Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 1969-1981.doi: 10.3864/j.issn.0578-1752.2025.10.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Land Utilization Methods on Soil Organic Carbon and Its Labile Fractions in Karst Peak-Cluster Depression

CHEN WuRong1,2(), XIAO ShuangShuang1,2(), XIAO Jun3,4,5, CHEN Dan1,2   

  1. 1 Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001
    2 Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001
    3 Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125
    4 Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Science, Huanjiang 547100, Guangxi
    5 Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Huanjiang 547100, Guangxi
  • Received:2024-07-31 Accepted:2024-09-12 Online:2025-05-16 Published:2025-05-21
  • Contact: XIAO ShuangShuang

Abstract:

【Objective】 By studying the response characteristics of soil organic carbon and its labile fractions to land utilization methods in karst peak cluster depressions, the result could provide the theoretical basis for the maintenance of soil carbon pool stability, ecological restoration and reconstruction in karst areas. 【Method】 Based on long-term field positioning experiments, five common land use methods were selected in karst peak cluster depression areas, including enclosure, burning, cutting, grass planting, and maize planting, to study the effects of different land utilization methods on soil organic carbon (SOC) and its labile fractions, namely particulate organic carbon (POC), light fraction organic carbon (LFOC), easily oxidizable organic carbon (EOC), and microbial biomass carbon (MBC). 【Result】 The SOC content under different land utilization methods showed as follows: enclosure>burning>cutting>grass planting>maize planting, and the SOC content in maize planting as significantly lower than other land utilization methods (P<0.05). The trend of changes in soil POC content was consistent with that of SOC, but the decrease in POC content among land utilization methods was greater than that of SOC; the content of LFOC and EOC in soil was highest in the enclosure, and lowest in maize planting; compared with enclosure, the burning significantly increased soil MBC content. Soil POC was the main labile fraction of soil organic carbon in different land utilization methods in the study area. The POC/SOC ratio ranged from 39.3% to 58.6%, with enclosure>cutting>burning>grass planting>maize planting. The ratios of LFOC/SOC and EOC/SOC were lower in enclosure and burning, but the highest were observed under maize planting. Correlation analysis showed a highly significant positive correlation (P<0.01) between POC, EOC, MBC and SOC in karst areas soil, which could sensitively reflect soil SOC dynamics. SOC, POC, EOC, and MBC were all significantly positively correlated with TN, AN, Ca2+, and Mg2+ (P<0.01), and significantly negatively correlated with clay particles (P<0.05); SOC, LFOC, POC, EOC, MBC were significantly negatively correlated with silt particles (P<0.05) and significantly positively correlated with sand particles (P<0.05); SOC, EOC, and MBC were significantly positively correlated with TP (P<0.05). Redundancy analysis indicated that AN, Ca2+, TP, as well as silt and clay particles in soil, were the most significant contributing factors to changes in SOC and its labile fractions content. This suggested that the changes in soil physical and chemical properties under different land utilization methods were closely related to changes in SOC and its labile fractions content. 【Conclusion】 Strategies such as enhancing vegetation coverage and reducing high-intensity utilization were beneficial for increasing organic carbon content and maintaining its stability in karst peak cluster depressions, while measures such as long-term tillage that cause significant soil disturbance increased the risk of organic carbon and fraction loss.

Key words: karst ecosystems, land utilization method, soil organic carbon, carbon fractions

Table 1

The physical and chemical properties of tested soil"

土地利用方式
Land utilization methods
全氮
TN
(g·kg-1)
全磷
TP
(g·kg-1)
速效氮
AN (mg·kg-1)
有效磷
AP (mg·kg-1)
交换性钙
Ca2+ (mg·kg-1)
交换性镁
Mg2+ (mg·kg-1)
pH 黏粒
Clay
(%)
粉粒
Silt
(%)
砂粒
Sand
(%)
封育Enclosure 4.20 1.24 312.67 4.97 5.50 1.58 7.57 2.3 46.8 50.9
火烧Burning 4.02 1.32 300.30 5.93 5.72 1.58 7.48 2.5 54.8 42.7
刈割Cutting 3.99 1.17 261.83 5.60 5.43 1.52 7.75 2.6 53.0 44.4
牧草种植
Grass planting
3.12 1.09 229.48 9.20 4.36 1.39 7.12 2.9 56.5 40.6
玉米种植
Maize planting
2.45 1.02 179.08 6.03 4.28 1.27 7.45 3.8 66.3 29.9

Fig. 1

SOC content under land management and utilization methods Different lowercase letters on the caption indicate significant differences among land management and utilization methods (P<0.05). The same as below"

Fig. 2

Changes of soil labile organic carbon fractions under different land utilization methods"

Table 2

Distribution ratio of soil labile organic carbon fractions under different land utilization methods"

土地利用方式
Land utilization methods
POC/SOC (%) LFOC/SOC (%) EOC/SOC (%) MBC/SOC (%)
封育Enclosure 58.6±4.0a 9.8±1.4ab 13.1±1.5bc 1.9±0.2b
火烧Burning 54.2±9.1ab 7.0±0.9b 12.1±1.2c 2.7±0.3a
刈割Cutting 57.5±4.5a 11.3±2.0a 15.5±0.2ab 2.6±0.4a
牧草种植 Grass planting 49.1±7.0ab 9.9±0.7ab 13.0±0.5bc 2.6±0.5a
玉米种植 Maize planting 39.3±13.2b 12.4±4.0a 16.6±2.7a 1.2±0.1c

Fig. 3

Correlation analysis between soil organic carbon, soil labile organic carbon fractions and soil physiochemical factors Color of the circle represents correlation coefficient, and size of the circle represents correlation size. SOC: Soil organic carbon; POC: Particulate organic carbon; LFOC: Light fraction organic carbon; EOC: Easily oxidizable organic carbon; MBC: Microbial biomass carbon; TN: Total nitrogen; TP: Total phosphorus; AN: Available nitrogen; AP: Available phosphorus; Ca2+: Exchangeable calcium; Mg2+: Exchangeable magnesium. The same as below. *: P<0.05, **: P<0.01"

Fig. 4

Redundancy analyses (RDA) between soil physicochemical properties and carbon content fractions (A), and the explained rates of soil physicochemical properties on variance of soil carbon fractions (B) under different land utilization methods"

[1]
张芳, 曾馥平, 杜虎, 彭晚霞. 喀斯特峰丛洼地不同土地利用方式土壤水分对降水特征的响应. 生态科学, 2019, 38(5): 38-43.
ZHANG F, ZENG F P, DU H, PENG W X. Response of soil moisture to precipitation characteristics in different land use patterns in Karst peak-cluster depression area. Ecological Science, 2019, 38(5): 38-43. (in Chinese)
[2]
陈香碧, 苏以荣, 何寻阳, 覃文更, 魏亚伟, 梁月明, 吴金水. 不同干扰方式对喀斯特生态系统土壤细菌优势类群——变形菌群落的影响. 土壤学报, 2012, 49: 354-363.
CHEN X B, SU Y R, HE X Y, QIN W G, WEI Y W, LIANG Y M, WU J S. Effect of human disturbance on composition of the dominant bacterial group proteobacteria in karst soil ecosystems. Acta Pedologica Sinica, 2012, 49: 354-363. (in Chinese)
[3]
张伟, 陈洪松, 苏以荣, 王克林, 林海飞, 刘坤平. 不同作物和施肥方式对新垦石灰土土壤肥力的影响. 土壤通报, 2013, 44(4): 925-930.
ZHANG W, CHEN H S, SU Y R, WANG K L, LIN H F, LIU K P. Effects of reclamation and fertilization on calcareous soil fertility in the initial period of cultivation. Chinese Journal of Soil Science, 2013, 44(4): 925-930. (in Chinese)
[4]
王世杰, 刘再华, 倪健, 闫俊华, 刘秀明. 中国南方喀斯特地区碳循环研究进展. 地球与环境, 2017, 45(1): 2-9.
WANG S J, LIU Z H, NI J, YAN J H, LIU X M. A review of research progress and future prospective of carbon cycle in Karst area of South China. Earth and Environment, 2017, 45(1): 2-9. (in Chinese)
[5]
RUMPEL C, AMIRASLANI F, KOUTIKA L S, SMITH P, WHITEHEAD D, WOLLENBERG E. Put more carbon in soils to meet Paris climate pledges. Nature, 2018, 564(7734): 32-34.
[6]
魏早强, 罗珠珠, 牛伊宁, 蔡立群. 土壤有机碳组分对土地利用方式响应的Meta分析. 草业科学, 2022, 39(6): 1115-1128.
WEI Z Q, LUO Z Z, NIU Y N, CAI L Q. Meta-analysis of soil organic carbon fraction response to land uses. Pratacultural Science, 2022, 39(6): 1115-1128. (in Chinese)
[7]
LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627.

doi: 10.1126/science.1097396 pmid: 15192216
[8]
涂成龙, 刘丛强, 武永锋. 退耕弃荒洼地土壤有机碳在生态系统转化过程中的动态变化. 环境科学, 2007, 28: 1912-1917.
TU C L, LIU C, WU Y F. Soil organic carbon variation of de-farming and wasteland during alteration of ecosystem in billabong. Environmental Science, 2007, 28: 1912-1917. (in Chinese)
[9]
DA SILVA OLIVEIRA D M, PAUSTIAN K, COTRUFO M F, FIALLOS A R, CERQUEIRA A G, CERRI C E P. Assessing labile organic carbon in soils undergoing land use change in Brazil: A comparison of approaches. Ecological Indicators, 2017, 72: 411-419.
[10]
房飞, 唐海萍, 李滨勇. 不同土地利用方式对土壤有机碳及其组分影响研究. 生态环境学报, 2013, 22(11): 1774-1779.
FANG F, TANG H P, LI B Y. Effects of land use type on soil organic carbon and its fractions. Ecology and Environmental Sciences, 2013, 22(11): 1774-1779. (in Chinese)
[11]
RAMESH T, BOLAN N S, KIRKHAM M B, WIJESEKARA H, KANCHIKERIMATH M, SRINIVASA RAO C, SANDEEP S, RINKLEBE J, OK Y S, CHOUDHURY B U, WANG H L, TANG C X, WANG X J, SONG Z L, FREEMAN O W. Soil organic carbon dynamics: impact of land use changes and management practices: A review. Advances in Agronomy, 2019, 156: 1-107.
[12]
徐梦, 李晓亮, 蔡晓布, 李晓林, 张旭博, 张俊伶. 藏东南地区不同土地利用方式下土壤有机碳组分及周转变化特征. 中国农业科学, 2018, 51(19): 3714-3725. doi: 10.3864/j.issn.0578-1752.2018.19.009.
XU M, LI X L, CAI X B, LI X L, ZHANG X B, ZHANG J L. Impact of land use type on soil organic carbon fractionation and turnover in southeastern Tibet. Scientia Agricultura Sinica, 2018, 51(19): 3714-3725. doi: 10.3864/j.issn.0578-1752.2018.19.009. (in Chinese)
[13]
雷利国, 江长胜, 郝庆菊. 缙云山土地利用方式对土壤轻组及颗粒态有机碳氮的影响. 环境科学, 2015, 36(7): 2669-2677.
LEI L G, JIANG C S, HAO Q J. Impacts of land use changes on soil light fraction and particulate organic carbon and nitrogen in Jinyun Mountain. Environmental Science, 2015, 36(7): 2669-2677. (in Chinese)
[14]
YANG Y S, GUO J F, CHEN G S, YIN Y F, GAO R, LIN C F. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 2009, 323(1): 153-162.
[15]
杨桦, 彭小瑜, 杨淑琪, 张云斌, 赵才, 黄勇. 滇南喀斯特断陷盆地土地利用方式对土壤有机碳及其活性组分的影响. 生态学报, 2022, 42(17): 7105-7117.
YANG H, PENG X Y, YANG S Q, ZHANG Y B, ZHAO C, HUANG Y. Effects of land use types on soil organic carbon and soil labile organic carbon in Karst faulted basin of southern Yunnan. Acta Ecologica Sinica, 2022, 42(17): 7105-7117. (in Chinese)
[16]
孙艳杰, 曹琼, 黄佳芳, 高居娟, 杨逢志, 仝川. 河口沼泽湿地转化为养殖塘对湿地土壤有机碳不同组分含量的影响. 环境科学学报, 2023, 43(8): 352-361.
SUN Y J, CAO Q, HUANG J F, GAO J J, YANG F Z, TONG C. Effect of conversion of estuarine marshes to aquaculture ponds on soil organic carbon fraction in the Min River Estuary. Acta Scientiae Circumstantiae, 2023, 43(8): 352-361. (in Chinese)
[17]
DAI W, ZHAO K L, FU W J, JIANG P K, LI Y F, ZHANG C S, GIELEN G, GONG X, LI Y H, WANG H L, WU J S. Spatial variation of organic carbon density in topsoils of a typical subtropical forest, southeastern China. Catena, 2018, 167: 181-189.
[18]
王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨. 中国岩溶, 2002, 21(2): 101-105.
WANG S J. Concept deduction and its connotation of Karst rocky desertification. Carsologica Sinica, 2002, 21(2): 101-105. (in Chinese)
[19]
刘艳, 宋同清, 蔡德所, 曾馥平, 彭晚霞, 杜虎, 刘炀. 抛荒土地不同处理及利用方式对喀斯特地区土壤微生物的影响. 农业工程学报, 2013, 23(29): 202-210.
LIU Y, SONG T Q, CAI D S, ZENG F P, PENG W X, DU H, LIU Y. Effects of different treatment and utilization types after land leaving unused on soil microbial properties in Karst region. Transactions of the Chinese Society of Agricultural Engineering, 2013, 23(29): 202-210. (in Chinese)
[20]
肖霜霜, 叶莹莹, 张伟, 吴敏, 王克林. 干扰/利用方式对喀斯特石灰土团聚体分布及其碳氮含量的影响. 生态学杂志, 2016, 35(5): 1140-1146.
XIAO S S, YE Y Y, ZHANG W, WU M, WANG K L. Carbon and nitrogen contents in calcareous soil aggregates affected by disturbance and land use in Karst region, China. Chinese Journal of Ecology, 2016, 35(5): 1140-1146. (in Chinese)
[21]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agriculture Science and Technology Press, 2000. (in Chinese)
[22]
CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56(3): 777-783.
[23]
JANZEN H H, CAMPBELL C A, BRANDT S A, LAFOND G P, TOWNLEY-SMITH L. Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 1992, 56(6): 1799-1806.
[24]
BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459.
[25]
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[26]
赵世翔, 张雪辰, 王蒙, 葛玺祖, 王旭东. 农田转变为果园后土壤有机碳含量的变化. 西北农林科技大学学报(自然科学版), 2014, 42(2): 215-221.
ZHAO S X, ZHANG X C, WANG M, GE X Z, WANG X D. Changes in soil organic carbon after the conversion of farmland to orchard. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(2): 215-221. (in Chinese)
[27]
陈朝, 吕昌河, 范兰, 武红. 土地利用变化对土壤有机碳的影响研究进展. 生态学报, 2011, 31(18): 5358-5371.
CHEN Z, C H, FAN L, WU H. Effects of land use change on soil organic carbon: A review. Acta Ecologica Sinica, 2011, 31(18): 5358-5371. (in Chinese)
[28]
ZHANG X W, YU F H. Physical disturbance accelerates carbon loss through increasing labile carbon release. Plant, Soil and Environment, 2020, 66(11): 584-589.
[29]
GOLLANY H T, POLUMSKY R W. Simulating soil organic carbon responses to cropping intensity, tillage, and climate change in Pacific northwest dryland. Journal of Environmental Quality, 2018, 47(4): 625-634.

doi: 10.2134/jeq2017.09.0374 pmid: 30025049
[30]
徐广平, 李艳琼, 沈育伊, 张德楠, 孙英杰, 张中峰, 周龙武, 段春燕. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征. 环境科学, 2019, 40(3): 1491-1503.
XU G P, LI Y Q, SHEN Y Y, ZHANG D N, SUN Y J, ZHANG Z F, ZHOU L W, DUAN C Y. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian Karst wetland in Guilin. Environmental Science, 2019, 40(3): 1491-1503. (in Chinese)
[31]
章明奎, 郑顺安, 王丽平. 利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响. 中国农业科学, 2007, 40(8): 1703-1711.
ZHANG M K, ZHENG S A, WANG L P. Chemical forms and distributions of organic carbon, nitrogen and phosphorus in sandy soil aggregate fractions as affected by land uses. Scientia Agricultura Sinica, 2007, 40(8): 1703-1711. (in Chinese)

doi: 10.3864/j.issn.0578-1752.at-2006-8316
[32]
郑红. 东北温带土地利用变化对土壤团聚体稳定性及有机碳组分的影响[D]. 哈尔滨: 东北林业大学, 2014: 1-94.
ZHENG H. Effects of land use change on soil aggregate stability and organic carbon composition in temperate zone of Northeast China[D]. Harbin: Northeast Forestry University, 2014: 1-94. (in Chinese)
[33]
陈志杰, 韩士杰, 张军辉. 土地利用变化对漳江口红树林土壤有机碳组分的影响. 生态学杂志, 2016, 35(9): 2379-2385.
CHEN Z J, HAN S J, ZHANG J H. Effects of land use change on soil organic carbon fractions in mangrove wetland of Zhangjiangkou. Chinese Journal of Ecology, 2016, 35(9): 2379-2385. (in Chinese)
[34]
陈高起, 傅瓦利, 沈艳, 伍宇春, 胡宁, 文志林. 岩溶区不同土地利用方式对土壤有机碳及其组分的影响. 水土保持学报, 2015, 29(3): 123-129.
CHEN G Q, FU W L, SHEN Y, WU Y C, HU N, WEN Z L. Effects of land use types on soil organic carbon and its fractions in Karst area. Journal of Soil and Water Conservation, 2015, 29(3): 123-129. (in Chinese)
[35]
白义鑫, 盛茂银, 胡琪娟, 赵楚, 吴静, 张茂莎. 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响. 应用生态学报, 2020, 31(5): 1607-1616.

doi: 10.13287/j.1001-9332.202005.016
BAI Y X, SHENG M Y, HU Q J, ZHAO C, WU J, ZHANG M S. Effects of land use change on soil organic carbon and its components in Karst rocky desertification of southwest China. Chinese Journal of Applied Ecology, 2020, 31(5): 1607-1616. (in Chinese)
[36]
PANG D B, CUI M, LIU Y G, WANG G Z, CAO J H, WANG X R, DAN X Q, ZHOU J X. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded Karst ecosystems of southwest China. Ecological Engineering, 2019, 138: 391-402.
[37]
HOFMAN J, DUSEK L, KLÁNOVÁ J, BEZCHLEBOVÁ J, HOLOUBEK I. Monitoring microbial biomass and respiration in different soils from the Czech Republic—A summary of results. Environment International, 2004, 30(1): 19-30.
[38]
肖霜霜, 叶莹莹, 陈武荣, 肖丹, 毛兵, 张伟, 王克林. 翻耕扰动下喀斯特耕地N2O排放规律及影响因素. 农业现代化研究, 2022, 43(4): 738-746.
XIAO S S, YE Y Y, CHEN W R, XIAO D, MAO B, ZHANG W, WANG K L. N2O emission law and its affecting factors under tillage disturbance in cultivated land of Karst region. Research of Agricultural Modernization, 2022, 43(4): 738-746. (in Chinese)
[39]
SCHINDLBACHER A, WUNDERLICH S, BORKEN W, KITZLER B, ZECHMEISTER-BOLTENSTERN S, JANDL R. Soil respiration under climate change: Prolonged summer drought offsets soil warming effects. Global Change Biology, 2012, 18(7): 2270-2279.
[40]
唐国勇, 李昆, 孙永玉, 张春华. 干热河谷不同利用方式下土壤活性有机碳含量及其分配特征. 环境科学, 2010, 31(5): 1365-1371.
TANG G Y, LI K, SUN Y Y, ZHANG C H. Soil labile organic carbon contents and their allocation characteristics under different land uses at dry-hot valley. Environmental Science, 2010, 31(5): 1365-1371. (in Chinese)
[41]
贡璐, 罗艳, 解丽娜. 塔里木盆地北缘绿洲不同土地利用方式土壤有机碳、无机碳变化及其土壤影响因子. 中国农业大学学报, 2017, 22(12): 83-94.
GONG L, LUO Y, XIE L N. Changes in SOC and SIC concentration with land uses and their soil influencing factors in northern marginal zones of Tarim Basin. Journal of China Agricultural University, 2017, 22(12): 83-94. (in Chinese)
[42]
习丹, 余泽平, 熊勇, 刘小玉, 刘骏. 江西官山常绿阔叶林土壤有机碳组分沿海拔的变化. 应用生态学报, 2020, 31(10): 3349-3356.

doi: 10.13287/j.1001-9332.202010.009
XI D, YU Z P, XIONG Y, LIU X Y, LIU J. Altitudinal changes of soil organic carbon fractions of evergreen broadleaved forests in Guanshan Mountain, Jiangxi, China. Chinese Journal of Applied Ecology, 2020, 31(10): 3349-3356. (in Chinese)

doi: 10.13287/j.1001-9332.202010.009
[43]
HU N, LAN J C. Impact of vegetation restoration on soil organic carbon stocks and aggregates in a Karst rocky desertification area in Southwest China. Journal of Soils and Sediments, 2020, 20(3): 1264-1275.
[44]
FERNÁNDEZ-UGALDE O, VIRTO I, BARRÉ P, GARTZIA- BENGOETXEA N, ENRIQUE A, IMAZ M J, BESCANSA P. Effect of carbonates on the hierarchical model of aggregation in calcareous semi-arid Mediterranean soils. Geoderma, 2011, 164(3/4): 203-214.
[45]
张华渝, 王克勤, 宋娅丽. 滇中尖山河流域不同土地利用类型土壤粒径分布对土壤有机碳组分的影响. 中南林业科技大学学报, 2020, 40(4): 93-100.
ZHANG H Y, WANG K Q, SONG Y L. Effects of soil particle size distribution of different land use types on soil organic carbon components in Jianshan River watershed in middle Yunnan Province. Journal of Central South University of Forestry & Technology, 2020, 40(4): 93-100. (in Chinese)
[46]
张剑雄, 谷丰, 朱波, 周明华. 林草恢复对热水河小流域侵蚀区土壤团聚体稳定性与有机碳氮特征的影响. 草业科学, 2021, 38(6): 1012-1023.
ZHANG J X, GU F, ZHU B, ZHOU M H. Effects of forest and grass restoration on soil aggregate stability, and organic carbon and nitrogen characteristics in an eroded area of the Reshui River. Pratacultural Science, 2021, 38(6): 1012-1023. (in Chinese)
[47]
马文明, 刘军, 周青平, 陈红, 刘超文. 高寒草地灌丛化对土壤团聚体稳定性及有机碳分布特征的影响. 土壤通报, 2019, 50(5): 1108-1115.
MA W M, LIU J, ZHOU Q P, CHEN H, LIU C W. Stability of soil aggregates and soil organic carbon under shrub encroachment sites in alpine meadow. Chinese Journal of Soil Science, 2019, 50(5): 1108-1115. (in Chinese)
[48]
REGELINK I C, STOOF C R, ROUSSEVA S, WENG L P, LAIR G J, KRAM P, NIKOLAIDIS N P, KERCHEVA M, BANWART S, COMANS R N J. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma, 2015, 247/248: 24-37.
[49]
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643.
LIU Y L, WANG P, WANG J K. Formation and stability mechanism of soil aggregates: Progress and prospect. Acta Pedologica Sinica, 2023, 60(3): 627-643. (in Chinese)
[1] WU XinJia, XUE Wei, YAN YiDan, NIE YingYing, YE LiMing, XU LiJun. Temporal and Spatial Variation Characteristics of Soil Organic Carbon in Hulunbuir and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(6): 1145-1158.
[2] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[3] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[4] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
[5] LI TianJiao, ZHANG NaiYu, SHEN WenYan, SONG TianHao, LIU HongFang, LIU XiaoYan, ZHANG XiuZhi, PENG Chang, YANG JinFeng, ZHANG ShuXiang. Effects of Long-Term Fertilization on Soil Aggregate Stability and Its Driving Factors in Black Soil and Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3835-3847.
[6] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[7] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[8] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[9] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[10] XIE Xue, LU YanHong, LIAO YuLin, NIE Jun, ZHANG JiangLin, SUN YuTao, CAO WeiDong, GAO YaJie. Effects of Returning Chinese Milk Vetch and Rice Straw to Replace Partial Fertilizers on Double Season Rice Yield and Soil Labile Organic Carbon [J]. Scientia Agricultura Sinica, 2023, 56(18): 3585-3598.
[11] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[12] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[13] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[14] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[15] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!