2.02 Up 富含半胱氨酸分泌蛋白家族
Cysteine-rich secretory protein family
LOC103635561 茉莉酸Jasmonic acid 3.81 2.39 Up 螺旋-环-螺旋DNA结合域
Helix-loop-helix DNA-binding domain
LOC103635662 赤霉素Gibberellin 2.38 2.06 Up α/β水解酶折叠alpha/beta hydrolase fold
LOC103636195 水杨酸Salicylic acid 2.06 2.03 Up 酪氨酸蛋白和丝氨酸/苏氨酸蛋白激酶
Protein tyrosine and serine/threonine kinase
LOC103639215 油菜素甾醇Brassicasterol 2.89 2.44 Up 蛋白激酶结构域Protein kinase domain
LOC103641459 油菜素甾醇Brassicasterol 2.36 2.38 Up 蛋白激酶结构域Protein kinase domain
LOC103646635 细胞分裂素Cytokinin 2.36 2.30 Up 应答调控蛋白受体结构域
Response regulator receiver domain
LOC103649622 茉莉酸Jasmonic acid 3.10 2.59 Up 螺旋-环-螺旋DNA结合域
Helix-loop-helix DNA-binding domain
LOC103650261 油菜素甾醇Brassicasterol 2.69 2.33 Up 富含亮氨酸重复序列Leucine rich repeat
LOC103650987 生长素Auxin 2.42 2.04 Up 跨膜氨基酸转运蛋白
Transmembrane amino acid transporter protein
LOC542352 水杨酸
Salicylic acid
2.78 2.65 Up 富含半胱氨酸分泌蛋白家族
Cysteine-rich secretory protein family
LOC542671 油菜素甾醇Brassicasterol 2.09 2.07 Up 蛋白激酶结构域Protein kinase domain
LOC100191484 油菜素甾醇Brassicasterol -3.23 -2.63 Down 酪氨酸蛋白和丝氨酸/苏氨酸蛋白激酶
Protein tyrosine and serine/threonine kinase
LOC100191784 生长素Auxin -2.86 -2.94 Down 生长素应答因子Auxin response factor
LOC100194106 茉莉酸Jasmonic acid -2.70 -2.13 Down 螺旋-环-螺旋DNA结合域
Helix-loop-helix DNA-binding domain
LOC100274111 油菜素甾醇Brassicasterol -2.78 -2.17 Down BES1/BZR1转录因子N末端
BES1/BZR1 plant transcription factor, N-terminal
LOC100274569 生长素Auxin -2.22 -2.38 Down Aux/IAA家族AUX/IAA family
LOC100282511 油菜素甾醇Brassicasterol -2.38 -2.50 Down 蛋白激酶结构域Protein kinase domain
LOC100283579 生长素Auxin -2.56 -2.78 Down Aux/IAA家族AUX/IAA family
LOC100284259 生长素Auxin -2.86 -2.63 Down Aux/IAA家族AUX/IAA family
LOC100284262 生长素Auxin -2.56 -2.94 Down Aux/IAA家族AUX/IAA family
LOC100382395 油菜素甾醇Brassicasterol -4.76 -4.76 Down 蛋白激酶结构域Protein kinase domain
LOC100384222 茉莉酸Jasmonic acid -3.33 -2.22 Down Jas基序Jas motif
LOC100384328 生长素Auxin -2.86 -2.08 Down 生长素应答因子Auxin response factor
LOC100502480 生长素Auxin -2.17 -2.13 Down 生长素应答因子Auxin response factor
LOC103633580 乙烯Ethylene -4.76 -2.86 Down 乙烯不敏感因子3 Ethylene insensitive 3
LOC103636232 油菜素甾醇Brassicasterol -2.13 -2.38 Down 蛋白激酶结构域Protein kinase domain
LOC103647498 茉莉酸Jasmonic acid -2.78 -2.13 Down 功能未知蛋白质DUF547
Protein of unknown function, DUF547
LOC103650745 水杨酸Salicylic acid -2.86 -2.08 Down BTB/POZ蛋白质结构域BTB/POZ domain
LOC542195 脱落酸Abscisic acid -16.67 -16.67 Down 病程相关蛋白Bet v 1家族
Pathogenesis-related protein Bet v 1 family

Fig. 4

The qRT-PCR validation of the RNA-Seq data on gene expression in different signal pathways"

[1]
DE LANGE E S, BALMER D, MAUCH-MANI B, TURLINGS T C J. Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytologist, 2014, 204(2): 329-341.
[2]
REDKAR A, MATEI A, DOEHLEMANN G. Insights into host cell modulation and induction of new cells by the corn smut Ustilago maydis. Frontiers in Plant Science, 2017, 8: 899.
[3]
CUI H, TSUDA K, PARKER J E. Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 2015, 66: 487-511.

doi: 10.1146/annurev-arplant-050213-040012 pmid: 25494461
[4]
LANVER D, TOLLOT M, SCHWEIZER G, LO PRESTI L, REISSMANN S, MA L S, SCHUSTER M, TANAKA S, LIANG L, LUDWIG N, KAHMANN R. Ustilago maydis effectors and their impact on virulence. Nature Reviews Microbiology, 2017, 15(7): 409-421.
[5]
DUTHEIL J Y, MANNHAUPT G, SCHWEIZER G, SIEBER C, MÜNSTERKÖTTER M, GÜLDENER U, SCHIRAWSKI J, KAHMANN R. A tale of genome compartmentalization: The evolution of virulence clusters in smut fungi. Genome Biology and Evolution, 2016, 8(3): 681-704.

doi: 10.1093/gbe/evw026 pmid: 26872771
[6]
MUELLER A N, ZIEMANN S, TREITSCHKE S, AßMANN D, DOEHLEMANN G. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathogens, 2013, 9(2): e1003177.
[7]
TANAKA S, BREFORT T, NEIDIG N, DJAMEI A, KAHNT J, VERMERRIS W, KOENIG S, FEUSSNER K, FEUSSNER I, KAHMANN R. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife, 2014, 3: e01355.
[8]
TANAKA S, SCHWEIZER G, RÖSSEL N, FUKADA F, THINES M, KAHMANN R. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Nature Microbiology, 2019, 4(2): 251-257.
[9]
李宏伟. 玉蜀黍黑粉菌Bizl调控基因功能研究[D]. 长春: 吉林大学, 2012.
LI H W. Function identification of Biz1 induced genes in Ustilago maydis[D]. Changchun: Jilin University, 2012. (in Chinese)
[10]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.

doi: 10.1038/nmeth.3317 pmid: 25751142
[11]
PERTEA M, PERTEA G M, ANTONESCU C M, CHANG T C, MENDELL J T, SALZBERG S. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nature Biotechnology, 2015, 33(3): 290-295.

doi: 10.1038/nbt.3122 pmid: 25690850
[12]
FLOREA L, SONG L, SALZBERG S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000 Research, 2013, 2: 188.
[13]
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biology, 2014, 15(12): 550.
[14]
PANDEY S P, SOMSSICH I E. The role of WRKY transcription factors in plant immunity. Plant Physiology, 2009, 150(4): 1648-1655.

doi: 10.1104/pp.109.138990 pmid: 19420325
[15]
GAMIR J, DARWICHE R, VAN’T HOF P, CHOUDHARY V, STUMPE M, SCHNEITER R, MAUCH F. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal, 2017, 89(3): 502-509.

doi: 10.1111/tpj.13398 pmid: 27747953
[16]
GHORBEL M, ZRIBI I, MISSAOUI K, DRIRA-FAKHFEKH M, AZZOUZI B, BRINI F. Differential regulation of the durum wheat pathogenesis-related protein (PR1) by calmodulin TdCaM1.3 protein. Molecular Biology Reports, 2021, 48(1): 347-362.

doi: 10.1007/s11033-020-06053-7 pmid: 33313970
[17]
GUO J, BAI Y, WEI Y, DONG Y, ZENG H, REITER R J, SHI H. Fine-tuning of pathogenesis-related protein 1 (PR1) activity by the melatonin biosynthetic enzyme ASMT2 in defense response to cassava bacterial blight. Journal of Pineal Research, 2022, 72(2): e12784.
[18]
HE P, WARREN R F, ZHAO T, SHAN L, ZHU L, TANG X, ZHOU J M. Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Molecular Plant-Microbe Interactions, 2001, 14(12): 1453-1457.
[19]
BOISARD S, LE RAY A M, LANDREAU A, KEMPF M, CASSISA V, FLURIN C, RICHOMME P. Antifungal and antibacterial metabolites from a French poplar type propolis. Evidence-Based Complementary and Alternative Medicine, 2015, 2015: 319240.
[20]
SUN M, LI L, WANG C, WANG L, LU D, SHEN D, WANG J, JIANG C, CHENG L, PAN X, et al. Naringenin confers defence against Phytophthora nicotianae through antimicrobial activity and induction of pathogen resistance in tobacco. Molecular Plant Pathology, 2022, 23(12): 1737-1750.
[21]
LIU X, CUI X, JI D, ZHANG Z, LI B, XU Y, CHEN T, TIAN S. Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chemistry, 2021, 342: 128309.
[22]
WANG X G, WEI X Y, TIAN Y Q, SHEN L T, XU H H. Antifungal flavonoids from Ficus sarmentosa var. henryi (King) Corner. Agricultural Sciences in China, 2010, 9(5): 690-694.
[23]
ZHANG R, LEE I K, PIAO M J, KIM K C, KIM A D, KIM H S, CHAE S, KIM H S, HYUN J W. Butin (7,3’,4’- trihydroxydihydroflavone) reduces oxidative stress-induced cell death via inhibition of the mitochondria-dependent apoptotic pathway. International Journal of Molecular Sciences, 2011, 12(6): 3871-3887.
[24]
PARVIN K, HASANUZZAMAN M, BHUYAN M H, MOHSIN S M, FUJITA M. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants, 2019, 8(8): 247.
[25]
LIU T, LI Z, LI R, CUI Y, ZHAO Y, YU Z. Composition analysis and antioxidant activities of the Rhus typhina L. stem. Journal of Pharmaceutical Analysis, 2019, 9(5): 332-338.
[26]
LOU H, JING X, REN D, WEI X, ZHANG X. Eriodictyol protects against H2O2-induced neuron-like PC12 cell death through activation of Nrf2/ARE signaling pathway. Neurochemistry International, 2012, 61(2): 251-257.
[27]
LIU H, GUO Z, GU F, KE S, SUN D, DONG S, LIU W, HUANG M, XIAO W, YANG G, LIU Y, GUO T, WANG H, WANG J, CHEN Z. 4-Coumarate-CoA ligase-like gene OsAAE3 negatively mediates the rice blast resistance, floret development and lignin biosynthesis. Frontiers in Plant Science, 2017, 7: 2041.
[28]
MUTUKU J M, CUI S, HORI C, TAKEDA Y, TOBIMATSU Y, NAKABAYASHI R, MORI T, SAITO K, DEMURA T, UMEZAWA T, YOSHIDA S, SHIRASU K. The structural integrity of lignin is crucial for resistance against Striga hermonthica parasitism in rice. Plant Physiology, 2019, 179(4): 1796-1809.
[29]
SHREAZ S, BHATIA R, KHAN N, MURALIDHAR S, MANZOOR N, KHAN L A. Influences of cinnamic aldehydes on H+ extrusion activity and ultrastructure of Candida. Journal of Medical Microbiology, 2013, 62(2): 232-240.
[30]
WANG Y, FENG K W, YANG H H, YUAN Y H, YUE T L. Antifungal mechanism of cinnamaldehyde and citral combination against Penicillium expansum based on FT-IR fingerprint, plasma membrane, oxidative stress and volatile profile. RSC Advances, 2018, 8(11): 5806-5815.
[31]
OUYANG Q, DUAN X, LI L, TAO N. Cinnamaldehyde exerts its antifungal activity by disrupting the cell wall integrity of Geotrichum citri-aurantii. Frontiers in Microbiology, 2019, 10: 55.
[32]
STANGE R R, ALESSANDRO R, MC COLLUM T G, MAYER R T. Studies on the phloroglucinol-HCl reactive material produced by squash fruit elicited with pectinase: Isolation using hydrolytic enzymes and release of p-coumaryl aldehyde by water reflux. Physiological and Molecular Plant Pathology, 2002, 60(6): 283-291.
[33]
JIA C, ZHANG J, YU L, WANG C, YANG Y, RONG X, XU K, CHU M. Antifungal activity of coumarin against Candida albicans is related to apoptosis. Frontiers in Cellular and Infection Microbiology, 2019, 8: 445.
[34]
WANG D, PAJEROWSKA-MUKHTAR K, CULLER A H, DONG X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology, 2007, 17(20): 1784-1790.

doi: 10.1016/j.cub.2007.09.025 pmid: 17919906
[35]
FU J, LIU H, LI Y, YU H, LI X, XIAO J, WANG S. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiology, 2011, 155(1): 589-602.

doi: 10.1104/pp.110.163774 pmid: 21071600
[36]
ZHANG Y, XU S, DING P, WANG D, CHENG Y T, HE J, GAO M, XU F, LI Y, ZHU Z, LI X, ZHANG Y. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 18220-18225.
[37]
SÁNCHEZ G, GERHARDT N, SICILIANO F, VOJNOV A, MALCUIT I, MARANO M R. Salicylic acid is involved in the Nb-mediated defense responses to potato virus X in Solanum tuberosum. Molecular Plant-Microbe Interactions, 2010, 23(4): 394-405.
[38]
TRIPATHI D, JIANG Y L, KUMAR D. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Letters, 2010, 584(15): 3458-3463.

doi: 10.1016/j.febslet.2010.06.046 pmid: 20621100
[39]
YANG S, CAI W, SHEN L, WU R, CAO J, TANG W, LU Q, HUANG Y, GUAN D, HE S. Solanaceous plants switch to cytokinin-mediated immunity against Ralstonia solanacearum under high temperature and high humidity. Plant, Cell & Environment, 2022, 45(2): 459-478.
[40]
CHOI J, HUH S U, KOJIMA M, SAKAKIBARA H, PAEK K H, HWANG I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Developmental Cell, 2010, 19(2): 284-295.
[41]
张锴, 王宇, 孙伟明, 杨敏, 司增志, 刘潇阳, 符杨磊, 韩柯敏. 喷施外源GA对SMV侵染的野生大豆抗病性的影响. 植物病理学报, 2019, 49(5): 681-687.

doi: 10.13926/j.cnki.apps.000398
ZHANG K, WANG Y, SUN W M, YANG M, SI Z Z, LIU X Y, FU Y L, HAN K M. Effects of exogenous GA application on disease resistance of wild soybean infected by soybean mosaic virus. Acta Phytopathologica Sinica, 2019, 49(5): 681-687. (in Chinese)

doi: 10.13926/j.cnki.apps.000398
[42]
HED B, NGUGI H K, TRAVIS J W. Use of gibberellic acid for management of bunch rot on chardonnay and vignoles grape. Plant Disease, 2011, 95(3): 269-278.

doi: 10.1094/PDIS-05-10-0382 pmid: 30743507
[43]
LIU D, ZHAO Q, CUI X, CHEN R, LI X, QIU B, GE F. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate. Genes & Genomics, 2019, 41(12): 1383-1396.
[44]
WANG Z, TAN X, ZHANG Z, GU S, LI G, SHI H. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Science, 2012, 184: 75-82.
[45]
AMEYE M, AUDENAERT K, DE ZUTTER N, STEPPE K, VAN MEULEBROEK L, VANHAECKE L, DE VLEESSCHAUWER D, HAESAERT G, SMAGGHE G. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiology, 2015, 167(4): 1671-1684.
[46]
MOOSA A, SAHI S T, KHAN S, MALIK A U. Salicylic acid and jasmonic acid can suppress green and blue moulds of citrus fruit and induce the activity of polyphenol oxidase and peroxidase. Folia Horticulturae, 2019, 31(1): 195-204.
[47]
SCALSCHI L, SANMARTÍN M, CAMAÑES G, TRONCHO P, SÁNCHEZ-SERRANO J J, GARCÍA-AGUSTÍN P, VICEDO B. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. The Plant Journal, 2015, 81(2): 304-315.
[48]
肖刘华, 康乃慧, 李树成, 郑致远, 罗绕绕, 陈金印, 陈明, 向妙莲. 茉莉酸甲酯对猕猴桃果实抗葡萄座腔菌过程中能量代谢和膜脂代谢的影响. 中国农业科学, 2024, 57(7): 1377-1393. doi: 10.3864/j.issn.0578-1752.2024.07.013.
XIAO L H, KANG N H, LI S C, ZHENG Z Y, LUO R R, CHEN J Y, CHEN M, XIANG M L. Effect of methyl jasmonate on energy metabolism and membrane lipid metabolism during resistance to Botryosphaeria dothidea in kiwifruit. Scientia Agricultura Sinica, 2024, 57(7): 1377-1393. doi: 10.3864/j.issn.0578-1752.2024.07.013. (in Chinese)
[49]
叶霈颖, 司二静, 鲁宗辉, 汪军成, 王化俊, 孟亚雄. 外源茉莉酸甲酯诱导大麦叶斑病抗性研究. 西北植物学报, 2024, 44(4): 529-538.
YE P Y, SI E J, LU Z H, WANG J C, WANG H J, MENG Y X. Induction of resistance to spot blotch in Hordeum vulgare L. by exogenous methyl jasmonate. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(4): 529-538. (in Chinese)
[50]
YUAN D P, ZHANG C, WANG Z Y, ZHU X F, XUAN Y H. RAVL1 activates brassinosteroids and ethylene signaling to modulate response to sheath blight disease in rice. Phytopathology, 2018, 108(9): 1104-1113.
[51]
CURVERS K, SEIFI H, MOUILLE G, DE RYCKE R, ASSELBERGH B, VAN HECKE A, VANDERSCHAEGHE D, HÖFTE H, CALLEWAERT N, VAN BREUSEGEM F, HÖFTE M. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiology, 2010, 154(2): 847-860.
[52]
KUSAJIMA M, YASUDA M, KAWASHIMA A, NOJIRI H, YAMANE H, NAKAJIMA M, AKUTSU K, NAKASHITA H. Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. Journal of General Plant Pathology, 2010, 76(2): 161-167.
[53]
KÄMPER J, KAHMANN R, BÖLKER M, MA L J, BREFORT T, SAVILLE B J, BANUETT F, KRONSTAD J W, GOLD S E, MÜLLER O, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444(7115): 97-101.
[1] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[2] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[3] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[4] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[5] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[6] PAN Yuan, WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses [J]. Scientia Agricultura Sinica, 2025, 58(2): 266-280.
[7] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[8] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[9] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[10] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[11] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[12] WU QiBin, XIE WanJie, ZHONG Hui, FENG ChunYan, PAN HaoRan, QI YiYing, ZHANG JiSen, WANG HengBo. Identification of the Bru1 Genomic Region for Brown Rust Resistance and Functional Analysis of Candidate Resistance Genes in Sugarcane [J]. Scientia Agricultura Sinica, 2024, 57(5): 855-867.
[13] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[14] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!