Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1972-1981.doi: 10.3864/j.issn.0578-1752.2018.10.016

• HORTICULTURE • Previous Articles     Next Articles

Effects of Different Rootstocks on ‘87-1’ Grape Photosynthetic and Chlorophyll Fluorescence Characteristics

Xiao HAN(), HaiBo WANG, XiaoDi WANG, XiaoHao JI, XiangBin SHI, BaoLiang WANG, XiaoCui ZHENG, ZhiQiang WANG, FengZhi LIU()   

  1. Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2017-09-27 Accepted:2017-11-23 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 The effects of different rootstock on ‘87-1’ grape photosynthetic characteristics and chlorophyll fluorescence characteristics were evaluated, and the results will provide theoretical basis for screening suitable cultivation rootstock.【Method】 Two- and three-year-old ‘87-1’ grape were grafted on eight kinds of rootstocks, including Beta, 1103P, 3309C, 140Ru, 5C, SO4, HuaPu NO.1 and KangZhen NO.1 in 2016 and 2017, and the eight kinds of rootstook-scion combinations were planted in grape center technology demonstration areas of Fruit Research Institute of Chinese Academy of Agricultural Sciences (Xingcheng, Liaoning province, east longitude 120.51° and northern latitude 40.45°). Their spacing in the rows and spacing between rows are 2.5 m×4.0 m. Double plant colonization, oblique dry horizontal dragon shape with horizontal curtain werer applied with the integration of water and fertilizer, and other management measures were routine. The Li-6400 Photosynthetic apparatus was used to measure eight rootstock-scions combinations’ light response curve, carbon dioxide response curve, temperature response curve in the cloudless morning. Before the measurement of three kinds of light curves, the optimal function leaf of different rootstock-scion combinations were selected by Li-6400 Photosynthetic apparatus. Li-6400 Photosynthesis apparatus was also used to choose the leaves with the largest net photosynthetic rate of different rootstock-scion combinations. First of all, the light response curve was measured as the carbon dioxide concentration was set at 400 μmol·mol-1, temperature was set as 25℃, gas velocity was set at 500 mmol·s-1, photosynthetically active radiation was set at 2 000, 1 800, 1 500, 1 200, 800, 400, 200, 100, 50, 20, 0 μmol·m-2·s-1 from strong to weak. Secondly, the carbon dioxide response curve was measured as the photosynthetically active radiation was set at 1 200 μmol·m-2·s-1, temperature was set at 25℃, gas velocity was set at 500 mmol?s-1, carbon dioxide concentrations were set at 2 000, 1 800, 1 500, 1 200, 800, 400, 200, 150, 100, 50, 20 μmol·mol-1 from high to low. Finally, the net photosynthetic rate curve was measured as the photosynthetically active radiation was set at 1 200 μmol·m-2·s-1, carbon dioxide concentration was set at 400 μmol·mol-1, gas velocity was set at 500 mmol·s-1, the temperatures were set at 25, 27, 30, 32, 35,27℃ from low to high. And then, the apparent quantum yield, light compensation point, carboxylation efficiency, carbon dioxide compensation point, dark respiration rate were obtained using right angle hyperbolic correction model. And the FMS-2 pulse-modulated fluorometer was used to obtain minimal fluorescence, maximal fluorescence, variable fluorescence, potential quantum yield of PSⅡ, maximal photochemical efficiency of PSⅡ in the dark. Then, variance analysis was used to compare the effects of different stock on photosynthetic parameters of ‘87-1’ grape, and Topsis comprehensive evaluation method was used to rank the eight rootstock-scion. 【Result】 The results of Topsis comprehensive evaluation showed that rootstock-scion combinations of ‘87-1’/3309C and ‘87-1’/1103P were ranked the first and second to tolerate weak light,and with the low light compensation point, high apparent quantum yield, low dark respiration rate. The rootstock-scion combinations of ‘87-1’/3309C and ‘87-1’/Huapu NO.1 were ranked the first and second to tolerate low carbon dioxide levels,and with low carbon dioxide compensation point, high apparent quantum yield. The rootstock-scion combinations of ‘87-1’/SO4, ‘87-1’/Huapu NO.1 were ranked the first and second to tolerate high temperature,and with little net photosynthetic changes at different temperatures and high net photosynthetic rate at high temperature. Furthermore, the results of variance analysis showed that the highest minimal fluorescence was found in ‘87-1’/140Ru and ‘87-1’/SO4 rootstock-scion combinations, the highest of variable fluorescence was found in ‘87-1’/1103P rootstock-scion combination, the highest of rate variable fluorescence and minimal fluorescence were found in ‘87-1’/1103P and ‘87-1’/3309C two kinds of rootstock-scion combinations. There was no significant difference of maximal fluorescence,the rate of variable fluorescence and maximal fluorescence among all 8 kinds of rootsock-scion combinations had no. 【Conclusion】 The rootstocks 3309C and 1103P can improve ‘87-1’ grape weak light tolerance ability efficiently, the rootstock 3309C and Huapu NO.1 can improve ‘87-1’ grape low carbon dioxide level tolerance ability efficiently, the rootstocks SO4 and Huapu NO.1 can improve ‘87-1’ grape high temperature tolerance ability efficiently, the rootstocks 1103P and 3309C can improve the beneficial to the enhancement of ‘87-1’ grape the primary light energy conversion efficiency.

Key words: rootstock-scion combination, ‘87-1’ grape;, photosynthetic characteristics, chlorophyll fluorescence characteristics, topsis method

Table 1

The apparent quantum yield, light combination point and dark respiration rate of different rootstock-scion combination"

砧穗组合
Rootstock-scion combination
年份
Years
表观量子效率
Apparent quantum
yield
光补偿点
Light combination point
(μmol·m-2·s-1)
暗呼吸速率
Dark respiration rate
(μmol·m-2·s-1)
Topsis得分 Topsis score Topsis排名
Topsis
ranking
得分 Score 总分 Total score
‘87-1’/HPYH 2016 0.0758a 23.309bc 1.5222b 0.5862 1.0433 4
2017 0.0657b 23.4195c 0.7787d 0.4571
‘87-1’/3309C 2016 0.0778a 17.5864d 1.2661c 0.3614 1.2148 1
2017 0.0694b 19.3291de 1.9137a 0.8534
‘87-1’/140Ru 2016 0.0625b 22.4564bc 1.3096c 0.2225 0.7233 7
2017 0.0563c 27.1271b 1.3909b 0.5008
‘87-1’/1103P 2016 0.0624b 20.3795cd 1.1497c 0.5394 1.194 2
2017 0.0439d 18.3896ef 0.7745d 0.6546
‘87-1’/SO4 2016 0.0713a 23.489abc 1.5487b 0.6334 0.0337 5
2017 0.0987a 15.7004f 1.367b 0.4003
‘87-1’/KZYH 2016 0.0573b 25.2786ab 1.3098c 0.2472 0.6468 8
2017 0.0698b 31.186a 1.9143a 0.3996
‘87-1’/5C 2016 0.0799a 26.8487a 1.9114a 0.4063 0.7399 6
2017 0.0661b 22.7534dc 1.177c 0.3336
‘87-1’/Beta 2016 0.0745a 18.9303d 1.3077c 0.3501 1.1017 3
2017 0.0548c 22.8865c 1.1474c 0.7516

Table 2

The carboxylation efficiency, CO2 combination point of different rootstock-scion combination"

砧穗组合
Rootstock-scion combination
年份
Year
羧化效率
Carboxylation
efficiency
CO2补偿点
CO2 combination point
(μmol?m-2?s-1)
Topsis得分
Topsis score
Topsis排名
Topsis ranking
得分 Score 总分 Total score
‘87-1’/HPYH 2016 0.0391cd 74.6669d 0.5677 1.0955 2
2017 0.087ab 77.2568c 0.5278
‘87-1’/3309C 2016 0.0615ab 72.2445d 0.5465 1.1132 1
2017 0.0894a 77.2742c 0.5667
‘87-1’/140Ru 2016 0.0331d 86.5089b 0.5308 0.9881 4
2017 0.1002a 80.0318c 0.4573
‘87-1’/1103P 2016 0.0554ab 79.4095c 0.5203 1.0279 3
2017 0.0913a 85.53c 0.5076
‘87-1’/SO4 2016 0.0267d 95.7802a 0.4525 0.9059 7
2017 0.0408d 96.2671b 0.4534
‘87-1’/KZYH 2016 0.0532ab 86.0179b 0.4659 0.9238 6
2017 0.0291d 109.7934a 0.4579
‘87-1’/5C 2016 0.0508bc 96.0808a 0.4331 0.8197 8
2017 0.0749b 97.0057b 0.3866
‘87-1’/Beta 2016 0.0649a 79.12c 0.4389 0.9742 5
2017 0.0565c 84.6062c 0.5353

Table 3

Net photosynthetic rate in different temperature of different rootstock-scions combination"

砧穗组合
Rootstock-scion combination
年份
Year
25℃ 27℃ 30℃ 32℃ 35℃ 37℃ ΔX Topsis得分 Topsis score Topsis排名
Topsis
ranking
得分 Score 总分 Total score
‘87-1’/HPYH 2016 12.4 12.2 12.2 12.0 11.8 0.6 0.4052 1.717 2
2017 17 16.5 16 14.9 13.9 13.1 3.9 0.6066
‘87-1’/3309C 2016 14.50 14.8 14.5 14.3 14.0 0.8 0.3204 1.0118 6
2017 17 15.7 14.6 12.7 11.9 11.3 5.7 0.3807
‘87-1’/140Ru 2016 13.9 13.7 13.5 13.0 12.8 1.1 0.199 0.8932 7
2017 16 14.2 13 12.4 11.9 11.3 4.7 0.4297
‘87-1’/1103P 2016 13.0 12.6 12.2 11.7 11.4 1.6 0.1033 0.892 5
2017 18.9 18.3 17.4 16.3 15.8 14.6 4.3 0.6105
‘87-1’/SO4 2016 14.3 14.2 13.9 13.6 13.3 1 0.2353 0.7138 1
2017 16.7 16.2 15.4 14.8 14.5 14 2.7 0.901
‘87-1’/KZYH 2016 13.8 13.4 13.20 12.7 12.3 1.5 0.143 0.7011 8
2017 9.5 9.32 8.25 7.25 6.02 5.61 3.89 0.2439
‘87-1’/5C 2016 10.99 11.09 10.90 10.87 10.64 0.56 0.4559 0.6287 4
2017 10.2 8.42 7.83 7.76 7.24 7.11 3.09 0.4361
‘87-1’/Beta 2016 12.5 12.30 12.0 11.60 11.40 1.1 0.157 0.3869 3
2017 16.2 15.1 13.8 13.8 13.3 13 3.2 0.7362

Table 4

Chlorophyll fluorescence parameters of different rootstock-scions combinations"

砧穗组合 Rootstock-scion combination F0 Fv Fm Fv/Fm Fv/F0
‘87-1’/HPYH 233.0b 1003bc 1236a 0.811a 4.301ab
‘87-1’/3309C 232.7b 1055.7abc 1288a 0.817a 4.529a
‘87-1’/140Ru 257.7a 1099ab 1295a 0.771a 4.264ab
‘87-1’/1103P 248ab 1149.7a 1217a 0.811a 4.689a
‘87-1’/SO4 253.3a 1095.7ab 1349a 0.812a 4.345ab
‘87-1’/KZYH 237.7ab 944c 1181a 0.798a 3.970b
‘87-1’/5C 244.7ab 1021.3abc 1266a 0.807a 4.176ab
‘87-1’/Beta 230.7b 969.7bc 1200a 0.807a 4.201ab

Table 5

The correlation coefficient of photosynthetic parameters and chlorophyll fluorescence parameters of different rootstock- scion combinations"

F0 Fv Fm Fv/Fm Fv / F0 表观量子效率
AQY
光补偿点
LCP
暗呼吸
速率
Rd
羧化效率
CE
CO2
补偿点
CCP
高温下净光合速率
NPR
ΔX
F0 1
Fv 0.70637 1
Fm 0.57505 0.55952 1
Fv/Fm -0.55284 -0.06732 -0.046 1
Fv / F0 0.14838 0.80414 0.27875 0.38603 1
表观量子效率AQY 0.14665 -0.08636 0.63229 0.25166 -0.24755 1
光补偿点LCP -0.13968 -0.61891 -0.55659 -0.63451 -0.75195* -0.28537 1
暗呼吸Rd -0.10423 -0.3034 0.12864 -0.12677 -0.34982 0.38938 0.32475 1
羧化效率CE 0.14869 0.53979 0.17599 -0.18706 0.60889 -0.56644 -0.17226 -0.38793 1
CO2补偿点CCP 0.14281 -0.36561 -0.20268 -0.01505 -0.60409 0.37939 0.32798 0.36329 -0.82159* 1
高温下净光合速率 NPR 0.12225 0.59286 0.29319 0.25136 0.72352* -0.07224 -0.71057* -0.57168 0.3565 -0.65507 1
ΔX -0.1395 0.24452 -0.01394 -0.12738 0.4371 -0.38358 0.1165 0.36265 0.61024 -0.53241 0.01598 1
[1] VRSIC S, PULKO B, KOCSIS L.Factors influencing grafting success and compatibility of grape rootstocks.Scientia Horticulturae, 2015, 181: 168-173.
doi: 10.1016/j.scienta.2014.10.058
[2] JIN Z X, SUN H, SUN T Y, WANG Q J, YAO Y X.Modifications of ‘Gold Finger’ grape berry quality as affected by the different rootstocks.Journal of Agricultural and Food Chemistry, 2016, 64: 4189-4197.
doi: 10.1016/j.scienta.2016.07.023 pmid: 27088562
[3] HOOVER E E, HEMSTAD P, LARSON D, MACKENZIE J, ZAMBRENO K, PROPSOM F.Rootstock influence on scion vigor, hardiness, yield, and fruit composition of St. Pepin grape.Acta Horticulturae, 2004, 640(640): 201-206.
[4] 梅军霞. 不同砧木对红玛斯卡特葡萄生长及果实品质的影响[D]. 金华: 浙江师范大学, 2014.
MEI J X.Effects of different rootstocks on the growth and fruit quality of ‘Red Alexander’grape [D]. Jinhua: Zhejiang Normal University, 2014. (in Chinese)
[5] SOMKUWAR R G, SATISHA J, RAMTEKE S D, SHARMA,J.Effect of rootstocks and pre-harvest treatments on storage life of Thompson seedless grapes.Acta Horticulturae, 2008, 785: 441-446.
[6] 陈湘云. 不同砧木对鲜食葡萄生物学性状影响的研究[D]. 长沙: 湖南农业大学, 2010.
CHEN X Y.Study on the effects of grape rootstocks on different biological properties [D]. Changsha: Hunan Agricultural University, 2010. (in Chinese)
[7] 杨瑞. 葡萄砧穗组合筛选及嫁接早期亲和力研究[D]. 兰州: 甘肃农业大学, 2007.
YANG R.Selections stock-scion combination and studies on graft affinity in early stage of different combination of rootstocks and scions of grape [D]. Lanzhou: Gansu Agricultural University, 2007 (in Chinese)
[8] SALIMIA R B, HAMDAN S.GRAPEVINE scion-rootstock combinations of palestinian local cultivars and rootstocks resistant to grape phylloxera daktulosphaira vitifoliae (Fitch) [Phylloxeridae: Homoptera].Dirasat Agricultural Sciences, 2009(1): 19-28.
[9] LI Z, MARGUERIT E.The influence of grapevine rootstocks on scion growth and drought resistance.Theoretical and Experimental Plant Physiology, 2016, 28(2): 1-15.
doi: 10.1007/s40626-016-0070-x
[10] 李敏敏, 袁军伟, 刘长江,韩斌, 黄家珍, 郭紫娟, 赵胜建. 砧木对河北昌黎产区赤霞珠葡萄生长和果实品质的影响. 应用生态学报, 2016, 27(1): 59-63.
doi: 10.13287/j.1001-9332.201601.003
LI M M, YUAN J W, LIU C J, HAN B, HUANG J Z, GUO Z J, ZHAO S J.Effects of rootstocks on the growth and berry quality of Vitis vinifera cv. Cabernet Sauvignon grapevine in Changli zone, Hebei province, China. Chinese Journal of Applied Ecology, 2016, 27(1): 59-63. (in Chinese)
doi: 10.13287/j.1001-9332.201601.003
[11] SOUMKUWAR R G, TAWARE P B, BHANGE M A, SHARMA J, KHAN I.Influence of different rootstocks on growth, photosynthesis, biochemical composition, and nutrient contents in‘Fantasy Seedless’ grapes. International Journal of Fruit Science, 2015, 15(3): 1-16.
doi: 10.1080/15538362.2015.1031564
[12] 李小红, 周凯, 谢周, 李辉信, 章镇, 陶建敏. 不同葡萄砧木对矢富罗莎葡萄嫁接苗光合作用的影响. 果树学报, 2009, 26(1): 90-93.
LI X H, ZHOU K, XIE Z, LI H X. ZHANG Z, TAO J M.Photosynthesis of Yatomi Rosa on eight grape rootstocks.Journal of Fruit Science, 2009, 26(1): 90-93. (in Chinese)
[13] 刘廷松, 李桂芬. 设施栽培条件下葡萄盛花期的光合特性. 园艺学报, 2003, 30(5): 568-570.
LIU Y S, LI G F.Some photosynthetic characteristics of blooming grape in protected cultivation.Acta Horticulturae Sinica, 2003, 30(5): 568-570. (in Chinese)
[14] 綦伟, 厉恩茂, 翟衡, 王晓芳, 杜远鹏, 谭皓. 部分根区干旱对不同砧木嫁接玛瓦斯亚葡萄生长的影响. 中国农业科学, 2007, 40(4): 794-799.
doi: 10.3321/j.issn:0578-1752.2007.04.020
QIN W, LI E M, ZHAN H, WANG X F, DU Y P, TAN H.Effects of partial rootzone drying on the growth of Vitis vinifera cv. malvasia grafted on varied rootstocks. Scientia Agricultura Sinica, 2007, 40(4): 794-799. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2007.04.020
[15] 叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6): 727-740.
doi: 10.3773/j.issn.1005-264x.2010.06.012
YE Z P.A review on modeling of responses of photosynthesis to light and CO2.Chinese Journal of Plant Ecology, 2010, 34(6): 727-740. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.06.012
[16] WANG TIENCHIN, CHANG TSUNGHAN.Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment.Expert Systems with Applications, 2007, 33(4): 870-880.
doi: 10.1016/j.eswa.2006.07.003
[17] 贺普超. 葡萄学. 北京:中国农业出版社, 1999: 74-75.
HE P C. Vitis Culture.Beijing: China Agricultural Press, 1999: 74-75. (in Chinese)
[18] 郑秋玲, 谭伟, 马宁, 翟衡. 钙对高温下巨峰葡萄叶片光合作用和叶绿素荧光的影响. 中国农业科学, 2010, 43(9): 1963-1968.
doi: 10.3864/j.issn.0578-1752.2010.09.025
ZHENG Q L, TAN W, MA N, ZHAI H.Effects of calcium on photosynthesis and chlorophyll fluorescence of 'Kyoho' grape under high temperature stress.Scientia Agricultura Sinica, 2010, 43(9): 1963-1968. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2010.09.025
[19] 陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用. 浙江农业学报, 2006, 18(1): 51-55.
CHEN J M, YU X P, CHENG J A.The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses.Journal of Zhejiang Agricultural University, 2006, 18(1): 51-55. (in Chinese)
[20] HU C, ULLER-KARGER F E, ZEPP R G. MAbsorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts.Limnology & Oceanography, 2002, 47(4): 1261-1267.
doi: 10.4319/lo.2002.47.4.1261
[21] XU D Q.Non-uniform stomatal closure and non-stomatal limitation of photosynthesis.Plant Physiology Communications, 1995, 31(4) : 246-252.
[22] LEE D W, BONE R A, TARSIS S, STORCH D.Correlates of leaf optical properties in tropical forest sun and extreme-shade plants.America Journal of Botany, 1990, 77(3): 370-380.
doi: 10.1002/j.1537-2197.1990.tb13566.x
[23] BJÖRKMAN O, HOMLMGREN P. Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats.Physoil Plantarum, 1963,16( 4) : 889-914.
doi: 10.1111/j.1399-3054.1963.tb08366.x
[24] 秦玉芝, 邢铮, 邹剑锋, 何长征, 李炎林, 熊兴耀. 持续弱光胁迫对马铃薯苗期生长和光合特性的影响. 中国农业科学, 2014, 47(3): 537-545.
doi: 10.3864/j.issn.0578-1752.2014.03.013
QIN Y Z, XING Z, ZOU J F, HE C Z, LI Y L, XIONG X Y.Effects of sustained weak light on seedling growth and photosynthetic characteristics of potato seedlings.Scientia Agricultura Sinica, 2014, 47(3): 537-545. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.03.013
[25] CAMPBELL C D, SAGE R F, KOCACINAR F, WAY D A.Estimation of the whole plant CO2 compensation point of tobacco (Nicotiana tabacum L.). Global Change Biology, 2010, 11: 1956-1967.
[26] 王志强, 何方, 牛良, 刘淑娥, 宗学普, 何方. CO2施肥对大棚油桃光合作用及产量品质的影响. 果树学报, 2001, 18(2): 75-79.
doi: 10.3969/j.issn.1009-9980.2001.02.004
WANG Z Q, HE F, NIU L A, LIU SH E, ZONG X P, HE F.The effects of CO2 enrichment on photosynthesis, yield and quality of nectarine in greenhouse.Journal of Fruit Science, 2001, 18(2):75-79. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2001.02.004
[27] 张艳丽, 张重义, 李友军, 刘辉, 李娟. 不同密度下牛膝叶绿素荧光特性比较. 生态学杂志, 2008, 27(7): 1089-1094.
ZHANG Y L, ZHANG Z Y, Li Y J, LIU H, L J. Chlorophyll fluorescence characteristics ofAchyranthes bidentata under different planting densities. Chinese Journal of Ecology, 2008, 27(7): 1089-1094. (in Chinese)
[28] 罗青红, 李志军, 伍维模, 韩路. 胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究. 西北植物学报, 2006, 26(5):983-988.
doi: 10.3321/j.issn:1000-4025.2006.05.018
LUO Q H, LI Z J, WU W M, HAN L.Comparative study of photosynthetic and chlorophyll fluorescence characteristics of Populus euphratica and P. pruinosa. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(5): 983-988. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2006.05.018
[29] 简在友, 王文全, 孟丽, 许桂芳,王秋玲, 李卫东, 俞敬波. 芍药组内不同类群间光合特性及叶绿素荧光特性比较. 植物生态学报, 2010, 34(12): 1463-1471.
doi: 10.3773/j.issn.1005-264x.2010.12.013
JIAN Z Y, WANG W Q, MENG L, XU G F, WANG Q L, LI W D, YU J B.Comparison of photosynthetic and fluorescence characteristics among taxa in Paeonia sect. Paeonia.Chinese Journal of Plant Ecology, 2010, 34(12): 1463-1471. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.12.013
[30] 吴飞燕,伊力塔,李修鹏,殷秀敏, 刘美华, 余树全.不同光照强度对石栎幼苗叶绿素含量及叶绿素荧光参数的影响. 东北农业大学学报,2012, 43(4): 88-92.
doi: 10.3969/j.issn.1005-9369.2012.04.016
WU F Y, YI L T, LI X P, YIN X M, LIU M H, YU SH Q.Effect of different light intensity on intensity chlorophyll content and chlorophyll fluorescence in Lithocarpus glaber. Journal of Northeast Agricultural University, 2012, 43(4): 88-92. (in Chinese)
doi: 10.3969/j.issn.1005-9369.2012.04.016
[31] VAN KOOTEN O, SNEL J F H.Photosynthesis Research, 1990, 25: 147-150.
[32] DEMMING-ADAMS B, Adams W W Ⅲ, Barker D H.1996. Physiology Plan. 98: 253-264.
[33] STEFANOS K, IONNIST T, ELEFTHERIA Z, NIKOLAOS N.Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet-Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems & Environment, 2008, 128(1): 86-96.
doi: 10.1016/j.agee.2008.05.006
[34] 郑秋玲, 王慧, 韩真, 翟衡. 赤霞珠不同砧穗组合对中后期光合能力及果实品质的影响. 中外葡萄与葡萄酒, 2010(3): 10-13.
doi: 10.3969/j.issn.1004-7360.2010.05.002
ZHENG Q L, WANG H, HAN Z, ZHAI H.The influences of several scion-cultivar/rootstock combinations on photosynthesis during middle and late growing seasons and berry quality of Cabernet Sauvignon grapevine.Sino-Overseas Grapevine & Wine, 2010(3): 10-13. (in Chinese)
doi: 10.3969/j.issn.1004-7360.2010.05.002
[35] 陈继峰. 葡萄砧木品种的研究现状与展望. 果树学报, 2000, 17(2): 138-146.
doi: 10.3969/j.issn.1009-9980.2000.02.013
CHEN J F.The Status of Research on Grape Rootstock Varieties and Its Prospect.Journal of Fruit Science, 2000, 17(2): 138-146. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2000.02.013
[36] 王海波, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. 葡萄不同品种对设施环境的适应性. 中国农业科学, 2013, 46(6): 1213-1220.
doi: 10.3864/j.issn.0578-1752.2013.06.015
WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z.Environmental adaptability of different grape cultivars in greenhouse.Scientia Agricultura Sinica, 2013, 46(6): 1213-1220. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.06.015
[1] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[2] XIONG WeiYi, XU KaiWei, LIU MingPeng, XIAO Hua, PEI LiZhen, PENG DanDan, CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[3] XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[4] YUAN Cheng, ZHANG MingCong, WANG MengXue, HUANG BingLin, XIN MingQiang, YIN XiaoGang, HU GuoHua, ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[5] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[6] CHENG Bin,LIU WeiGuo,WANG Li,XU Mei,QIN SiSi,LU JunJi,GAO Yang,LI ShuXian,Ali RAZA,ZHANG Yi,Irshan AHMAD,JING ShuZhong,LIU RanJin,YANG WenYu. Effects of Planting Density on Photosynthetic Characteristics, Yield and Stem Lodging Resistance of Soybean in Maize-Soybean Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096.
[7] YU WeiZhen,ZHANG XiaoChi,HU Juan,SHAO JingYi,LIU Peng,ZHAO Bin,REN BaiZhao. Combined Effects of Shade and Waterlogging on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(18): 3834-3846.
[8] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[9] GUO MeiJun,BAI YaQing,GAO Peng,SHEN Jie,DONG ShuQi,YUAN XiangYang,GUO PingYi. Effect of MCPA on Leaf Senescence and Endogenous Hormones Content in Leaves of Foxtail Millet Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(3): 513-526.
[10] ZHANG ChunYu,BAI Jing,DING XiangPeng,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Staggered Planting with Increased Density on the Photosynthetic Characteristics and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(19): 3928-3941.
[11] LIU XiaoMing,GU WanRong,LI CongFeng,ZHANG LiGuo,WANG MingQuan,GONG ShiChen,CHEN XiChang,LI CaiFeng,WEI Shi,LI WenHua. Effects of Chemical Regulation and Nitrogen Fertilizer on Radiation, Heat and Water Utilization Efficiency and Yield of Spring Maize Under Dense Planting Condition [J]. Scientia Agricultura Sinica, 2020, 53(15): 3083-3094.
[12] LI ShengLan,TAN TingTing,FAN YuanFang,YANG WenYu,YANG Feng. Effects of Maize Shading on Photosynthetic Characteristics, Vein and Stomatal Characteristics of Soybean [J]. Scientia Agricultura Sinica, 2019, 52(21): 3782-3793.
[13] CHEN JiYu,FENG LingYang,GAO Jing,SHI JianYi,ZHOU YuChen,TU FaTao,CHEN YuanKai,YANG WenYu,YANG Feng. Influence of Light Intensity on Stoma and Photosynthetic Characteristics of Soybean Leaves [J]. Scientia Agricultura Sinica, 2019, 52(21): 3773-3781.
[14] LI WanPing,LIU Min,WANG JieXing,YAO Heng,CHENG ZhengLong,DOU JunXia,ZHOU XiaoMing,FANG YuLin,SUN XiangYu. Influence of Anti-transpirant on Photosynthesis Characteristic and Qualities of Wines in Hot Climate [J]. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019.
[15] YAN Peng, SUN XiaoNuo, DU Xiong, GAO Zhen, BIAN DaHong. Effects of Artificial Warming from Late-Winter to Early-Spring on Photosynthesis and Flag Leaf Senescence of Winter Wheat [J]. Scientia Agricultura Sinica, 2019, 52(15): 2581-2592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!