Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4528-4543.doi: 10.3864/j.issn.0578-1752.2025.21.020

• EXPLORATION OF SALT-ALKALI AND DROUGHT RESISTANT GENES FOR ALFALFA BREEDING • Previous Articles     Next Articles

Identification of Key Drought-Responsive Genes in Upright Medicago ruthenica Sojak cv. Zhilixing Based on Transcriptome Sequencing and WGCNA

MU YingTong(), LU JingShi, ZHANG YuTong, SHI FengLing()   

  1. College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010018
  • Received:2024-12-31 Accepted:2025-08-19 Online:2025-11-01 Published:2025-11-06
  • Contact: SHI FengLing

Abstract:

【Background】Drought stress is one of the major abiotic factors limiting global agricultural productivity. Systematic elucidation of transcriptional regulatory mechanisms during drought and rehydration processes is crucial for improving crop drought tolerance and advancing molecular breeding strategies. Medicago ruthenica Sojak cv. Zhilixing, a perennial leguminous forage species, exhibits strong ecological adaptability and drought resistance.【Objective】This study aimed to identify key regulatory modules and core functional genes involved in drought and rehydration responses through transcriptome analysis and co-expression network construction, thereby revealing the underlying molecular mechanisms. 【Method】Four treatment stages were established, including normal irrigation (Group A), mid-term drought stress (Group B), late-stage drought stress (Group C), and post-rehydration (Group D), to simulate the transcriptional response of M. ruthenica under progressive drought and recovery conditions. High-throughput RNA sequencing was performed to obtain gene expression profiles, followed by weighted gene co-expression network analysis (WGCNA) to construct expression modules. Principal component analysis (PCA) and KEGG pathway enrichment were conducted to assess expression variation and functional clustering. Modules and hub genes closely associated with drought tolerance were identified, and six representative genes from the MEmagenta and MEdarkgreen modules were selected for qRT-PCR validation to assess data consistency and biological relevance. 【Result】PCA revealed clear separation of samples across PC1 and PC2 dimensions, indicating stage-specific effects of drought and rehydration treatments on gene expression patterns. Differential expression analysis showed the greatest number of up- and down-regulated genes during mid-stage drought (Group B), suggesting rapid activation of stress- responsive mechanisms. In the late-stage drought (Group C), fewer differentially expressed genes were observed, while pathways related to fatty acid degradation and carbohydrate metabolism were significantly enriched, suggesting a shift toward homeostatic regulation. During rehydration (Group D), most gene expression levels gradually recovered, although some signaling and defense pathways remained active, indicating ongoing adaptive modulation.WGCNA identified four modules significantly correlated with specific treatments (|r| > 0.6). The MEdarkgreen module (r = 0.93), highly expressed in Group C, was enriched in MAPK signaling, endoplasmic reticulum (ER) stress response, lipid metabolism, and flavonoid biosynthesis. Hub genes BZIP17 and IRE1B were implicated in ER stress signaling, protein folding regulation, and transcriptional reprogramming, indicating their key roles in prolonged drought adaptation. The MEmagenta module (r = 0.82), highly expressed under normal conditions (Group A), was enriched in ABA and JA signaling pathways, as well as flavonoid metabolism. Its core genes, ABF4 and MYC2, are involved in stomatal regulation and secondary metabolic control, functioning as crucial regulators during the early drought response. Additional genes such as NAC072 and CLPD contribute to chloroplast protein stability and reactive oxygen species scavenging, supporting their multifaceted roles in stress mitigation. KEGG enrichment results were highly consistent with module functions, confirming the reliability of functional annotations. qRT-PCR analysis showed that all six selected genes were significantly upregulated during mid and late drought stages (Groups B and C) and downregulated upon rehydration (Group D), mirroring RNA-seq expression patterns and validating the biological relevance of the identified modules and genes. 【Conclusion】This study reveals dynamic transcriptional regulation patterns in M. ruthenica under drought stress and rehydration. Two key modules, MEmagenta and MEdarkgreen, were identified as strongly associated with drought adaptation, encompassing hub genes such as ABF4, MYC2, BZIP17, and IRE1B. These genes play central roles in signal transduction, metabolic adjustment, and stress response, representing core components of the molecular mechanisms underlying drought adaptation in M. ruthenica. The findings provide a theoretical foundation and candidate targets for elucidating drought-responsive pathways and advancing molecular breeding of drought-resilient forage crops.

Key words: Medicago ruthenica, transcriptome, weighted gene co-expression network analysis (WGCNA), drought resistance, key genes

Table 1

Transcript annotation information"

数据库Database 注释到基因数Number of genes annotated 占比Proportion (%)
Kyoto Encyclopedia of Genes and Genomes (KEGG) 20123 73.18
Gene Ontology (GO) 16526 60.10
NCBI non-redundant protein sequences (Nr) 22495 81.81
Swiss-Prot Protein Sequence Database (SwissProt) 14939 54.33
Translated EMBL Nucleotide Sequence Data Library (TrEMBL) 15227 55.37
Eukaryotic Orthologous Groups (KOG) 15034 54.67
Protein Families Database (Pfam) 16390 59.60

Fig. 1

Integrated analysis of differentially expressed genes under drought stress and rehydration treatments a: Venn diagram showing the overlap of differentially expressed genes (DEGs) among the three comparison groups (BvsA, CvsA, DvsA); b: Volcano plots displaying significantly upregulated, downregulated, and non-significant genes in each comparison; c: PCA 2D distribution plot illustrating the expression divergence among treatment samples in principal component space"

Fig. 2

KEGG pathway enrichment analysis"

Fig. 3

Network topology analysis, gene clustering tree and module segmentation with soft thresholds a: Soft-threshold selection plot; b: Gene cluster dendrogram"

Fig. 4

Heatmap of module-sample relationship correlation"

Fig. 5

KEGG enrichment analysis of key gene modules"

Fig. 6

Gene interaction network diagram a: MEmagenta hub gene interaction network; b: MEmagenta hub gene expression; c: MEdarkgreen hub gene interaction network; d: MEdarkgreen hub gene expression"

Table 2

Functional annotation of hub genes"

模块
Module
核心基因
Hub gene
核心基因在拟南
芥的同源基因
Hub gene in
A. thaliana
log2FoldChange (BvsA) 基因功能
Gene function
MEmagenta ABF4 AT4G34000.1 1.58 参与干旱胁迫下的ABA信号传导通路,调控下游防御基因的表达,增强植物的抗逆性
Involved in ABA signaling pathways under drought stress, regulating the expression of downstream defense genes and enhancing plant stress tolerance
CLPD AT1G06850.1 2.22 ATP依赖型蛋白酶,主要作用于叶绿体中蛋白质的降解与稳态调节,维持光合作用正常进行
ATP-dependent protease primarily functioning in chloroplast protein degradation and homeostasis, ensuring the proper function of photosynthesis
LTI65 AT5G52310.1 0.53 低温诱导基因,参与植物低温适应过程,调控冷胁迫下的细胞膜稳定性
Cold-inducible gene involved in plant cold adaptation, regulating cell membrane stability under cold stress
NAC072 AT4G27410.1 1.37 NAC转录因子,调控植物细胞死亡和胁迫响应基因的表达,与植物防御机制密切相关
NAC transcription factor regulating programmed cell death and the expression of stress-responsive genes, closely associated with plant defense mechanisms
MYC2 AT1G32640.1 0.49 bHLH转录因子,调控茉莉酸信号通路相关基因的表达,在胁迫响应和次生代谢调控中发挥重要作用
bHLH transcription factor regulating jasmonic acid pathway-related genes, playing a critical role in stress responses and secondary metabolism
PXG3 AT5G15120.1 3.74 参与植物体内的过氧化物分解,与植物抗氧化应激机制相关,调节细胞内活性氧水平
Involved in peroxidation decomposition within plants, associated with antioxidant stress mechanisms and regulating intracellular reactive oxygen species levels
NCED3 AT3G14440.1 0.41 胡萝卜素裂解酶,催化ABA合成的关键步骤,调控植物在干旱胁迫下的抗逆性
Carotenoid cleavage dioxygenase catalyzing a key step in ABA biosynthesis, regulating plant drought stress tolerance
MEdarkgreen BZIP17 AT2G40950.1 0.79 bZIP转录因子,调控植物在盐胁迫和内质网应激条件下的基因表达,参与胁迫信号传导网络
bZIP transcription factor regulating gene expression under salt and endoplasmic reticulum stress, involved in stress signaling networks
JUF2 AT3G61260.1 3.59 可能调控细胞分裂素相关基因的表达,与细胞分裂与增殖密切相关
Potentially regulates cytokinin-related gene expression, closely associated with cell division and proliferation
IRE1B AT5G24360.1 0.85 内质网应激信号通路的重要因子,裂解XBP1 mRNA以激活下游应激基因表达
Key factor in endoplasmic reticulum stress signaling, splicing XBP1 mRNA to activate downstream stress-responsive genes
S2P AT1G20130.1 0.36 跨膜蛋白裂解酶,调控信号蛋白的活性,与内质网-细胞核信号转导过程相关
Membrane-bound protease regulating the activity of signal proteins, associated with endoplasmic reticulum-to-nucleus signal transduction
BIP3 AT1G09080.1 0.63 内质网伴侣蛋白,帮助蛋白质正确折叠,缓解内质网压力,参与内质网应激响应
Endoplasmic reticulum chaperone protein assisting proper protein folding, alleviating ER stress, and participating in ER stress responses
SPC25 AT3G11980.1 1.47 动态微管蛋白复合体的核心蛋白,调控细胞分裂过程中纺锤体的组装与稳定性
Core protein of the dynamic microtubule complex, regulating spindle assembly and stability during cell division
BZIP9 AT5G24800.1 1.37 bZIP转录因子,与植物激素响应和代谢相关基因的调控密切相关
bZIP transcription factor closely involved in regulating genes related to plant hormone responses and metabolism
IRE1A AT2G17520.1 0,85 内质网应激通路的调控因子,功能类似IRE1B,增强植物对内质网压力的适应能力
Regulatory factor of the ER stress pathway, functionally similar to IRE1B, enhancing plant adaptation to ER stress
BZIP8 AT4G34590.1 0.48 bZIP转录因子,可能参与光合产物分配与胁迫信号的调控过程
bZIP transcription factor potentially involved in the allocation of photosynthetic products and stress signaling
SBT6.1 AT1G32940.1 0.09 丝氨酸蛋白酶,可能参与胁迫下细胞壁的重塑过程,调控细胞生长与分化
Serine protease potentially involved in cell wall remodeling under stress, regulating cell growth and differentiation
BZIP10 AT4G02640.1 0.41 bZIP转录因子,可能与光信号通路相关,调控光合作用和植物生长发育基因的表达
bZIP transcription factor potentially associated with light signaling pathways, regulating photosynthesis and genes related to plant growth and development

Fig. 7

qRT-PCR validation"

[1]
DAI A G. Drought under global warming: A review. WIREs Climate Change, 2011, 2(1): 45-65.
[2]
ABDELGAWAD H, FARFAN-VIGNOLO E R, DE VOS D, ASARD H. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Science, 2015, 231: 1-10.
[3]
FANG Y J, XIONG L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.

doi: 10.1007/s00018-014-1767-0 pmid: 25336153
[4]
PANDEY V, SHUKLA A. Acclimation and tolerance strategies of rice under drought stress. Rice Science, 2015, 22(4): 147-161.

doi: 10.1016/S1672-6308(14)60289-4
[5]
BEN AHMED C, BEN ROUINA B, BOUKHRIS M, BEN ABDALLAH F. Changes in osmotic potential, soluble sugars, and proline concentrations in leaves during water deficit and subsequent recovery in two olive cultivars. Plant Science, 2009, 177(6): 333-339.
[6]
AHANGER M A, AGARWAL R M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 2017, 115: 449-460.
[7]
杜宝红, 石凤翎, 王晓英. 扁蓿豆根系及根颈形态变化与抗寒性关系的初步研究. 农业与技术, 2018, 38(18): 17-18.
DU B H, SHI F L, WANG X Y. Preliminary study on the relationship between root and neck morphological changes and cold resistance of alfalfa. Agriculture and Technology, 2018, 38(18): 17-18. (in Chinese)
[8]
吴征镒. 中国植物志. 北京: 科学出版社, 1998: 318-320.
WU Z Y. Flora of China. Beijing: Science Press, 1998: 318-320. (in Chinese)
[9]
YANG J Y, ZHENG W, TIAN Y, WU Y, ZHOU D W. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284.
[10]
刘洁, 胡蝶, 楚海家, 闫娟, 李建强. 花苜蓿抗旱耐盐EST-SSR标记筛选. 植物科学学报, 2013, 31(5): 493-499.
LIU J, HU D, CHU H J, YAN J, LI J Q. Screening of drought-and salinity-responsive EST-SSR markers in Medicago ruthenica trautv. Plant Science Journal, 2013, 31(5): 493-499. (in Chinese)
[11]
董奇琦, 艾鑫, 张艳正, 张克朝, 周东英, 王晓光, 蒋春姬, 赵姝丽, 钟超, 王婧, 于海秋, 赵新华. 干旱胁迫对不同耐性花生品种生理特性及产量的影响. 沈阳农业大学学报, 2020, 51(1): 18-26.
DONG Q Q, AI X, ZHANG Y Z, ZHANG K Z, ZHOU D Y, WANG X G, JIANG C J, ZHAO S L, ZHONG C, WANG J, YU H Q, ZHAO X H. Effect of drought stress on physiological characteristics and yield in different tolerant peanut. Journal of Shenyang Agricultural University, 2020, 51(1): 18-26. (in Chinese)
[12]
李欢, 樊军锋, 高建社, 周永学. 黑杨叶片旱生结构的比较. 西北林学院学报, 2013, 28(3): 113-118.
LI H, FAN J F, GAO J S, ZHOU Y X. Comparison on drought resistance on anatomical structures of black poplar leaf. Journal of Northwest Forestry University, 2013, 28(3): 113-118. (in Chinese)
[13]
SRIVASTAVA S, PATHAK A D, GUPTA P S, SHRIVASTAVA A K, SRIVASTAVA A K. Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. Journal of Environmental Biology, 2012, 33(3): 657-661.

pmid: 23029918
[14]
肖红, 王芳, 段春华, 景媛媛, 陈陆军, 张建文, 杨海磊, 鱼小军. 不同扁蓿豆种质孕蕾期抗旱性综合评价. 干旱地区农业研究, 2016, 34(5): 62-68.
XIAO H, WANG F, DUAN C H, JING Y Y, CHEN L J, ZHANG J W, YANG H L, YU X J. Comprehensive evaluation of drought resistance of different Medicago ruthenica germplasms at the budding stage. Agricultural Research in the Arid Areas, 2016, 34(5): 62-68. (in Chinese)
[15]
LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.

doi: 10.1186/1471-2105-9-559 pmid: 19114008
[16]
高晨曦, 郝陆洋, 胡悦, 李永祥, 张登峰, 李春辉, 宋燕春, 石云素, 王天宇, 黎裕, 刘旭洋. 干旱条件下玉米转座子插入关联的表观调控分析. 中国农业科学, 2024, 57(6): 1034-1049. doi: 10.3864/j.issn.0578-1752.2024.06.002.
GAO C X, HAO L Y, HU Y, LI Y X, ZHANG D F, LI C H, SONG Y C, SHI Y S, WANG T Y, LI Y, LIU X Y. Analysis of transposable element associated epigenetic regulation under drought in maize. Scientia Agricultura Sinica, 2024, 57(6): 1034-1049. doi: 10.3864/j.issn.0578-1752.2024.06.002. (in Chinese)
[17]
陈晓涓, 王海菊, 王富敏, 雍清青, 黄顺满, 屈燕. 基于WGCNA鉴定全缘叶绿绒蒿类黄酮合成途径关键基因. 中国农业科学, 2024, 57(15): 3053-3070. doi: 10.3864/j.issn.0578-1752.2024.15.011.
CHEN X J, WANG H J, WANG F M, YONG Q Q, HUANG S M, QU Y. Identification of key genes in the flavonoid synthesis pathway of Meconopsis integrifolia based on WGCNA. Scientia Agricultura Sinica, 2024, 57(15): 3053-3070. doi: 10.3864/j.issn.0578-1752.2024.15.011. (in Chinese)
[18]
彭佳伟, 张叶, 寇单单, 杨丽, 刘晓飞, 张学英, 陈海江, 田义. ‘仓方早生’桃及其早熟芽变不同发育时期果实的转录组分析. 中国农业科学, 2023, 56(5): 964-980. doi: 10.3864/j.issn.0578-1752.2023.05.012.
PENG J W, ZHANG Y, KOU D D, YANG L, LIU X F, ZHANG X Y, CHEN H J, TIAN Y. Transcriptome analysis of peach fruits at different developmental stages in peach kurakato wase and early- ripening mutant. Scientia Agricultura Sinica, 2023, 56(5): 964-980. doi: 10.3864/j.issn.0578-1752.2023.05.012. (in Chinese)
[19]
ZHAO W, LANGFELDER P, FULLER T, DONG J, LI A, HOVARTH S. Weighted gene coexpression network analysis: State of the art. Journal of Biopharmaceutical Statistics, 2010, 20(2): 281-300.

doi: 10.1080/10543400903572753 pmid: 20309759
[20]
黄涛, 熊辉岩, 段瑞君. 大麦干旱胁迫多转录组整合分析及共表达网络的构建. 植物生理学报, 2024, 60(4): 697-713.
HUANG T, XIONG H Y, DUAN R J. Multi-transcriptome integration analysis and co-expression network construction of barley under drought stress. Plant Physiology Journal, 2024, 60(4): 697-713. (in Chinese)
[21]
李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析. 作物学报, 2022, 48(7): 1583-1611.

doi: 10.3724/SP.J.1006.2022.14121
LI P T, ZHAO Z L, HUANG C H, HUANG G Q, XU L N, DENG Z H, ZHANG Y, ZHAO X W. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA. Acta Agronomica Sinica, 2022, 48(7): 1583-1611. (in Chinese)
[22]
秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46(7): 1033-1051.

doi: 10.3724/SP.J.1006.2020.94130
QIN T Y, SUN C, BI Z Z, LIANG W J, LI P C, ZHANG J L, BAI J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agronomica Sinica, 2020, 46(7): 1033-1051. (in Chinese)
[23]
王文娟, 师尚礼, 康文娟, 杜媛媛, 殷辰. 干旱胁迫下陇中紫花苜蓿对外源精胺的生理响应. 中国农业科学, 2025, 58(4): 676-691. doi: 10.3864/j.issn.0578-1752.2025.10.003.
WANG W J, SHI S L, KANG W J, DU Y Y, YIN C. The physiological response of longzhong alfalfa to exogenous spermine under drought stress. Scientia Agricultura Sinica, 2025, 58(4): 676-691. doi: 10.3864/j.issn.0578-1752.2025.10.003. (in Chinese)
[24]
陈彩锦, 马琳, 包明芳, 张国辉, 蒋庆雪, 杨天辉, 王川, 王晓春, 高婷, 王学敏, 刘文辉.111份紫花苜蓿种质资源萌发期抗旱性鉴定评价. 中国农业科学, 2025, 58(10): 1896-1907. doi: 10.3864/j.issn.0578-1752.2025.10.003.
CHEN C J, MA L, BAO M F, ZHANG G H, JIANG Q X, YANG T H, WANG C, WANG X C, GAO T, WANG X M, LIU W H. Identification and evaluation of drought resistance for 111 germplasm resources of alfalfa during germination stage. Scientia Agricultura Sinica, 2025, 58(10): 1896-1907. doi: 10.3864/j.issn.0578-1752.2025.10.003. (in Chinese)
[25]
张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究[D]. 兰州: 甘肃农业大学, 2019.
ZHANG C M. Physiological and molecular mechanisms of response to drought stress in different drought-resistant alfalfa (Medicago sativa L.) varieties[D]. Lanzhou: Gansu Agricultural University, 2019. (in Chinese)
[26]
夏友霖. 花生晚斑病抗性遗传特性研究[D]. 雅安: 四川农业大学, 2014.
XIA Y L. Study on genetic characteristics of resistance to late leaf spot in peanut[D]. Yaan: Sichuan Agricultural University, 2014. (in Chinese)
[27]
GRABHERR M G, HAAS B J, YASSOUR M, LEVIN J Z, THOMPSON D A, AMIT I, ADICONIS X, FAN L, RAYCHOWDHURY R, ZENG Q D, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652.

doi: 10.1038/nbt.1883 pmid: 21572440
[28]
GAO C, JU Z, LI S, ZUO J H, FU D Q, TIAN H Q, LUO Y B, ZHU B Z. Deciphering ascorbic acid regulatory pathways in ripening tomato fruit using a weighted gene correlation network analysis approach. Journal of Integrative Plant Biology, 2013, 55(11): 1080-1091.

doi: 10.1111/jipb.12079
[29]
ZHENG Y, JIAO C, SUN H H, ROSLI H G, POMBO M A, ZHANG P F, BANF M, DAI X B, MARTIN G B, GIOVANNONI J J, ZHAO P X, RHEE S Y, FEI Z J. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant, 2016, 9(12): 1667-1670.
[30]
陈丽琦, 严朋飞, 贾维嘉, 区智, 屈燕. 威氏绿绒蒿(Meconopsis wilsonii)花色相关基因MwF3H的克隆及表达分析. 基因组学与应用生物学, 2022, 41(4): 854-861.
CHEN L Q, YAN P F, JIA W J, OU Z, QU Y. Cloning and expression analysis of flower color related gene MwF3H from Meconopsis wilsonii. Genomics and Applied Biology, 2022, 41(4): 854-861. (in Chinese)
[31]
ZHANG Z, LIU Y, GAO W. Metabolic pathways in plant responses to prolonged drought stress. Journal of Experimental Botany, 2018, 69(16): 4075-4090.
[32]
ZHANG J Y, CRUZ DE CARVALHO M H, TORRES-JEREZ I, KANG Y, ALLEN S N, HUHMAN D V, TANG Y H, MURRAY J, SUMNER L W, UDVARDI M K. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant, Cell & Environment, 2014, 37(11): 2553-2576.
[33]
WANG H, LI X, ZHANG S. NAC072, a member of the NAC transcription factor family, regulates photosynthesis and metabolic reprogramming in plants under drought stress. Plant Cell Reports, 2019, 38(10): 1379-1391.
[34]
LIU X, ZHANG Z, CHEN L. Metabolic reprogramming during plant recovery from drought stress. BMC Plant Biology, 2020, 20(1): 211.
[35]
CHEN L, ZHANG Z, YU X. Integrative analysis of drought-induced gene expression networks in Medicago truncatula. Journal of Integrative Plant Biology, 2021, 63(6): 881-896.
[36]
LUO S Z, LIU J, SHI K, ZHANG J L, WANG Z. Integrated transcriptomic and metabolomic analyses reveal that MsSPHK1 - A sphingosine kinase gene negatively regulates drought tolerance in alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 2025, 218: 109302.
[37]
XIE L, ZHANG Z, LIU Y. ABF4, a key regulator of ABA signaling, plays a crucial role in stomatal closure and water loss in plants. Plant Physiology, 2020, 183(4): 1231-1245.
[38]
ZHANG J, WANG Q, LIU Z. The role of ABA signaling in drought response and its crosstalk with other stress pathways in plants. Frontiers in Plant Science, 2021, 12: 785987.
[39]
YANG Y, LI C, JIANG L. Transcriptional regulation of drought stress in plants: Key genes and their implications for crop improvement. Journal of Experimental Botany, 2021, 72(10): 3401-3417.
[1] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[2] SUN Ping, ZHU WenCan, LIN XianRui, WU JiaQi, CAO YiWen, CHEN ChenFei, WANG Yi, ZHU JianXi, JIA HuiJuan, QIAN MinJie, SHEN JianSheng. Effects of Rainy and Low Light Conditions on Coloration and Flavonoid Accumulation in Peach Peel Based on Metabolomic and Transcriptomic Analyses [J]. Scientia Agricultura Sinica, 2025, 58(6): 1173-1194.
[3] XIE LuLu, LI Fu, ZHANG SiYuan, GAO JianChang. Analysis of Conserved Genes in Adventitious Root Formation Based on Cross Species Transcriptomes [J]. Scientia Agricultura Sinica, 2025, 58(6): 1195-1209.
[4] GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu. The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle [J]. Scientia Agricultura Sinica, 2025, 58(6): 1239-1258.
[5] PAN Yuan, WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses [J]. Scientia Agricultura Sinica, 2025, 58(2): 266-280.
[6] LIN Yan, ZHENG LingLing, TIAN Jia, WEN Yue, CHEN Chen, WANG Lei. Based on Transcriptomics and Proteomics to Provide Insights into the Molecular Mechanisms of Calyx Abscission in Korla Xiangli [J]. Scientia Agricultura Sinica, 2025, 58(18): 3744-3765.
[7] DONG Xue, CHEN MengQiu, SHAO Jin, WU XueYou, TANG PeiAn. Construction of a Differential Gene Expression and Quality Regulation Network in Stored Rice Grain Using WGCNA [J]. Scientia Agricultura Sinica, 2025, 58(14): 2885-2903.
[8] CHEN CaiJin, MA Lin, BAO MingFang, ZHANG GuoHui, JIANG QingXue, YANG TianHui, WANG Chuan, WANG XiaoChun, GAO Ting, WANG XueMin, LIU WenHui. Identification and Evaluation of Drought Resistance for 111 Germplasm Resources of Alfalfa During Germination Stage [J]. Scientia Agricultura Sinica, 2025, 58(10): 1896-1907.
[9] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[10] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[11] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[12] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[13] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[14] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[15] NI ShuHui, SHI DongMei, PAN LiDong, YE Qing, WU JunHao. Response of Cultivated-Layer Water-Holding and Drought Resistance Performance and Productivity to Erosion Degree in Purple Soil Sloping Farmland [J]. Scientia Agricultura Sinica, 2024, 57(7): 1350-1362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!