Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4507-4521.doi: 10.3864/j.issn.0578-1752.2024.22.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Re-Evaluation of China’s Agricultural Net Carbon Sink: Current Situation, Spatial-Temporal Pattern and Influencing Factors

TIAN Yun1,2(), WANG XiaoRui1, YIN MinHao1, ZHANG HuiJie3()   

  1. 1 School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073
    2 WTO and Hubei Development Research Center, Zhongnan University of Economics and Law, Wuhan 430073
    3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-10-06 Accepted:2024-07-23 Online:2024-11-16 Published:2024-11-22
  • Contact: ZHANG HuiJie

Abstract:

【Objective】Based on the current “dual carbon” strategic goal, this study aimed to clarify the current characteristics, spatio-temporal pattern and influencing factors of agricultural net carbon sink, so as to provide the important support for accelerating agricultural sink increase and emission reduction.【Method】Based on the scientific reconstruction of the index system, the carbon sink/carbon emission factor method was used to measure and analyze the current situation of China’s agricultural net carbon sink. Then the spatial autocorrelation model was used to discuss the spatial dependence and spatial heterogeneity. Finally, the least-squares method was used to analyze the main factors affecting the change of its intensity. 【Result】From 2005 to 2022, the total amount of agricultural net carbon sink in China was in an obvious upward trend, although there were some interannual fluctuations, and its evolutionary characteristics could be roughly divided into four stages, namely, “continuous rise”, “fluctuating decline”, “rapid rise”, and “slow rise”; the intensity of agricultural net carbon sink was also in an obvious upward trend, with only a slight difference in the trajectory of the evolution, and the difference in its growth rate could be roughly categorized into four stages: “continuous rapid growth”, “slow growth”, “fluctuating ups and downs”, and “slow growth”. 2022, the amount of agricultural net carbon sink had a large interprovincial difference, with Inner Mongolia being the first and Shanghai being the last, and compared with the year of 2005, all the provinces had a significant increase. In 2022, the net carbon sink intensity of agriculture would be the highest in Henan and the lowest in Qinghai, with all provinces showing different degrees of increase compared with 2005. China’s provincial agricultural net carbon sink intensity as a whole showed obvious spatial dependence, but there was also a local spatial clustering phenomenon, more than 70% of the provinces showed obvious spatial clustering characteristics, and the number of provinces located in the high-high clustering and the low-low clustering was approaching. The structure of arable land use, urbanization level, rural residents' income level and the internal industrial structure of agriculture all had a significant impact on the intensity of agricultural net carbon sink; specifically, the higher the ratio of sown area of grain crops, or the higher the urbanization rate, or the higher the income level of rural residents, or the larger the ratio of plantation industry to animal husbandry, the higher the intensity of net carbon sink in agriculture.【Conclusion】The total amount and intensity of China’s agricultural net carbon sink were in a fluctuating upward trend and there were obvious inter-provincial differences. The intensity of China’s agricultural net carbon sink showed obvious spatial dependence and spatial heterogeneity. The intensity of the agricultural net carbon sink was affected by the structure of arable land use, the level of urbanization, the level of rural residents' income, and the structure of the internal industries of agriculture. The measures should be taken to promote the enhancement of sink and emission reductions and to promote the enhancement of agricultural net carbon sink in agriculture, such as establishing a sound policy support system for the development of low-carbon agriculture, strengthening inter-provincial exchanges and cooperation, and increasing financial support for agriculture.

Key words: agricultural carbon emissions, agricultural net carbon sink, spatio-temporal pattern, influencing factors, China

Table 1

Carbon absorption coefficient values of major crops"

品种
Variety
经济系数Economic coefficient 含水量 Water content
(%)
碳吸收率Carbon absorption rate 系数值Coefficient value 品种
Variety
经济系数Economic coefficient 含水量
Water content
(%)
碳吸收率Carbon absorption rate 系数值Coefficient value
水稻Rice 0.45 12 0.414 0.8096 棉花Cotton 0.10 8 0.450 4.1400
小麦Wheat 0.40 12 0.485 1.0670 甘蔗Sugar cane 0.50 50 0.450 0.4500
玉米Corn 0.40 13 0.471 1.0244 甜菜Beet 0.70 75 0.407 0.1454
豆类Beans 0.34 13 0.450 1.1515 烟草Tobacco 0.55 85 0.450 0.1227
薯类Tubers 0.70 70 0.423 0.1813 蔬菜Vegetable 0.60 90 0.450 0.0750
花生Peanut 0.43 10 0.450 0.9419 其他作物Other crops 0.40 12 0.450 0.9900
油菜籽Rapeseed 0.25 10 0.450 1.6200

Table 2

Descriptive statistical results of each variable"

变量名称
Variable name
均值
Mean
value
标准差
Standard deviation
最小值
Minimum value
最大值
Maximum value
样本数
Sample number
因变量
Dependent variable
农业净碳汇强度
Agricultural net carbon sink intensity (t·hm-2)
12.195 4.109 1.610 25.030 540
自变量
Independent variable
耕地利用结构Cultivated land utilization structure 3.102 4.124 0.551 33.192 540
城镇化水平Urbanization level 0.559 0.139 0.269 0.896 540
农村居民收入水平
Rural resident income level (×104 yuan/person)
0.832 0.470 0.188 2.683 540
农村人力资本水平Rural human capital level (a) 7.601 0.685 5.139 9.915 540
农村就业结构Rural employment structure 0.595 0.204 0.125 1.000 540
农业内部产业结构Agricultural internal industrial structure 0.815 0.110 0.518 0.970 540

Table 3

Total amount and intensity of agricultural net carbon sink in China from 2005 to 2022"

年份
Year
农业碳汇
Agricultural carbon sink
农业碳排放
Agricultural carbon emission
农业净碳汇
Agricultural net carbon sink
农业净碳汇强度
Agricultural net carbon sink intensity
数量
Amount (×104 t)
数量
Amount (×104 t)
数量
Amount (×104 t)
增速
Growth rate (%)
数量
Amount (t·hm-2)
增速
Growth rate (%)
2005 610565.56 100990.06 509575.50 9.03
2006 620667.85 102582.91 518084.94 1.67 9.18 1.66
2007 625016.22 97278.69 527737.53 1.86 9.53 3.81
2008 638158.47 94451.16 543707.31 3.03 9.82 3.04
2009 647829.64 96533.77 551295.87 1.40 10.45 6.42
2010 652340.66 98228.36 554112.30 0.51 10.45 0.00
2011 663031.86 99953.29 563078.57 1.62 10.58 1.24
2012 672508.50 102062.63 570445.87 1.31 10.67 0.85
2013 677468.81 101635.32 575833.49 0.94 10.73 0.56
2014 678804.76 103062.46 575742.30 -0.02 10.74 0.09
2015 680743.54 103855.15 576888.39 0.20 10.79 0.47
2016 678101.53 103651.19 574450.34 -0.42 10.75 -0.37
2017 698309.08 102941.51 595367.57 3.64 11.04 2.70
2018 720704.20 97733.99 622970.21 4.64 11.31 2.45
2019 758381.76 94067.21 664314.55 6.64 11.10 -1.86
2020 760839.20 93876.76 666962.44 0.40 11.16 0.54
2021 765649.65 96250.93 669398.72 0.37 11.20 0.36
2022 767151.95 96941.81 670210.14 0.12 11.22 0.18
平均增速
Average growth rate
1.35% -0.24% 1.62% 1.29%

Table 4

Agricultural net carbon sinks and intensities in 30 province(municipality, autonomous region) of China"

地区
Region
2005 2022 总量变动率
Change rate of total amount (%)
强度变动率
Change rate of intensity
(%)
总量
Total amount (×104 t)
排名
Rank
强度
Intensity
(t·hm-2)
排名
Rank
总量
Total amount (×104 t)
排名
Rank
强度
Intensity
(t·hm-2)
排名
Rank
北京Beijing 1273.28 28 10.97 18 1672.78 28 13.78 10 31.38 25.62
天津Tianjin 501.77 29 8.96 23 948.04 29 17.87 5 88.94 99.44
河北Hebei 15634.87 16 12.32 7 24359.15 10 15.90 7 55.80 29.06
山西Shanxi 9128.48 23 9.19 21 14708.64 21 10.76 24 61.13 17.08
内蒙古Inner Mongolia 56046.56 1 5.86 25 63323.77 1 7.04 26 12.98 20.14
辽宁Liaoning 13245.52 17 12.25 8 16694.47 20 13.74 11 26.04 12.16
吉林Jilin 20598.73 7 12.89 4 25397.26 9 14.96 8 23.30 16.06
黑龙江Heilongjiang 40832.16 2 11.05 17 53720.03 2 13.43 14 31.56 21.54
上海Shanghai 55.80 30 1.61 30 206.55 30 7.33 25 270.16 355.28
江苏Jiangsu 7084.43 24 12.41 5 10806.88 23 20.70 3 52.54 66.80
浙江Zhejiang 9500.58 22 11.31 15 10310.17 24 12.61 21 8.52 11.49
安徽Anhui 11288.70 21 11.35 14 16808.82 19 16.74 6 48.90 47.49
福建Fujian 12617.12 20 12.15 10 13998.79 22 13.08 17 10.95 7.65
江西Jiangxi 16097.89 13 11.85 12 17871.33 18 13.00 18 11.02 9.70
山东Shandong 15642.44 15 15.49 2 25937.07 8 24.81 2 65.81 60.17
河南Henan 18682.25 10 16.30 1 31257.03 7 24.94 1 67.31 53.01
湖北Hubei 15706.83 14 11.76 13 19530.47 14 13.37 15 24.34 13.69
湖南Hunan 19942.05 8 12.13 11 23616.03 12 13.62 12 18.42 12.28
广东Guangdong 17771.11 11 12.36 6 20523.93 13 14.48 9 15.49 17.15
广西Guangxi 26544.02 6 15.38 3 38639.18 6 18.19 4 45.57 18.27
海南Hainan 3068.96 26 10.97 19 3680.37 26 12.78 19 19.92 16.50
重庆Chongqing 6670.03 25 11.14 16 9215.98 25 13.44 13 38.17 20.65
四川Sichuan 38943.20 3 9.01 22 49439.12 3 11.92 23 26.95 32.30
贵州Guizhou 12956.07 19 8.90 24 19000.46 17 12.33 22 46.65 38.54
云南Yunnan 36678.14 4 12.16 9 45520.06 5 13.31 16 24.11 9.46
陕西Shaanxi 19345.97 9 10.06 20 23812.55 11 12.68 20 23.09 26.04
甘肃Gansu 13137.75 18 5.72 26 19285.22 16 6.92 27 46.79 20.98
青海Qinghai 17028.59 12 3.90 29 19327.43 15 4.33 30 13.50 11.03
宁夏Ningxia 2277.41 27 5.44 27 2854.04 27 6.69 28 25.32 22.98
新疆Xinjiang 31274.80 5 5.02 28 47744.55 4 6.60 29 52.66 31.47

Table 5

Global Moran's I statistics of agricultural net carbon sink intensity in China from 2005 to 2022"

年份
Year
Moran’s I Z
Z statistics
P
P value
年份
Year
Moran’s I Z
Z statistics
P
P value
2005 0.156 2.074 0.019 2014 0.209 2.645 0.004
2006 0.194 2.468 0.007 2015 0.202 2.573 0.005
2007 0.187 2.398 0.008 2016 0.186 2.396 0.008
2008 0.205 2.599 0.005 2017 0.187 2.432 0.008
2009 0.205 2.613 0.004 2018 0.193 2.507 0.006
2010 0.203 2.591 0.005 2019 0.205 2.622 0.004
2011 0.217 2.731 0.003 2020 0.198 2.548 0.005
2012 0.214 2.705 0.003 2021 0.210 2.677 0.004
2013 0.210 2.659 0.004 2022 0.211 2.695 0.004

Table 6

Local spatial clustering of agricultural net carbon sinks intensity in 30 province (municipality, autonomous region) in main years"

年份
Year
高-高集聚区
High-high agglomeration
低-高集聚区
Low-high agglomeration
低-低集聚区
Low-low agglomeration
高-低集聚区
High-low agglomeration
2005 河北Hebei、辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、安徽Anhui、福建Fujian、江西Jiangxi、山东Shandong、河南Henan、湖北Hubei、湖南Hunan、广东Guangdong、广西Guangxi、海南Hainan、云南Yunnan、陕西Shaanxi 天津Tianjin、山西Shanxi、上海Shanghai、四川Sichuan、贵州Guizhou 内蒙古Inner Mongolia、甘肃Gansu、青海Qinghai、宁夏Ningxia、新疆Xinjiang 北京Beijing、浙江Zhejiang、重庆Chongqing
2010 河北Hebei、辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、福建Fujian、江西Jiangxi、山东Shandong、河南Henan、湖北Hubei、湖南Hunan、广东Guangdong、广西Guangxi、海南Hainan、重庆Chongqing 天津Tianjin、山西Shanxi、内蒙古Inner Mongolia、上海Shanghai、贵州Guizhou 浙江Zhejiang、安徽Anhui、四川Sichuan、陕西Shaanxi、甘肃Gansu、青海Qinghai、宁夏Ningxia、新疆Xinjiang 北京Beijing、云南Yunnan
2015 河北Hebei、辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、安徽Anhui、福建Fujian、江西Jiangxi、山东Shandong、河南Henan、湖北Hubei、湖南Hunan、广东Guangdong 天津Tianjin、山西Shanxi、内蒙古Inner Mongolia、上海Shanghai、海南Hainan、贵州Guizhou、陕西Shaanxi 北京Beijing、浙江Zhejiang、重庆Chongqing、四川Sichuan、甘肃Gansu、青海Qinghai、宁夏Ningxia、新疆Xinjiang 广西Guangxi、云南Yunnan
2022 北京Beijing、天津Tianjin、河北Hebei、辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、安徽Anhui、山东Shandong、河南Henan、湖北Hubei、湖南Hunan、广东Guangdong 山西Shanxi、内蒙古Inner Mongolia、上海Shanghai、福建Fujian、江西Jiangxi、海南Hainan 浙江Zhejiang、四川Sichuan、贵州Guizhou、云南Yunnan、陕西Shaanxi、甘肃Gansu、青海Qinghai、宁夏Ningxia、新疆Xinjiang 广西Guangxi、重庆Chongqing

Table 7

Empirical analysis results on influencing factors of agricultural net carbon emission intensity"

变量
Variable
模型I
Model I
模型Ⅱ
Model Ⅱ
模型III
Model III
模型IV
Model IV
模型Ⅴ
Model Ⅴ
模型Ⅵ
Model Ⅵ
clus 0.178***
(5.45)
0.119***
(4.57)
0.089***
(3.51)
0.089***
(3.52)
0.096***
(3.73)
0.085***
(3.27)
ul 10.845***
(17.44)
4.562***
(4.18)
4.454***
(3.93)
4.512***
(3.98)
3.985***
(3.45)
rril 1.428***
(6.88)
1.393***
(6.04)
1.381***
(5.99)
1.661***
(6.31)
rhcl 0.063
(0.35)
0.033
(0.18)
0.060
(0.33)
res -0.857
(-1.48)
-0.801
(-1.39)
ais 3.750**
(2.19)
常数项
Constant
11.644***
(102.53)
5.760***
(16.49)
8.180***
(16.85)
7.787***
(6.39)
8.487***
(6.50)
5.287***
(2.70)
R2 0.055 0.409 0.459 0.459 0.462 0.467
[1]
吴昊癑, 何宇, 黄瀚蛟, 陈文宽. 中国种植业碳补偿率测算及空间收敛性. 中国人口·资源与环境, 2021, 31(6): 113-123.
WU H N, HE Y, HUANG H J, CHEN W K. Estimation and spatial convergence of carbon compensating rate of planting industry in China. China Population, Resources and Environment, 2021, 31(6): 113-123. (in Chinese)
[2]
GOODALE C L, APPS M J, BIRDSEY R A, FIELD C B, HEATH L S, HOUGHTON R A, JENKINS J C, KOHLMAIER G H, KURZ W, LIU S R, NABUURS G J, NILSSON S, SHVIDENKO A Z. Forest carbon sinks in the Northern Hemisphere. Ecological Applications, 2002, 12(3): 891.
[3]
LEWIS S L, LOPEZ-GONZALEZ G, SONKÉ B, AFFUM-BAFFOE K, BAKER T R, OJO L O, PHILLIPS O L, REITSMA J M, WHITE L, COMISKEY J A, K M N D, EWANGO C E N, FELDPAUSCH T R, HAMILTON A C, GLOOR M, HART T, HLADIK A, LLOYD J, LOVETT J C, MAKANA J R, MALHI Y, MBAGO F M, NDANGALASI H J, PEACOCK J, PEH K S H, SHEIL D, SUNDERLAND T, SWAINE M D, TAPLIN J, TAYLOR D, THOMAS S C, VOTERE R, WÖLL H. Increasing carbon storage in intact African tropical forests. Nature, 2009, 457: 1003-1006.
[4]
HOUGHTON R A. Land-use change and terrestrial carbon:the temporal record//APPS M J, PRICE D T. Forest Ecosystems, Forest Management and the Global Carbon Cycle. Heidelberg: Springer, 1996: 117-134.
[5]
吴建国, 张小全, 徐德应. 土地利用变化对生态系统碳汇功能影响的综合评价. 中国工程科学, 2003(9): 65-71, 77.
WU J G, ZHANG X Q, XU D Y. The assessment of the impacts of land use change on the ecosystem carbon sink. Engineering Science, 2003(9): 65-71, 77. (in Chinese)
[6]
QI F, WEI L, ZHANG Y W, SI J H, SU Y H, QIANG C Z, XI H Y. Effect of climatic changes and human activity on soil carbon in desertified regions of China. Tellus B: Chemical and Physical Meteorology, 2006, 58(2): 117.
[7]
MEYERAURICH A, WEERSINK A, JANOVICEK K, DEEN B. Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agriculture, Ecosystems & Environment, 2006, 117(2/3): 119-127.
[8]
李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解. 中国人口·资源与环境, 2011, 21(8): 80-86.
LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. China Population, Resources and Environment, 2011, 21(8): 80-86. (in Chinese)
[9]
TIAN Y, ZHANG J B, HE Y Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. Journal of Integrative Agriculture, 2014, 13(6): 1393-1403.

doi: 10.1016/S2095-3119(13)60624-3
[10]
戴小文, 何艳秋, 钟秋波. 基于扩展的Kaya恒等式的中国农业碳排放驱动因素分析. 中国科学院大学学报, 2015, 32(6): 751-759.

doi: 10.7523/j.issn.2095-6134.2015.06.005
DAI X W, HE Y Q, ZHONG Q B. Analysis of CO2 emission driving factors in China’s agriculture based on expanded Kaya identity. Journal of University of Chinese Academy of Sciences, 2015, 32(6): 751-759. (in Chinese)
[11]
吴贤荣, 张俊飚, 程琳琳, 田云. 中国省域农业碳减排潜力及其空间关联特征: 基于空间权重矩阵的空间Durbin模型. 中国人口·资源与环境, 2015, 25(6): 53-61.
WU X R, ZHANG J B, CHENG L L, TIAN Y. Potential of agricultural carbon reduction under climate change and its spatial correlation characteristics in China: based on the spatial Durbin model. China Population, Resources and Environment, 2015, 25(6): 53-61. (in Chinese)
[12]
田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应. 中国农村经济, 2022(3): 104-127.
TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects. Chinese Rural Economy, 2022(3): 104-127. (in Chinese)
[13]
李波, 张俊飚. 基于我国农地利用方式变化的碳效应特征与空间差异研究. 经济地理, 2012, 32(7): 135-140.
LI BO, ZHANG J B. Study on carbon effects and spatial differences based on changes in China's agricultural land use. Economic Geography, 2012, 32(7): 135-140. (in Chinese)
[14]
张俊峰, 张安录, 董捷. 武汉城市圈土地利用碳排放效应分析及因素分解研究. 长江流域资源与环境, 2014, 23(5): 595-602.
ZHANG J F, ZHANG A L, DONG J. Carbon emission effect of land use and influencing factors decomposition of carbon emission in Wuhan urban agglomeration. Resources and Environment in the Yangtze Basin, 2014, 23(5): 595-602. (in Chinese)
[15]
周嘉, 王钰萱, 刘学荣, 时小翠, 蔡春苗. 基于土地利用变化的中国省域碳排放时空差异及碳补偿研究. 地理科学, 2019, 39(12): 1955-1961.

doi: 10.13249/j.cnki.sgs.2019.12.014
ZHOU J, WANG Y X, LIU X R, SHI X C, CAI C M. Spatial temporal differences of carbon emissions and carbon compensation in China based on land use change. Scientia Geographica Sinica, 2019, 39(12): 1955-1961. (in Chinese)

doi: 10.13249/j.cnki.sgs.2019.12.014
[16]
田云, 张俊飚, 李波. 基于投入角度的农业碳排放时空特征及因素分解研究: 以湖北省为例. 农业现代化研究, 2011, 32(6): 752-755.
TIAN Y, ZHANG J B, LI B. Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle—taking Hubei Province for example. Research of Agricultural Modernization, 2011, 32(6): 752-755. (in Chinese)
[17]
李波, 刘雪琪, 王昆. 中国农地利用结构变化的碳效应及时空演进趋势研究. 中国土地科学, 2018, 32(3): 43-51.
LI B, LIU X Q, WANG K. Study on carbon effects and spatial- temporal evolution trend based on the changes of agricultural land use in China. China Land Science, 2018, 32(3): 43-51. (in Chinese)
[18]
孙赫, 梁红梅, 常学礼, 崔青春, 陶云. 中国土地利用碳排放及其空间关联. 经济地理, 2015, 35(3): 154-162.
SUN H, LIANG H M, CHANG X L, CUI Q C, TAO Y. Land use patterns on carbon emission and spatial association in China. Economic Geography, 2015, 35(3): 154-162. (in Chinese)
[19]
李强, 高威, 魏建飞, 姜志法, 张杨, 吕军骁. 中国耕地利用净碳汇时空演进及综合分区. 农业工程学报, 2022, 38(11): 239-249.
LI Q, GAO W, WEI J F, JIANG Z F, ZHANG Y, J X. Spatiotemporal evolution and comprehensive zoning of net carbon sink in cultivated land use in China. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 239-249. (in Chinese)
[20]
薛彩霞, 李园园, 胡超, 姚顺波. 中国保护性耕作净碳汇的时空格局. 自然资源学报, 2022, 37(5): 1164-1182.

doi: 10.31497/zrzyxb.20220505
XUE C X, LI Y Y, HU C, YAO S B. Study on spatio-temporal pattern of conservation tillage on net carbon sink in China. Journal of Natural Resources, 2022, 37(5): 1164-1182. (in Chinese)
[21]
李园园, 薛彩霞, 柴朝卿, 姚顺波, 李卫. 中国保护性耕作净碳汇的时空分异特征及其驱动力. 中国人口·资源与环境, 2022, 32(10): 15-23.
LI Y Y, XUE C X, CHAI C Q, YAO S B, LI W. Spatio-temporal variation and driving forces of net carbon sink of conservation tillage in China. China Population, Resources and Environment, 2022, 32(10): 15-23. (in Chinese)
[22]
吴昊玥, 孟越, 黄瀚蛟, 陈文宽. 中国耕地利用净碳汇与农业生产的时空耦合特征. 水土保持学报, 2022, 36(5): 360-368, 376.
WU H Y, MENG Y, HUANG H J, CHEN W K. Spatiotemporal coupling between the net carbon sequestration of cropland use and agricultural production in China. Journal of Soil and Water Conservation, 2022, 36(5): 360-368, 376. (in Chinese)
[23]
田云, 张俊飚. 中国农业生产净碳效应分异研究. 自然资源学报, 2013, 28(8): 1298-1309.

doi: 10.11849/zrzyxb.2013.08.003
TIAN Y, ZHANG J B. Regional differentiation research on net carbon effect of agricultural production in China. Journal of Natural Resources, 2013, 28(8): 1298-1309. (in Chinese)

doi: 10.11849/zrzyxb.2013.08.003
[24]
陈罗烨, 薛领, 雪燕. 中国农业净碳汇时空演化特征分析. 自然资源学报, 2016, 31(4): 596-607.

doi: 10.11849/zrzyxb.20150430
CHEN L Y, XUE L, XUE Y. Spatial-temporal characteristics of China’s agricultural net carbon sink. Journal of Natural Resources, 2016, 31(4): 596-607. (in Chinese)
[25]
吕斯涵, 张小平. 山东省农业净碳汇时空演化特征分析. 水土保持学报, 2019, 33(2): 227-234.
S H, ZHANG X P. Spatial-temporal characteristics of agricultural net carbon sink in Shandong Province. Journal of Soil and Water Conservation, 2019, 33(2): 227-234. (in Chinese)
[26]
李波, 王春妤, 张俊飚. 中国农业净碳汇效率动态演进与空间溢出效应. 中国人口·资源与环境, 2019, 29(12): 68-76.
LI B, WANG C Y, ZHANG J B. Dynamic evolution and spatial spillover of China’s agricultural net carbon sink. China Population, Resources and Environment, 2019, 29(12): 68-76. (in Chinese)
[27]
伍国勇, 陈莹, 孙小钧. 中国种植业碳补偿率区域差异、动态演进及收敛性分析. 中国生态农业学报(中英文), 2021, 29(10): 1774-1785.
WU G Y, CHEN Y, SUN X J. Regional differences, dynamic evolution, and convergence of the carbon com-pensation rate of planting industry in China. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1774-1785. (in Chinese)
[28]
徐影, 郭楠, 茹凯丽, 范胜龙. 碳中和视角下福建省国土空间分区特征与优化策略. 应用生态学报, 2022, 33(2): 500-508.

doi: 10.13287/j.1001-9332.202201.016
XU Y, GUO N, RU K L, FAN S L. Characteristics and optimization strategies of territorial space zone in Fujian Province, China based on carbon neutrality. Chinese Journal of Applied Ecology, 2022, 33(2): 500-508. (in Chinese)

doi: 10.13287/j.1001-9332.202201.016
[29]
谢鸿宇, 陈贤生, 林凯荣, 胡安焱. 基于碳循环的化石能源及电力生态足迹. 生态学报, 2008, 28(4): 1729-1735.
XIE H Y, CHEN X S, LIN K R, HU A Y. The ecological footprint analysis of fossil energy and electricity. Acta Ecologica Sinica, 2008, 28(4): 1729-1735. (in Chinese)
[30]
赵荣钦, 刘英, 马林, 李宇翔, 侯丽朋, 张战平, 丁明磊. 基于碳收支核算的河南省县域空间横向碳补偿研究. 自然资源学报, 2016, 31(10): 1675-1687.

doi: 10.11849/zrzyxb.20151291
ZHAO R Q, LIU Y, MA L, LI Y X, HOU L P, ZHANG Z P, DING M L. County-level carbon compensation of Henan Province based on carbon budget estimation. Journal of Natural Resources, 2016, 31(10): 1675-1687. (in Chinese)
[31]
闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012, 22(7): 21-27.
MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China. China Population, Resources and Environment, 2012, 22(7): 21-27. (in Chinese)
[32]
蒋金荷. 中国城镇住宅碳排放强度分析和用能政策反思. 数量经济技术经济研究, 2015, 32(6): 90-104.
JIANG J H. China’ s urban residential carbon intensity decomposition and energy policy rethink. The Journal of Quantitative & Technical Economics, 2015, 32(6): 90-104. (in Chinese)
[33]
袁华锡, 刘耀彬, 胡森林, 封亦代. 产业集聚加剧了环境污染吗? 基于外商直接投资视角. 长江流域资源与环境, 2019, 28(4): 794-804.
YUAN H X, LIU Y B, HU S L, FENG Y D. Does industrial agglomeration aggravate environmental pollution: from a perspective of foreign direct investment. Resources and Environment in the Yangtze Basin, 2019, 28(4): 794-804. (in Chinese)
[34]
田云, 尹忞昊, 张蕙杰. 我国农村能源碳排放时空格局、影响因素及空间溢出效应. 中国农业科学, 2023, 56(13): 2547-2562. doi: 10.3864/j.issn.0578-1752.2023.13.009.
TIAN Y, YIN M H, ZHANG H J. Spatial-temporal pattern, influencing factors and spatial spillover effect of rural energy carbon emissions in China. Scientia Agricultura Sinica, 2023, 56(13): 2547-2562. doi: 10.3864/j.issn.0578-1752.2023.13.009. (in Chinese)
[35]
LIU H J, LIU Y J, ZHANG G. Spatial-temporal distribution pattern and driving factors of agricultural carbon sinks in Beijing- Tianjin-Hebei region from the perspective of carbon neutrality. The Journal of Agricultural Science, 2024, 162(1): 1-18.
[36]
WU Y M, CHEN D, LUO M C, GAO F W, LI Z Z. The decoupling effect between net agricultural carbon emissions and economic growth based on LCA. Environment, Development and Sustainability, 2023. DOI: 10.1007/s10668-023-04236-3.
[37]
田云, 张君. 地理分区视角下的农业碳效应驱动机理研究. 华中农业大学学报(社会科学版), 2020(2): 78-87.
TIAN Y, ZHANG J. Research on driving mechanism of agricultural carbon effect from the perspective of geographical divisions. Journal of Huazhong Agricultural University (Social Sciences Edition), 2020(2): 78-87. (in Chinese)
[38]
贯君, 张少鹏, 任月, 盛春光. 中国农业净碳汇时空分异与影响因素演进分析. 中国环境科学, 2024, 44(2): 1158-1170.
GUAN J, ZHANG S P, REN Y, SHENG C G. Random forest model-assisted evaluation of spatiotemporal differentiation of China’s agricultural net carbon sink and evolution of influencing factors. China Environmental Science, 2024, 44(2): 1158-1170. (in Chinese)
[1] LONG HuaiYu, LU ChangAi, JI HongJie, ZHANG RenLian. A Retrieval System for Great Soil Groups from China’s Provisional Soil Classification System for the 3rd National Soil Census [J]. Scientia Agricultura Sinica, 2024, 57(21): 4264-4275.
[2] CHEN Shi, HUANG YinLan, JIN YunXiang, XU ChengLin, ZOU JinQiu. Agricultural Climatic Factors and Their Thresholds for Winter Wheat Cultivation in Northern China [J]. Scientia Agricultura Sinica, 2024, 57(16): 3142-3153.
[3] YANG WangHua, LIU ZhiJuan, GONG JingJin, FU ZhenZhen, ZHANG TaiLin, ZHANG XiaoLong, SHEN YanJun, YANG XiaoGuang. Drought Risk for Spring Maize in the Future and Response to Climate Change in the Northeast China [J]. Scientia Agricultura Sinica, 2024, 57(12): 2336-2349.
[4] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[5] BAI Bin, ZHANG HuaiZhi, DU JiuYuan, ZHANG XiaoYang, HE Rui, WU Ling, ZHANG Zhe, ZHANG YaoHui, CAO ShiQin, LIU ZhiYong. Current Situation and Strategy of Stripe Rust Resistance Genes Untilization in Winter Wheat Cultivars of Northwestern Oversummering Region for Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2024, 57(1): 4-17.
[6] ZHOU Ying, YANG Peng, WANG LiGang, LEI QiuLiang, ZHANG YaNan. Optimization Path of the Ecological Compensation Mechanism for Conservation Tillage in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2023, 56(22): 4478-4489.
[7] HOU LiangYu, ZHANG ZhenTao, HUANG ZhaoFu, LI LuLu, GUO YaNan, MING Bo, XIE RuiZhi, HOU Peng, XUE Jun, WANG KeRu, LI ShaoKun. Reforming the Cropping System to Achieve Maize Mechanical Grain Harvesting in Northern Huang-Huai-Hai Area of China [J]. Scientia Agricultura Sinica, 2023, 56(19): 3788-3798.
[8] LIN JiangYun, YIN BenSu, WANG XingShu, LIU ChenRui, SUN Qing, XIE XingXing, CHENG LingLing, SUN LiWei, SHI Mei, WANG ZhaoHui. The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(17): 3372-3382.
[9] LIU ShuJun, LI DongChu, HUANG Jing, QU XiaoLin, MA ChangBao, WANG HuiYing, YU ZiKun, ZHANG Lu, HAN TianFu, LIU KaiLou, SHEN Zhe, ZHANG HuiMin. Spatial-Temporal Variation Characteristics of Wheat and Maize Stalk Resources and Chemical Fertilizer Reduction Potential of Returning to Farmland in Recent 30 Years in China [J]. Scientia Agricultura Sinica, 2023, 56(16): 3140-3155.
[10] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[11] TIAN Yun, YIN Minhao, ZHANG Huijie. Spatial-Temporal Pattern, Influencing Factors and Spatial Spillover Effect of Rural Energy Carbon Emissions in China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2547-2562.
[12] ZHANG WenJing, ZHAO Jin, CUI WenQian, LI ManYao, LI E, GONG XiaoYa, YANG XiaoGuang. Effects of Changing Normal and Extreme Climate States on Maize Meteorological Yield in Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1859-1870.
[13] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[14] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[15] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!