Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4522-4540.doi: 10.3864/j.issn.0578-1752.2024.22.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress

MA Jia(), PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong()   

  1. Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences/Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051
  • Received:2024-03-17 Accepted:2024-04-16 Online:2024-11-16 Published:2024-11-22
  • Contact: HU Dong

Abstract:

【Objective】In order to explore the biological mechanism of Streptomyces sp. TOR3209 in improving the low temperature tolerance of tomato, and to reveal the protective mechanism of TOR3209 on photosystem II (PSII) from two aspects (chlorophyll fluorescence characteristics and xanthophyll cycle).【Method】As the experimental material, tomato seedlings of quadrifoil stage were applied with TOR3209 when transplanted into the pots, cold stress (5 ℃) was imposed on the 30th day after transplanting. The experiment was divided into four parts, which were inoculated plants (TOR3209), non-inoculated plants (NI), inoculated plants exposed to cold stress (TOR3209+C) and non-inoculated plants exposed to cold stress (NI+C). The differences in PSII performance, chlorophyll fluorescence parameters related to NPQ, xanthophyll cycle component, violaxanthin de-epoxidase (VDE) activity, and ascorbate-glutathione (AsA-GSH) cycle in plants of different treatments were compared.【Result】Streptomyces sp. TOR3209 could alleviate the decrease of actual photochemical efficiency of PSII Y (II) by cold stress and avoid PSII photoinhibition. Defensing to the cold stress, the shape of chlorophyll a fluorescence transient (OJIP) curve was significantly changed with increased in J step and an emergence of K step; while the approximated initial slope of the fluorescence transient (Mo) increased, and the rate at which trapped excitons transfer electrons to other electron receptors downstream of primary quinone receptor (QA) in the electron transport chain (Ψo) decreased, and the performance index on absorption basis (PIABS) decreased in JIP-test of tomato leaves. The inoculation of TOR3209 under cold stress prevented a significant increase in variable fluorescence intensity at J step and an emergence of K step, while the Mo, Ψo and PIABS returned to the levels in plants of NI, indicating that TOR3209 protected the electron transporters at PSII acceptor side and oxygen-evolving complex (OEC) at PSII donor side. The inoculation of TOR3209 also prevented a significant decrease in PIABS and the performance index on cross section basis (PICS) in tomato leaves as revealed by JIP-test, which in combination with the significantly increased NPQ and protective heat dissipation (ФNPQ), as well as the significantly decreased non-regulatory energy dissipation (ФNO), evidenced that the main mechanism of TOR3209 to protect PSII was the protective heat dissipation. Cold stress apparently decreased the de-epoxidation state (DEPS) of xanthophyll cycle, at the same time, reduced the levels of xanthophyll cycle components, the activities of VDE and antioxidases in AsA-GSH pathway (ascorbate peroxidase APX, glutathione reductase GR, monodehydroascorbate reductase MDHAR), and contents of antioxidants (ascorbate AsA, glutathione GSH), slowed down the xanthophyll cycle, and depressed the photosynthetic capacity of tomato leaves. However, TOR3209 inoculation could increase the DEPS of xanthophyll cycle, enhance the levels of xanthophyll cycle components and VDE activity under cold stress, which further raised the level of PSII non-photochemical fluorescence quenching coefficient, prevented excess excitation energy, and protected the photosynthetic apparatus. Meanwhile, TOR3209 inoculation improved the activities of the above-mentioned antioxidases and AsA content under cold stress, optimized the AsA-GSH cycle to confront the accumulation of reactive oxygen species (ROS) and facilitate xanthophyll cycle.【Conclusion】The improvement of cold tolerant capacity in tomato plants by TOR3209 inoculation was reflected in maintaining PSII stability by increasing the photosynthetic electron transfer activity, alleviating the damage of PSII photoinhibition via enhancing the xanthophyll cycle, and reducing oxidative stress on PSII by optimizing AsA-GSH cycle.

Key words: tomato (Solanum lycopersicum), Streptomyces, cold stress, PSII photoinhibition, chlorophyll fluorescence, xanthophyll cycle

Table 1

Definition of fluorescence parameters and formulas used in JIP-test analysis"

参数及公式Parameter and formula 注释Definition
Fo 最小荧光强度Minimal recorded fluorescence intensity
Fm 最大荧光强度Maximal recorded fluorescence intensity
VJ=(FJ-Fo)/(Fm-Fo) J点的相对可变荧光强度Relative variable fluorescence intensity at the J-step
Mo=4×(F300 μs-Fo)/(Fm-Fo) 相对荧光曲线的初始斜率Approximated initial slope of the fluorescence transient
ABS/RC=Mo×(1/VJ)×(1/φPo) 单位反应中心吸收的光能Absorption flux per reaction center
TRo/RC=Mo×(1/VJ) 单位反应中心捕获的光能Trapped energy flux per reaction center
ETo/RC=Mo×(1/VJ)×ψo 单位反应中心捕获的用于电子传递的能量(在t=0时)Electron transport flux per reaction center (at t=0)
DIo/RC=(ABS/RC)-(TRo/RC) 单位反应中心耗散的能量(在t=0时)Dissipated energy flux per reaction center (at t=0)
φPo=TRo/ABS 最大光化学效率(在t=0时)Maximum quantum yield for primary photochemistry (at t=0)
Ψo=ETo/TRo 捕获的激子将电子传递到电子传递链中超过QA的其他电子受体的概率(在t=0时)
Probability that a trapped exciton moves an electron into the electron transport chain beyond QA (at t=0)
φEo=ETo/ABS 电子传递的量子产额(在t=0时)Quantum yield for electron transport (at t=0)
φDo=1-φPo 用于热耗散的量子比率(在t=0时)Quantum ratio for dissipated energy (at t=0)
ABS/CSo≈Fo 单位横截面积吸收的光能(在t=0时)Absorption flux per cross-sectional area (at t=0)
TRo/CSoPo×(ABS/CSo) 单位横截面积捕获的光能(在t=0时)Trapped energy flux per cross-sectional area (at t=0)
ETo/CSoEo×(ABS/CSo) 单位横截面积电子传递的量子产额(在t=0时)
Quantum yield for electron transport flux per cross-sectional area (at t=0)
DIo/CSo=(ABS/CSo)-(TRo/CSo) 单位横截面积的热耗散能量(在t=0时)Dissipated energy flux per cross-sectional area (at t=0)
RC/CSoPo×(VJ/Mo)×(ABS/CSo) 单位面积有活性反应中心的数量Number of reaction centers per unit area
PIABS=(RC/ABS)×[φPo/(1-φPo)]×[Ψo/(1-Ψo)] 以吸收光能为基础的性能指数Performance index on absorption basis
PICS=(RC/CSo)×[φPo/(1-φPo)]×[Ψo/(1-Ψo)] 以单位面积为基础的性能指数(在t=0时)Performance index on cross section basis (at t=0)

Fig. 1

Effects of Streptomyces sp. TOR3209 on the OJIP curve of tomato leaves under cold stress"

Fig. 2

Effects of Streptomyces sp. TOR3209 on standard OJIP curves of tomato leaves under cold stress"

Fig. 3

Effects of Streptomyces sp. TOR3209 on the differential kinetic curves of relative variable fluorescence ΔVt of tomato leaves under cold stress"

Fig. 4

Effects of Streptomyces sp. TOR3209 on the relative variable fluorescence intensity difference of tomato leaves under cold stress"

Fig. 5

Effects of Streptomyces sp. TOR3209 on the fluorescence differential kinetics of OI and IP phase of tomato leaves under cold stress"

Fig. 6

Effects of Streptomyces sp. TOR3209 on fluorescence parameters of JIP-test in leaves of tomato under cold stress"

Fig. 7

Effects of Streptomyces sp. TOR3209 on chlorophyll fluorescence parameters of tomato leaves under cold stress"

Fig. 8

Effects of Streptomyces sp. TOR3209 on the compounding ratio of xanthophyll cycle in tomato leaves under cold stress"

Table 2

Effects of Streptomyces sp. TOR3209 on xanthophyll cycle in tomato leaves under cold stress"

叶黄素循环
Xanthophyll cycle
处理
Treatment
0 d 1 d 3 d 6 d 10 d
总叶黄素
Total xanthophyll (mmol·mol-1 Chl)
TOR3209+C 111.77±4.15a 81.41±2.64ab 109.82±4.46a 79.66±5.30ab 76.05±10.87ab
NI+C 86.36±19.24a 67.64±5.15b 69.91±10.00b 63.52±7.64b 62.81±4.93b
TOR3209 111.77±4.15a 92.65±12.30a 109.43±17.44a 98.33±5.46a 89.84±2.18a
NI 86.36±19.24a 79.11±10.14ab 77.46±13.24b 73.04±22.03b 83.84±7.44a
叶黄素脱环氧化状态DEPS TOR3209+C 70.96±7.05a 74.94±2.49a 80.32±3.72a 89.13±1.48a 91.26±0.40a
NI+C 63.79±8.78a 70.15±3.11ab 77.11±4.04ab 82.31±1.78a 85.86±2.37b
TOR3209 70.96±7.05a 74.56±4.04a 73.85±1.95bc 71.30±4.65b 70.08±2.22c
NI 63.79±8.78a 66.30±4.49b 70.75±2.54c 68.29±7.46b 65.50±2.26d

Table 3

Effects of Streptomyces sp. TOR3209 on VDE activities in tomato leaves under cold stress"

处理
Treatment
VDE活性VDE activity (μmol·min-1·g-1)
0 d 1 d 3 d 6 d 10 d
TOR3209+C 3.00±0.07a 3.58±0.03a 3.11±0.09a 3.60±0.03a 3.28±0.09a
NI+C 2.90±0.10a 2.10±0.10d 1.56±0.07d 1.68±0.05d 1.69±0.09d
TOR3209 3.00±0.07a 2.96±0.08b 2.72±0.14b 2.75±0.01b 3.08±0.05b
NI 2.90±0.10a 2.40±0.07c 2.21±0.10c 1.83±0.08c 2.56±0.03c

Table 4

Effects of Streptomyces sp. TOR3209 on AsA and GSH contents in tomato leaves under cold stress"

抗氧化剂
Antioxidant
处理
Treatment
0 d 1 d 3 d 6 d 10 d
抗坏血酸
AsA
含量Content (μg·g-1)
TOR3209+C 391.26±127.99a 443.84±64.03c 572.45±101.04b 461.70±55.45ab 293.58±90.89c
NI+C 362.86±90.38a 363.85±30.57c 395.99±47.24c 388.44±33.12b 283.26±94.51c
TOR3209 391.26±127.99a 827.13±42.62a 819.71±35.95a 520.25±82.13a 602.01±42.44a
NI 362.86±90.38a 687.80±28.62b 628.16±64.83b 485.52±36.93ab 461.76±56.24b
FF value
T ns 18.119** 22.651** ns ns
C ns 196.438*** 38.447*** 5.939* 32.101***
T×C ns ns ns ns ns
还原型谷胱甘肽
GSH
含量Content (μmol·g-1)
TOR3209+C 0.48±0.10a 0.49±0.09b 0.61±0.08ab 0.83±0.03b 0.60±0.09c
NI+C 0.44±0.09a 0.47±0.12b 0.55±0.04b 0.82±0.17b 0.53±0.06c
TOR3209 0.48±0.10a 0.88±0.09a 0.75±0.10a 1.77±0.08a 1.72±0.12a
NI 0.44±0.09a 0.54±0.10b 0.69±0.09ab 1.08±0.22b 1.02±0.08b
FF value
T ns 9.542* ns 16.968** 53.589***
C ns 14.994** 8.396* 49.793*** 232.974***
T×C ns 7.099* ns 16.350** 35.053***

Table 5

Effects of Streptomyces sp. TOR3209 on APX, GR and MDHAR activities in tomato leaves under cold stress"

抗氧化酶
Antioxidase
处理
Treatment
0 d 1 d 3 d 6 d 10 d
抗坏血酸过
氧化物酶
APX
酶活性Enzyme activity (nmol·min-1·g-1)
TOR3209+C 664.38±8.71a 386.95±9.57b 227.79±6.31c 517.68±42.28c 248.32±43.18c
NI+C 422.43±35.46b 227.15±20.83c 127.61±19.59d 219.01±13.23d 252.45±27.61c
TOR3209 664.38±8.71a 542.77±33.78a 947.39±54.25a 969.51±24.93a 519.76±27.57a
NI 422.43±35.46b 507.89±12.78a 402.39±13.43b 611.92±23.67b 331.44±20.41b
FF value
T 263.408*** 62.140*** 352.071*** 410.892*** 26.757**
C ns 312.452*** 836.310*** 680.805*** 96.849***
T×C ns 25.586** 167.349*** ns 29.211**
谷胱甘肽还原酶
GR
酶活性Enzyme activity (U·g-1)
TOR3209+C 638.41±78.70a 508.06±32.07ab 418.70±20.40b 291.26±22.55b 491.78±47.88a
NI+C 404.28±48.16b 466.47±62.81b 176.15±35.84c 258.16±55.02b 342.97±59.97b
TOR3209 638.41±78.70a 595.77±51.74a 614.98±52.69a 590.94±89.21a 563.92±95.40a
NI 404.28±48.16b 584.72±51.32a 548.91±88.40a 533.82±92.16a 505.00±6.97a
FF value
T 38.632*** ns 23.248** ns 8.608*
C ns 12.373** 79.035*** 49.680*** 10.940*
T×C ns ns 7.602* ns ns
单脱氢抗坏血酸
还原酶
MDHAR
酶活性Enzyme activity (nmol·min-1·g-1)
TOR3209+C 108.54±24.98a 101.16±46.02ab 81.88±11.51a 119.43±18.93a 104.10±18.42a
NI+C 56.38±16.37b 44.77±2.42b 45.43±10.95b 73.52±8.65ab 63.63±10.29ab
TOR3209 108.54±24.98a 116.62±40.55a 63.69±8.57ab 79.40±37.78ab 107.44±44.15a
NI 56.38±16.37b 70.41±16.08ab 48.74±9.62b 60.62±21.43b 44.43±5.93b
FF value
T 18.297** 7.841* 18.949** 5.411* 13.221**
C ns ns ns ns ns
T×C ns ns ns ns ns
[1]
LI H Z, JIANG X C, LV X Z, AHAMMED G J, GUO Z X, QI Z Y, YU J Q, ZHOU Y H. Tomato GLR3.3 and GLR3.5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis. Plant, Cell and Environment, 2019, 42(12): 3326-3339.
[2]
DONGSANSUK A, LUTZ C, NEUNER G. Effects of temperature and irradiance on quantum yield of PSII photochemistry and xanthophyll cycle in a tropical and a temperate species. Photosynthetica, 2013, 51(1): 13-21.
[3]
SAVITCH L V, IVANOV A G, GUDYNAITE-SAVITCH L, HUNER N P A, SIMMONDS J. Effects of low temperature stress on excitation energy partitioning and photoprotection in Zea mays. Functional Plant Biology, 2009, 36: 37-49.
[4]
LACOUR T, BABIN M, LAVAUD J. Diversity in xanthophyll cycle pigments content and related nonphotochemical quenching (NPQ) among microalgae: Implications for growth strategy and ecology. Journal of Phycology, 2020, 56(2): 245-263.

doi: 10.1111/jpy.12944 pmid: 31674660
[5]
董雷, 韩嘉瑞, 李帅, 岳凌翔, 李文均. 链霉菌最新研究进展. 微生物学报, 2023, 63(5): 1815-1832.
DONG L, HAN J R, LI S, YUE L X, LI W J. The latest research progress of Streptomycetes. Acta Microbiologica Sinica, 2023, 63(5): 1815-1832. (in Chinese)
[6]
GUO Y J, LU Y P, GOLTSEV V, STRASSER R J, KALAJI H M, WANG H, WANG X X, CHEN S G, QIANG S. Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal. Plant Physiology and Biochemistry, 2020, 156: 39-48.
[7]
ZHAO L, ZHANG Y Q. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. Journal of Integrative Agriculture, 2015, 14(8): 1588-1597.

doi: 10.1016/S2095-3119(14)60966-7
[8]
KALAJI H M, JAJOO A, OUKARROUM A, BRESTIC M, ŽIVCAK M, SAMBORSKA I A, CETNER M D, ŁUKASIK I, GOLTSEV V, LADLE R J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 2016, 38(4): 102.
[9]
STRASSER R J, SRIVASTAVA A, TSIMILLI-MICHAEL M. The fluorescence transient as a tool to characterize and screen photosynthetic samples//Probing Photosynthesis: Mechanisms, Regulation and Adaptation. 2000: 445-483.
[10]
李书鑫, 徐婷, 李慧, 杨文莹, 蔺吉祥, 朱先灿. 低温胁迫对玉米幼苗叶绿素荧光诱导动力学的影响. 土壤与作物, 2020, 9(3): 221-230.
LI S X, XU T, LI H, YANG W Y, LIN J X, ZHU X C. Effects of low temperature on chlorophyll fluorescence kinetics of maize seedlings. Soils and Crops, 2020, 9(3): 221-230. (in Chinese)
[11]
杜思梦, 方保停, 李向东, 张德奇, 岳俊芹, 邵运辉, 王汉芳, 杨程, 秦峰. 外源水杨酸对低温胁迫下小麦幼苗叶绿素荧光特性及抗氧化酶活性的影响. 江苏农业科学, 2022, 50(19): 68-73.
DU S M, FANG B T, LI X D, ZHANG D Q, YUE J Q, SHAO Y H, WANG H F, YANG C, QIN F. Effects of exogenous salicylic acid on chlorophyll fluorescence characteristics and antioxidant enzyme activity of wheat seedlings under low temperature stress. Jiangsu Agricultural Sciences, 2022, 50(19): 68-73. (in Chinese)
[12]
ZHANG G X, LIU Y F, NI Y, MENG Z J, LU T, LI T L. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS ONE, 2014, 9(5): e97322.
[13]
BIRHANE E, STERCK F J, FETENE M, BONGERS F, KUYPER T W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 2012, 169(4): 895-904.

doi: 10.1007/s00442-012-2258-3 pmid: 22286084
[14]
BERNARDO S, RODRIGO M J, VIVES-PERIS V, GOMEZ-CADENAS A, ZACARIAS L, MACHADO N, MOUTINHO-PEREIRA J, DINIS L T. Fine-tuning of grapevine xanthophyll-cycle and energy dissipation under Mediterranean conditions by kaolin particle-film. Scientia Horticulturae, 2022, 291: 110584.
[15]
袁凌云, 汪承刚, 黄兴学, 汤玲, 侯金锋, 刘凡, 汪龙, 朱世东. 油菜素内酯对Ca(NO3)2胁迫下黄瓜叶绿体AsA-GSH循环及叶黄素稳态的影响. 园艺学报, 2017, 44(5): 881-890.

doi: 10.16420/j.issn.0513-353x.2016-0877
YUAN L Y, WANG C G, HUANG X X, TANG L, HOU J F, LIU F, WANG L, ZHU S D. The regulation of 24-epibrassinolide on AsA-GSH cycle and xanthophylls homeostasis in chloroplast of cucumber under Ca(NO3)2 stress. Acta Horticulturae Sinica, 2017, 44(5): 881-890. (in Chinese)
[16]
马超, 张均, 王学平, 贾琦石, 原佳乐, 张苏, 冯雅岚. 外源MeJA对花后干旱胁迫下小麦光合特性的影响. 麦类作物学报, 2018, 38(5): 563-571.
MA C, ZHANG J, WANG X P, JIA Q S, YUAN J L, ZHANG S, FENG Y L. Effect of exogenous methyl jasmonate on photosynthetic characteristics in wheat under drought stress after anthesis. Journal of Triticeae Crops, 2018, 38(5): 563-571. (in Chinese)
[17]
HAJIBOLAND R, JOUDMAND A, ALIASGHARZAD N, TOLRÁ R, POSCHENRIEDER C. Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop and Pasture Science, 2019, 70(3): 218-233.
[18]
ZHU X C, SONG F B, XU H W. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil, 2010, 331: 129-137.
[19]
SU F, JACQUARD C, VILLAUME S, MICHEL J, RABENOELINA F, CLEMENT C, BARKA E A, DHONDT-CORDELIER S, VAILLANT-GAVEAU N. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6: 810.
[20]
CAO S M, YANG F, ZHANG H H, WANG Q M, XU G G, ZHU B S, WU C X. Physiological and transcriptome profiling analyses reveal important roles of Streptomyces rochei D74 in improving drought tolerance of Puccinellia distans (Jacq.) Parl. Environmental and Experimental Botany, 2023, 207: 105204.
[21]
NIU S Q, GAO Y, ZI H X, LIU Y, LIU X M, XIONG X Q, YAO Q Q, QIN Z W, CHEN N, GUO L, YANG Y Z, QIN P, LIN J Z, ZHU Y H. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism. The Crop Journal, 2022, 10(2): 375-386.
[22]
MATHUR S, JAJOO A. Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity. Industrial Crops and Products, 2020, 143: 111934.
[23]
MA J, PENG J L, TIAN S, HE Y X, ZHANG C M, JIA N, WANG E T, WANG Z W, HU D. Streptomyces sp. TOR3209 alleviates cold stress in tomato plants. New Zealand Journal of Crop and Horticultural Science, 2023, 51(4): 662-682.
[24]
HU D, LI S H, LI Y, PENG J L, WEI X Y, MA J, ZHANG C M, JIA N, WANG E T, WANG Z W. Streptomyces sp. strain TOR3209: A rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Scientific Reports, 2020, 10: 20132.
[25]
LI Q, CHEN L S, JIANG H X, TANG N, YANG L T, LIN Z H, LI Y, YANG G H. Effects of manganese-excess on CO2 assimilation, ribulose-1, 5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biology, 2010, 10(1): 42.
[26]
STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient//Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Dordrecht: Springer Netherlands, 2004: 321-362.
[27]
张忠学, 郑恩楠, 王长明, 贠宁晗. 不同水氮处理对水稻荧光参数和光合特性的影响. 农业机械学报, 2017, 48(6): 176-183.
ZHANG Z X, ZHENG E N, WANG C M, YUN N H. Effect of different water and nitrogen levels on chlorophyll fluorescence parameters and photosynthetic characteristics of rice. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 176-183. (in Chinese)
[28]
BETHMANN S, MELZER M, SCHWARZ N, JAHNS P. The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II. Plant Direct, 2019, 3(11): e00185.
[29]
陈华新, 陈玮, 姜闯道, 高辉远, 邹琦. 光温交叉处理对小麦紫黄质脱环氧化酶活性及其热耗散能力的影响. 植物生态学报, 2008, 32(5): 1015-1022.

doi: 10.3773/j.issn.1005-264x.2008.05.006
CHEN H X, CHEN W, JIANG C D, GAO H Y, ZOU Q. Effects of temperature and light treatment on violaxanthin de-epoxidase activity and xanthophyll cycle-dependent energy dissipation in wheat leaves. Journal of Plant Ecology, 2008, 32(5): 1015-1022. (in Chinese)
[30]
COSTA H, GALLEGO S M, TOMARO M L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Science, 2002, 162: 939-945.
[31]
苏晓琼, 王美月, 束胜, 孙锦, 郭世荣. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2013, 40(12): 2409-2418.
SU X Q, WANG M Y, SHU S, SUN J, GUO S R. Effects of exogenous Spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress. Acta Horticulturae Sinica, 2013, 40(12): 2409-2418. (in Chinese)
[32]
石嘉琦, 刘宇庆, 王艳玲, 杨再强. 施氮对高温胁迫下黄瓜果期荧光特性的影响. 华北农学报, 2022, 37(2): 84-95.

doi: 10.7668/hbnxb.20192694
SHI J Q, LIU Y Q, WANG Y L, YANG Z Q. Effects of nitrogen application on fluorescence characteristics of cucumber in fruit growth stage under high temperature stress. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 84-95. (in Chinese)

doi: 10.7668/hbnxb.20192694
[33]
顾博文, 杨劲峰, 鲁晓玲, 吴怡慧, 李娜, 刘宁, 安宁, 韩晓日. 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响. 中国农业科学, 2021, 54(21): 4552-4561. doi: 10.3864/j.issn.0578-1752.2021.21.006.
GU B W, YANG J F, LU X L, WU Y H, LI N, LIU N, AN N, HAN X R. Effects of continuous application of biochar on chlorophyll fluorescence characteristics of peanut at different growth stages. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561. doi: 10.3864/j.issn.0578-1752.2021.21.006. (in Chinese)
[34]
FENG Y, CAO K. Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances. Photosynthetica, 2005, 43(4): 567-574.
[35]
刘欣悦, 刘轶飞, 易伯涛, 孙志宇, 张思威, 马明珠, 韩晓日. 外源钙缓解花生低温光合障碍的调控机制. 植物营养与肥料学报, 2022, 28(2): 291-301.
LIU X Y, LIU Y F, YI B T, SUN Z Y, ZHANG S W, MA M Z, HAN X R. Foliar calcium application alleviates cold stress-induced photosynthetic inhibition in peanut. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 291-301. (in Chinese)
[36]
ZHANG Z S, LI G, GAO H Y, ZHANG L T, YANG C, LIU P, MENG Q. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. PLoS ONE, 2012, 7(8): e42936.
[37]
YAN K, HE W J, BIAN L X, ZHANG Z S, TANG X L, AN M X, LI L X, HAN G X. Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination. BMC Plant Biology, 2020, 20: 155.

doi: 10.1186/s12870-020-02371-x pmid: 32276592
[38]
WU Y X, WANG X, PENG X Y, GE J K, CAI J, HUANG M, ZHOU Q, ZHONG Y X, JIANG D. Cold priming improves chilling resistance in wheat seedlings: Changing of photosystem II imprints during recovery from priming. Environmental and Experimental Botany, 2023, 207: 105220.
[39]
DASTOGEER K M G, ZAHAN M I, RHAMAN M S, SARKER M S A, CHAKRABORTY A. Microbe-mediated thermotolerance in plants and pertinent mechanisms - A meta-analysis and review. Frontiers in Microbiology, 2022, 13: 833566.
[40]
JIANG Y, FENG X, WANG H, CHEN Y Q, SUN Y J. Heat-induced down-regulation of photosystem II protects photosystem I in honeysuckle (Lonicera japonica). Journal of Plant Research, 2021, 134: 1311-1321.

doi: 10.1007/s10265-021-01336-x pmid: 34351552
[41]
李鹏民, 高辉远, STRASSER R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6): 559-566.
LI P M, GAO H Y, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiologica Sinica, 2005, 31(6): 559-566. (in Chinese)
[42]
CHEN K, ZHANG M, ZHU H, HUANG M Y, ZHU Q, TANG D Y, HAN X L, LI J L, SUN J, FU J M. Ascorbic acid alleviates damage from heat stress in the photosystem II of tall fescue in both the photochemical and thermal phases. Frontiers in Plant Science, 2017, 8: 1373.

doi: 10.3389/fpls.2017.01373 pmid: 28848577
[43]
吴思佳, 李仁英, 谢晓金, 张婍, 陈佳林, 徐向华, 胡宗荟, 卢炳浩, 张娜. 抽穗期高温对水稻叶片光合特性、叶绿素荧光特性和产量构成因素的影响. 南方农业学报, 2021, 52(1): 20-27.
WU S J, LI R Y, XIE X J, ZHANG Q, CHEN J L, XU X H, HU Z H, LU B H, ZHANG N. Effects of high temperature on characteristics of photosynthesis and chlorophyll fluorescence and yield components of rice at heading stage. Journal of Southern Agriculture, 2021, 52(1): 20-27. (in Chinese)
[44]
ZHANG H H, LI X, CHE Y H, WANG Y, LI M B, YANG R Y, XU N, SUN G Y. A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline-alkali mixed stress. Trees, 2020, 34(3): 693-706.
[45]
徐超, 王明田, 杨再强, 韩玮, 郑盛华. 高温对温室草莓光合生理特性的影响及胁迫等级构建. 应用生态学报, 2021, 32(1): 231-240.

doi: 10.13287/j.1001-9332.202101.028
XU C, WANG M T, YANG Z Q, HAN W, ZHENG S H. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level. Chinese Journal of Applied Ecology, 2021, 32(1): 231-240. (in Chinese)

doi: 10.13287/j.1001-9332.202101.028
[46]
ÇIÇEK N, PEKCAN V, ARSLAN O, ERDAL S C, NALCAIYI A S B, CIL A N, ŞAHIN V, KAYA Y, EKMEKCI Y. Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Brazilian Journal of Botany, 2019, 42(2): 249-260.
[47]
刘倩倩, 马寿宾, 冯希环, 孙艳, 衣艳君, 刘维信. 嫁接对高温和低温胁迫下辣椒幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2016, 43(5): 885-896.

doi: 10.16420/j.issn.0513-353x.2015-0970
LIU Q Q, MA S B, FENG X H, SUN Y, YI Y J, LIU W X. Effects of grafting on the fast chlorophyll fluorescence induction dynamics of pepper seedlings under temperature stress. Acta Horticulturae Sinica, 2016, 43(5): 885-896. (in Chinese)
[48]
孙德智, 韩晓日, 彭靖, 范富, 张庆国. 外源NO对Ca(NO3)2胁迫下番茄幼苗PSII功能及光能分配利用的影响. 核农学报, 2016, 30(12): 2451-2459.

doi: 10.11869/j.issn.100-8551.2016.12.2451
SUN D Z, HAN X R, PENG J, FAN F, ZHANG Q G. Effect of exogenous nitric oxide on PSII function and distribution and utilization of luminous energy in tomato seedlings under stress of Ca(NO3)2. Journal of Nuclear Agricultural Sciences, 2016, 30(12): 2451-2459. (in Chinese)
[49]
ZUSHI K, KAJIWARA S, MATSUZOE N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Scientia Horticulturae, 2012, 148: 39-46.
[50]
吴含玉, 肖飞, 张亚黎, 姜闯道, 张旺锋. 强闪光抑制棉花叶片光系统II活性和热耗散. 作物学报, 2019, 45(5): 792-797.

doi: 10.3724/SP.J.1006.2019.84104
WU H Y, XIAO F, ZHANG Y L, JIANG C D, ZHANG W F. Repetitive intense flashes inhibit photosystem II activity and thermal dissipation in cotton leaves. Acta Agronomica Sinica, 2019, 45(5): 792-797. (in Chinese)
[51]
刘建新, 王金成, 王瑞娟, 刘秀丽. 混合盐碱胁迫对燕麦幼苗矿质离子吸收和光合特性的影响. 干旱地区农业研究, 2017, 35(1): 178-184, 239.
LIU J X, WANG J C, WANG R J, LIU X L. Effect of complex saline-alkali stress on the mineral ions absorption and photosynthetic characteristics of oat seedlings. Agricultural Research in the Arid Areas, 2017, 35(1): 178-184, 239. (in Chinese)
[52]
刘文娟, 常丽娟, 岳丽杰, 宋君, 张富丽, 王东, 吴佳蔚, 郭灵安, 雷绍荣. 两个玉米品种维管束鞘叶绿体的非光化学淬灭对干旱胁迫的响应. 中国农业科学, 2020, 53(8): 1532-1544. doi: 10.3864/j.issn.0578-1752.2020.08.004.
LIU W J, CHANG L J, YUE L J, SONG J, ZHANG F L, WANG D, WU J W, GUO L A, LEI S R. Response of non-photochemical quenching in bundle sheath chloroplasts of two maize hybrids to drought stress. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544. doi: 10.3864/j.issn.0578-1752.2020.08.004. (in Chinese)
[53]
胡雪华, 刘宁宁, 陶慧敏, 彭可佳, 夏晓剑, 胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响. 中国农业科学, 2022, 55(24): 4969-4980. doi: 10.3864/j.issn.0578-1752.2022.24.014.
HU X H, LIU N N, TAO H M, PENG K J, XIA X J, HU W H. Effects of chilling on chlorophyll fluorescence imaging characteristics of leaves with different leaf ages in tomato seedlings. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980. doi: 10.3864/j.issn.0578-1752.2022.24.014. (in Chinese)
[54]
WEI D D, ZHANG T P, WANG B Q, ZHANG H L, MA M Y, LI S F, CHEN T H H, BRESTIC M, LIU Y, YANG X H. Glycinebetaine mitigates tomato chilling stress by maintaining high-cyclic electron flow rate of photosystem I and stability of photosystem II. Plant Cell Reports, 2022, 41(4): 1087-1101.

doi: 10.1007/s00299-022-02839-0 pmid: 35150305
[55]
JAHNS P, HOLZWARTH A R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012, 1817(1): 182-193.
[56]
HALLIN E I, GUO K, AKERLUND H E. Violaxanthin de-epoxidase disulphides and their role in activity and thermal stability. Photosynthesis Research, 2015, 124(2): 191-198.

doi: 10.1007/s11120-015-0118-9 pmid: 25764016
[57]
WANG P, YIN L, LIANG D, LI C, MA F W, YUE Z Y. Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate-glutathione cycle. Journal of Pineal Research, 2012, 53(1): 11-20.

doi: 10.1111/j.1600-079X.2011.00966.x pmid: 21988707
[58]
SUBRAMANIAN P, KIM K, KRISHNAMOORTHY R, MAGESWARI A, SELVAKUMAR G, SA T. Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS ONE, 2016, 11(8): e0161592.
[59]
LI J H, ARKORFUL E, CHENG S Y, ZHOU Q Q, LI H, CHEN X, SUN K, LI X H. Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2018, 238: 356-362.
[60]
LI L J, LU X C, MA H Y, LYU D G. Jasmonic acid regulates the ascorbate-glutathione cycle in Malus baccata Borkh. roots under low root-zone temperature. Acta Physiologiae Plantarum, 2017, 39: 174.
[61]
ZHAO H L, YE L, WANG Y P, ZHOU X T, YANG J W, WANG J W, CAO K, ZOU Z R. Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in Plant Science, 2016, 7: 1814.

doi: 10.3389/fpls.2016.01814 pmid: 27999581
[1] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[2] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[3] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[4] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[5] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[6] GU BoWen, YANG JinFeng, LU XiaoLing, WU YiHui, LI Na, LIU Ning, AN Ning, HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[7] ZHENG Wei, SHI Zheng, LONG Mei, LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[8] GENG QingWei,XING Hao,ZHAI Heng,JIANG EnShun,DU YuanPeng. Effects of Different Light Intensity and Temperature on PSII Photochemical Activity in ‘Cabernet Sauvignon’ Grape Leaves Under Ozone Stress [J]. Scientia Agricultura Sinica, 2019, 52(7): 1183-1191.
[9] GONG XiangWei,DANG Ke,LI Jing,LUO Yan,ZHAO Guan,YANG Pu,GAO XiaoLi,GAO JinFeng,WANG PengKe,FENG BaiLi. Effects of Different Intercropping Patterns on Photosynthesis Production Characteristics and Water Use Efficiency of Proso Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4139-4153.
[10] SU LanXi,BAI TingYu,YU Huan,WU Gang,TAN LeHe. Effects of Salt Stress on Seedlings Growth, Photosynthesis and Chlorophyll Fluorescence of Two Species of Artocarpus [J]. Scientia Agricultura Sinica, 2019, 52(12): 2140-2150.
[11] BIAN FengE, XIAO QiuHong, HAO GuiMei, SUN YongJiang, LU WenLi, DU YuanPeng, ZHAI Heng. Effect of Root-Applied Melatonin on Endogenous Melatonin and Chlorophyll Fluorescence Characteristics in Grapevine Under NaCl Stress [J]. Scientia Agricultura Sinica, 2018, 51(5): 952-963.
[12] Hui WANG,YuLu GAO,Meng YU,YuanPeng DU,YongJiang SUN,Heng ZHAI. Effect of Root Irrigation of Acetic Acid and Wine on Photoinhibition of Grape Under Seawater Stress [J]. Scientia Agricultura Sinica, 2018, 51(21): 4210-4218.
[13] HOU WeiHai, WANG JianLin, HU Dan, FENG XiBo. Effects of Drought in Post-Flowering on Leaf Water Potential, Photosynthetic Physiology, Seed Phenotype and Yield of Hulless Barley in Tibet Plateau [J]. Scientia Agricultura Sinica, 2018, 51(14): 2675-2688.
[14] Xiao HAN, HaiBo WANG, XiaoDi WANG, XiaoHao JI, XiangBin SHI, BaoLiang WANG, XiaoCui ZHENG, ZhiQiang WANG, FengZhi LIU. Effects of Different Rootstocks on ‘87-1’ Grape Photosynthetic and Chlorophyll Fluorescence Characteristics [J]. Scientia Agricultura Sinica, 2018, 51(10): 1972-1981.
[15] HU DeYu, LIU XueFeng, HE ShaoLan, XIE RangJin, QIAN Chun, Lü Qiang, YI ShiLai, ZHENG YongQiang, DENG Lie. Effect of Plant Canopy Transformation on Chlorophyll Fluorescence Characteristics and Fruit Yield and Quality in Closed Citrus Orchard [J]. Scientia Agricultura Sinica, 2017, 50(9): 1734-1746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!