Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1145-1158.doi: 10.3864/j.issn.0578-1752.2025.06.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Temporal and Spatial Variation Characteristics of Soil Organic Carbon in Hulunbuir and Its Influencing Factors

WU XinJia1(), XUE Wei2, YAN YiDan1, NIE YingYing1, YE LiMing3, XU LiJun1()   

  1. 1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Observation and Research Station of Hulunbuir Grassland Ecosystem, Beijing 100081, China
    2 Xishuangbanna Dai Autonomous Prefecture Meteorological Office of Yunnan Province, Xishuangbanna 666100, Yunnan, China
    3 Department of Geology, Ghent University, Ghent 9000, Belgium
  • Received:2024-05-14 Accepted:2024-11-11 Online:2025-03-25 Published:2025-03-25
  • Contact: XU LiJun

Abstract:

【Objective】 This study aimed to analyze the spatiotemporal distribution characteristics and driving factors of soil organic carbon (SOC) content in Hulunbuir, China, in order to provide the scientific basis for soil carbon storage management and ecosystem services.【Method】 The point-to-point sampling survey method was used to collect measured SOC data from 1980 (historical data) and 2022, involving four land use types: farmland, grassland, forest, and wetland. Using regression kriging method, combined with environmental variables such as temperature, precipitation, slope, altitude, and NDVI, the spatial prediction of SOC content and its changes was carried out. 【Result】 (1) The SOC content in 1980 was significantly affected by these five factors (P<0.05), while the SOC data in 2022 was mainly affected by altitude, slope, precipitation, and NDVI, with no significant effect from temperature (P=0.07). The fitting accuracies of the models for the two periods of 1980 and 2022 were R²=0.60 and R²=0.63, respectively, indicating that the predictive model had a certain level of reliability. (2) According to spatial prediction data, the average SOC content in Hulunbuir was 40.29 g·kg-1 in 1980, and decreased to 31.75 g·kg-1 in 2022. The spatial variation trend of soil SOC content in the two periods was similar, with higher content in the central region and lower content in the western and eastern regions. (3) There were differences in the changes of SOC content under different land use patterns. Over the past 40 years, the SOC content of farmland, grassland, forest, and wetland soils has decreased by 4.59 g·kg-1 (13.3%), 6.08 g·kg-1(18.7%), 11.16 g·kg-1(23.0%), and 7.20 g·kg-1(24.4%), respectively. 【Conclusion】 The spatial distribution trend of SOC content in Hulunbuir area remained consistent between 1980 and 2022, and SOC content showed a decreasing trend under different land use patterns. The transformation of land use patterns was a key factor affecting the spatial distribution changes of SOC. In addition, there was uncertainty in the prediction of SOC changes by environmental variables, and future research needs to consider their dynamic characteristics. In the Hulunbuir region, the forest grassland transition zone and the forest farmland transition zone had carbon sink potential, while grasslands, central high-altitude forest areas, and farmland areas might be carbon source areas.

Key words: soil organic carbon, spatiotemporal variation, land use pattern, regression kriging interpolation, Generalized Additive Model, GAM, Hulunbuir

Fig. 1

Land types and distribution of sampling points in Hulunbuir area"

Table 1

Selection of GAM model factors influencing SOC content in 1980 and 2022"

年份
Year
影响因素
Influence factor
标准化系数
Standardized coefficient
显著性
Significance
拟合度
R2
1980 海拔Elevation 14.134 <0.001 0.72
坡度Slope 1.601 <0.001
温度Temperature -13.709 <0.001
降水量Precipitation 0.240 <0.05
归一化植被指数Normalized difference vegetation index 8.280 <0.05
2022 海拔Elevation 0.024 <0.001 0.71
坡度Slope 1.102 <0.01
降水量Precipitation 5.758 <0.001
归一化植被指数Normalized difference vegetation index 2.785 <0.05

Table 2

Fitting effects of different models for SOC content"

年份
Year
编号
Number
模型函数
Model function
块金值
Nugget value
偏基台值
Partial abutment value
平均值误差
ME
(g·kg-1)
均方根误差
RMSE
(g·kg-1)
平均绝对误差MAE
(g·kg-1)
拟合度
R2
1980 1 指数函数Exponential function 1.02 0.00 -0.04 5.28 5.04 0.48
2 指数函数Exponential function 1.51 0.00 -0.04 5.28 6.12 0.48
3 高斯函数Gauss function 1.02 0.00 -0.06 5.37 4.99 0.47
4 指数函数Exponential function 0.10 0.00 -0.04 5.28 1.58 0.48
5 指数函数Exponential function 1.02 0.00 -0.06 5.48 4.97 0.46
6 指数函数Exponential function 1.02 0.00 -0.19 5.60 4.67 0.45
7 高斯函数Gauss function 1.68 0.16 -0.06 5.37 6.70 0.47
8 高斯函数Gauss function 1.02 0.00 -0.01 5.20 5.07 0.48
9 高斯函数Gauss function 1.02 0.00 -0.06 5.37 5.61 0.47
10 指数函数Exponential function 43.33 0.00 0.08 5.24 6.72 0.48
11 J-Bessel 0.02 1.68 -0.01 0.81 0.22 0.65
2022 1 指数函数Exponential function 0.88 0.12 0.00 1.04 4.57 0.48
2 指数函数Exponential function 1.00 0.10 0.02 4.92 4.49 0.47
3 指数函数Exponential function 1.29 0.12 0.01 4.80 5.22 0.48
4 高斯函数Gauss function 1.24 0.34 0.01 4.92 5.68 0.47
5 指数函数Exponential function 1.02 0.00 0.00 4.81 4.58 0.48
6 高斯函数Gauss function 1.34 0.00 0.04 4.95 5.17 0.46
7 稳定Stable 1.01 0.00 -0.01 4.72 4.64 0.49
8 稳定Stable 1.01 0.00 0.00 4.68 4.64 0.49
9 多项式5 Polynomial 5 0.27 0.33 0.02 0.99 0.78 0.62
10 指数函数Exponential function 27.33 0.00 0.10 4.80 5.32 0.48
11 孔洞效应Hole effect 22.25 5.29 0.22 5.25 5.59 0.43
12 J-Bessel 20.49 6.66 0.11 4.63 5.25 0.50
13 稳定Stable 24.29 3.18 0.11 4.81 5.33 0.48

Fig. 2

Predicted and measured SOC content in Hulunbuir in 1980 and 2022"

Table 3

Comparison results of cross validation of SOC content in Hulunbuir in different years under the Kriging Regression Model"

年份
Year
MAE
(g·kg-1)
RMSE
(g·kg-1)
R²
1980 9.16 11.83 0.60
2022 7.13 10.92 0.63

Fig. 3

SOC content under different land use patterns in Hulunbuir in 1980 and 2022 Different lowercase letters indicate significant differences between different treatments (P<0.05). The same as below"

Fig. 4

Spatial distribution of predicted soil surface SOC content in Hulunbuir in 1980 and 2022"

Fig. 5

Spatial distribution of surface SOC content changes in Hulunbuir from 1980 to 2022"

Table 4

SOC content changes by land use type in Hulunbuir from 1980 to 2022"

土地利用方式
Land use patterns
1980 SOC
(g·kg-1)
2022 SOC
(g·kg-1)
SOC变化
SOC change (g·kg-1)
变化率
Rate of change (%)
面积
Area (km2)
农田Farmland 34.64 30.05 -4.59 -13.3% 19815.80
草原Grassland 32.46 26.38 -6.08 -18.7% 122530.40
森林Forest 48.48 37.32 -11.16 -23.0% 95727.30
湿地Wetland 29.53 22.33 -7.20 -24.4% 11461.50

Fig. 6

The relative importance of environmental factors on SOC content in Hulunbuir in 1980 and 2022 TEM: Temperature; PRE: Precipitation; NDVI: Normalized Vegetation Index; Dem: Elevation; Slope: The slope"

Fig. 7

Land use patterns and changes in Hulunbuir in the late 1980s and 2022"

Fig. 8

Spatial distribution of SOC content changes in Hulunbuir"

[1]
STOCKMANN U, PADARIAN J, MCBRATNEY A, MINASNY B, DE BROGNIEZ D, MONTANARELLA L, HONG S Y, RAWLINS B G, FIELD D J. Global soil organic carbon assessment. Global Food Security, 2015, 6: 9-16.
[2]
XU L, YU G R, HE N P. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. Journal of Geographical Sciences, 2019, 29(1): 49-66.

doi: 10.1007/s11442-019-1583-4
[3]
LI Q Q, LI A W, DAI T F, FAN Z M, LUO Y L, LI S, YUAN D G, ZHAO B, TAO Q, WANG C Q, LI B, GAO X S, LI Y D, LI H X, WILSON J P. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. Global Change Biology, 2020, 26(7): 4134-4146.

doi: 10.1111/gcb.15110 pmid: 32267043
[4]
WANG L P, WANG X, WANG D Y, QI B S, ZHENG S F, LIU H J, LUO C, LI H X, MENG L H, MENG X T, WANG Y H. Spatiotemporal changes and driving factors of cultivated soil organic carbon in northern China’s typical agro-pastoral ecotone in the last 30 years. Remote Sensing, 2021, 13(18): 3607.
[5]
MÖLLER P, ROSENTHAL E, DULSKI P, GEYER S, GUTTMAN Y. Rare earths and yttrium hydrostratigraphy along the Lake Kinneret- Dead Sea-Arava transform fault, Israel and adjoining territories. Applied Geochemistry, 2003, 18(10): 1613-1628.
[6]
WANG S, XU L, ZHUANG Q L, HE N P. Investigating the spatio- temporal variability of soil organic carbon stocks in different ecosystems of China. The Science of the Total Environment, 2021, 758: 143644.
[7]
HOUNKPATIN K O L, STENDAHL J, LUNDBLAD M, KARLTUN E. Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data. Soil, 2021, 7(2): 377-398.
[8]
ZHANG C Z, LI W, ZHAO Z H, ZHOU Y F, ZHANG J B, WU Q C. Spatiotemporal variability and related factors of soil organic carbon in Henan Province. Vadose Zone Journal, 2018, 17(1): 1-10.
[9]
QIU J C, SONG M H, WANG C M, DOU X M, LIU F F, WANG J X, ZHU C Y, WANG S Q. Five-year warming does not change soil organic carbon stock but alters its chemical composition in an alpine peatland. Pedosphere, 2023, 33(5): 776-787.
[10]
LIN Y M, HU Z R, LI W H, CHEN H N, WANG F, NAN X X, YANG X L, ZHANG W J. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China. Journal of Arid Land, 2024, 16(1): 110-130.

doi: 10.1007/s40333-024-0052-9
[11]
HUANG Y, SUN W J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin, 2006, 51(15): 1785-1803.
[12]
LI C. Loss of soil carbon threatens Chinese agriculture: A comparison on agroecosystem carbon pool in China and the US. Quaternary Sciences, 2000, 4(20): 345-350.
[13]
XIE E Z, ZHANG Y X, HUANG B, ZHAO Y C, SHI X Z, HU W Y, QU M K. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981-2011. Soil and Tillage Research, 2021, 205: 104763.
[14]
CREAMER R E, BAREL J M, BONGIORNO G, ZWETSLOOT M J. The life of soils: integrating the who and how of multifunctionality. Soil Biology and Biochemistry, 2022, 166: 108561.
[15]
MINASNY B, MCBRATNEY A B. Digital soil mapping: a brief history and some lessons. Geoderma, 2016, 264: 301-311.
[16]
CHARTIN C, STEVENS A, GOIDTS E, KRÜGER I, CARNOL M, VAN WESEMAEL B. Mapping soil organic carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia). Geoderma Regional, 2017, 9: 73-86.
[17]
YANG X T, BAI X, YAO W Q, LI P F, HU J F, KANG L. Spatioemporal dynamics and driving forces of soil organic carbon changes in an arid coal mining area of China investigated based on remote sensing techniques. Ecological Indicators, 2024, 158: 111453.
[18]
BOU KHEIR R, GREVE M H, BØCHER P K, GREVE M B, LARSEN R, MCCLOY K. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark. Journal of Environmental Management, 2010, 91(5): 1150-1160.

doi: 10.1016/j.jenvman.2010.01.001 pmid: 20106585
[19]
MINASNY B, MCBRATNEY A B, MALONE B P, WHEELER I. Digital mapping of soil carbon. Advances in Agronomy, 2013, 118: 1-47.
[20]
KESKIN H, GRUNWALD S. Regression Kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma, 2018, 326: 22-41.
[21]
AALTO J, PIRINEN P, HEIKKINEN J, VENÄLÄINEN A. Spatial interpolation of monthly climate data for Finland: comparing the performance of Kriging and generalized additive models. Theoretical and Applied Climatology, 2013, 112(1): 99-111.
[22]
SINDAYIHEBURA A, OTTOY S, DONDEYNE S, VAN MEIRVENNE M, VAN ORSHOVEN J. Comparing digital soil mapping techniques for organic carbon and clay content: Case study in Burundi’s central plateaus. Catena, 2017, 156: 161-175.
[23]
ZHAO Z, WANG P, CHEN J, ZHANG F. Economic spillover effect of grass-based livestock husbandry on agricultural production-A case study in Hulunbuir, China. Technological Forecasting and Social Change, 2021, 168: 120752.
[24]
CUI F Q, TANG H P, ZHANG Q, WANG B J, DAI L W. Integrating ecosystem services supply and demand into optimized management at different scales: a case study in Hulunbuir, China. Ecosystem Services, 2019, 39: 100984.
[25]
辛晓平, 丁蕾, 程伟, 朱晓昱, 陈宝瑞, 刘钟龄, 何广礼, 青格勒, 杨桂霞, 唐华俊. 北方草地及农牧交错区草地植被碳储量及其影响因素. 中国农业科学, 2020, 53(13): 2757-2768. doi: 10.3864/j.issn.0578-1752.2020.13.022.
XIN X P, DING L, CHENG W, ZHU X Y, CHEN B R, LIU Z L, HE G L, QINGG L, YANG G X, TANG H J. Carbon storage and influencing factors of grassland vegetation in northern grassland and agro-pastoral area. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768. doi: 10.3864/j.issn.0578-1752.2020.13.022. (in Chinese)
[26]
ODGERS N P, LIBOHOVA Z, THOMPSON J A. Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma, 2012, 189/190: 153-163.
[27]
OTTOY S, ELSEN A, VAN DE VREKEN P, GOBIN A, MERCKX R, HERMY M, VAN ORSHOVEN J. An exponential change decline function to estimate soil organic carbon stocks and their changes from topsoil measurements. European Journal of Soil Science, 2016, 67(6): 816-826.
[28]
HENGL T, HEUVELINK G B M, ROSSITER D G. About regression- kriging: From equations to case studies. Computers & Geosciences, 2007, 33(10): 1301-1315.
[29]
SRIVASTAVA R M. Geostatistics: a toolkit for data analysis, spatial prediction and risk management in the coal industry. International Journal of Coal Geology, 2013, 112: 2-13.
[30]
OLIVER M A, WEBSTER R. A tutorial guide to geostatistics: computing and modelling variograms and Kriging. Catena, 2014, 113: 56-69.
[31]
ULRIKE G. Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 2006, 17(1): 1-27.
[32]
SHEN C C, XIAO W F, CHEN J Z, HUA L, HUANG Z L. Climate-sensitive spatial variability of soil organic carbon in multiple forests, Central China. Global Ecology and Conservation, 2023, 46: e02555.
[33]
ZHANG L M, ZHENG Q F, LIU Y L, LIU S G, YU D S, SHI X Z, XING S H, CHEN H Y, FAN X Y. Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of Eastern China. Geoderma, 2019, 337: 1105-1115.
[34]
LI L, YUE Y J, QIN F C, DONG X Y, SUN C, LIU Y Q, ZHANG P. Multi-scale characterization of spatial variability of soil organic carbon in a semiarid zone in northern China. Sustainability, 2022, 14(15): 9390.
[35]
MEERSMANS J, VAN WESEMAEL B, GOIDTS E, VAN MOLLE M, DE BAETS S, DE RIDDER F. Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960-2006. Global Change Biology, 2011, 17(1): 466-479.
[36]
XIE E Z, ZHANG X, LU F Y, PENG Y X, CHEN J, ZHAO Y C. Integration of a process-based model into the digital soil mapping improves the space-time soil organic carbon modelling in intensively human-impacted area. Geoderma, 2022, 409: 115599.
[37]
WANG L P, WANG X, KOOCH Y, SONG K S, ZHENG S F, WU D H. Remote estimation of soil organic carbon under different land use types in agroecosystems of Eastern China. Catena, 2023, 231: 107369.
[38]
ZHAO M S, QIU S Q, WANG S H, LI D C, ZHANG G L. Spatial-temporal change of soil organic carbon in Anhui Province of East China. Geoderma Regional, 2021, 26: e00415.
[39]
WANG X Y, LI Y Q, GONG X W, NIU Y Y, CHEN Y P, SHI X P, LI W, LIU J. Changes of soil organic carbon stocks from the 1980s to 2018 in Northern China’s agro-pastoral ecotone. Catena, 2020, 194: 104722.
[40]
ZHANG Z P, DING J L, ZHU C M, SHI H B, CHEN X Y, HAN L J, WANG J Z. Changes in soil organic carbon stocks from 1980-1990 and 2010-2020 in the northwest arid zone of China. Land Degradation & Development, 2022, 33(15): 2713-2727.
[41]
ZHANG Z P, DING J L, ZHU C M, WANG J J, GE X Y, LI X, HAN L J, CHEN X Y, WANG J Z. Historical and future variation of soil organic carbon in China. Geoderma, 2023, 436: 116557.
[42]
WANG S C, ZHAO Y W, WANG J Z, GAO J J, ZHU P, CUI X A, XU M G, ZHOU B K, LU C G. Estimation of soil organic carbon losses and counter approaches from organic materials in black soils of northeastern China. Journal of Soils and Sediments, 2020, 20(3): 1241-1252.
[43]
薛玮, 徐丽君, 聂莹莹, 吴欣珈, 严翊丹, 叶立明, 柳新伟. 影响呼伦贝尔草原土壤有机碳空间变异的主导因素. 中国农业科学, 2024, 57(12): 2378-2389. doi: 10.3864/j.issn.0578-1752.2024.12.009.
XUE W, XU L J, NIE Y Y, WU X J, YAN Y D, YE L M, LIU X W. Study on dominant factors affecting spatial variation of soil organic carbon in Hulunbuir grassland. Scientia Agricultura Sinica, 2024, 57(12): 2378-2389. doi: 10.3864/j.issn.0578-1752.2024.12.009. (in Chinese)
[44]
ZHOU Y, HARTEMINK A E, SHI Z, LIANG Z Z, LU Y L. Land use and climate change effects on soil organic carbon in North and Northeast China. The Science of the Total Environment, 2019, 647: 1230-1238.

doi: S0048-9697(18)32985-1 pmid: 30180331
[45]
XIE Z B, ZHU J G, LIU G, CADISCH G, HASEGAWA T, CHEN C M, SUN H F, TANG H Y, ZENG Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13(9): 1989-2007.
[46]
YU Y Q, HUANG Y, ZHANG W. Modeling soil organic carbon change in croplands of China, 1980-2009. Global and Planetary Change, 2012, 82/83: 115-128.
[47]
CHEN J, TANG H P. Effect of grazing exclusion on vegetation characteristics and soil organic carbon of Leymus chinensis grassland in northern China. Sustainability, 2016, 8(1): 56.
[48]
VELDKAMP E, SCHMIDT M, POWERS J S, CORRE M D. Deforestation and reforestation impacts on soils in the tropics. Nature Reviews Earth & Environment, 2020, 1: 590-605.
[49]
SHAHEB M R, VENKATESH R, SHEARER S A. A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering, 2021, 46(4): 417-439.
[50]
DINCĂ L C, GRENNI P, ONET C, ONET A. Fertilization and soil microbial community: A review. Applied Sciences, 2022, 12(3): 1198.
[51]
VÉDÈRE C, LEBRUN M, HONVAULT N, AUBERTIN M L, GIRARDIN C, GARNIER P, DIGNAC M F, HOUBEN D, RUMPEL C. How does soil water status influence the fate of soil organic matter? A review of processes across scales. Earth-Science Reviews, 2022, 234: 104214.
[52]
MAO D H, LUO L, WANG Z M, WILSON M C, ZENG Y, WU B F, WU J G. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. The Science of the Total Environment, 2018, 634: 550-560.

doi: S0048-9697(18)31169-0 pmid: 29635197
[53]
ZHANG X S, LARK T J, CLARK C, YUAN Y P, LEDUC S D. Grassland-to-cropland conversion increased soil, nutrient, and carbon losses in the US Midwest between 2008 and 2016. Environmental Research Letters, 2021, 16: 1-13.
[54]
WANG A N, ZHA T G, ZHANG Z Q. Variations in soil organic carbon storage and stability with vegetation restoration stages on the Loess Plateau of China. Catena, 2023, 228: 107142.
[55]
HUANG J S, LIU W X, YANG S, YANG L, PENG Z Y, DENG M F, XU S, ZHANG B B, AHIRWAL J, LIU L L. Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil Biology and Biochemistry, 2021, 160: 108322.
[56]
TANG X Y, LIU S G, ZHOU G Y. Erosion and vegetation restoration impacts on ecosystem carbon dynamics in South China. Soil Science Society of merica Journal, 2010, 74(1): 272-281.
[57]
ZHANG Y, TANG Z, YOU Y, GUO X, WU C, LIU S, SUN O. Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biology and Biochemistry, 2023, 180: 109017.
[58]
WANG X D, HE C, LIU B Y, ZHAO X, LIU Y, WANG Q, ZHANG H L. Effects of residue returning on soil organic carbon storage and sequestration rate in China’s croplands: A meta-analysis. Agronomy, 2020, 10(5): 691.
[59]
DAUNORAS J, KAČERGIUS A, GUDIUKAITĖ R. Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology, 2024, 13(2): 85.
[1] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[2] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[3] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
[4] XUE Wei, XU LiJun, NIE YingYing, WU XinJia, YAN YiDan, YE LiMing, LIU XinWei. Study on Dominant Factors Affecting Spatial Variation of Soil Organic Carbon in Hulunbuir Grassland [J]. Scientia Agricultura Sinica, 2024, 57(12): 2378-2389.
[5] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[6] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[7] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[8] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[9] XIE Xue, LU YanHong, LIAO YuLin, NIE Jun, ZHANG JiangLin, SUN YuTao, CAO WeiDong, GAO YaJie. Effects of Returning Chinese Milk Vetch and Rice Straw to Replace Partial Fertilizers on Double Season Rice Yield and Soil Labile Organic Carbon [J]. Scientia Agricultura Sinica, 2023, 56(18): 3585-3598.
[10] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[11] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[12] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[13] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[14] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[15] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!