Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4706-4716.doi: 10.3864/j.issn.0578-1752.2023.23.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Interaction Between Transverse Ridge Tillage and Topography on Soil Erodibility Along the Long Gentle Slope in a Typical Black Soil Region of Northeast China

YU BoWei(), ZHANG QingWen(), HAO Zhuo, SHI YuLong, LI XueLiang, LI MengNi, JING XueKai   

  1. Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2022-11-27 Accepted:2023-02-09 Online:2023-12-04 Published:2023-12-04
  • Contact: ZHANG QingWen

Abstract:

【Objective】The soil erosion of slope farmland in Chinese black soil region is becoming more and more serious. This study mainly focused on the interaction between transverse ridge tillage and topography on soil erodibility, which could provide a scientific theoretical basis for precise prevention of soil erosion of slope farmland in black soil region. 【Method】A typical slope farmland in the Hongxing farm in Beian city of Heilongjiang Province was selected as research object. A total of 25 sampling points were designed along both the transverse ridge tillage direction and longitudinal waterline direction. The soil erodibility K values of the corresponding sample points were calculated and tested by One-way ANOVA method. The influence factors of soil erodibility K value were analyzed by using the geographic detector model. 【Result】In the transverse ridge tillage direction, the ridge soil erodibility decreased gradually from the top to the foot of slope, and the K value decreased by 6.2%. The furrow soil erodibility decreased gradually from the shoulder to the foot of slope, and the K value decreased by 5.8%. In the waterline direction, due to the blocking effect of ridge terrace on surface runoff, soil erodibility K value of ridge and furrow did not change significantly along the slope. Geodetector analysis showed that the influence of the transverse ridge tillage on soil erodibility K value was the greatest, and its interpretation rate was more than 51% and 18% in the ridge and furrow, respectively. The transverse ridge tillage and other factors had a significant interaction enhancement effect on K value, particularly the interaction between the transverse ridge tillage and topography. 【Conclusion】 The soil erodibility K value of slope farmland in the black soil region had obvious spatial variability. There was significant interaction between the transverse ridge tillage and topography on soil erodibility. The transverse ridge tillage could significantly intercept runoff and reduce soil erosion. Due to the long slope in the transverse ridge tillage, it was easy to collect runoff at the foot of the slope, and increase the potential risk of ridge failure.

Key words: soil erodibility, transverse ridge tillage, longitudinal waterline, topography, interaction, slope farmland of black soil region

Fig. 1

Photos of transverse ridge tillage and longitudinal water line in the experimental site"

Fig. 2

The distribution of soil sampling points"

Table 1

Types of interaction between two covariates"

交互作用类型 Interaction 判断准则 Judgement criteria
双因子增强 Double-factor enhancement q(x1x2)>Max(q(x1), q(x2))
非线性增强 Nonlinear enhancement q(x1∩x2)>q(x1) + q(x2)
单因子非线性减弱 Single-factor nonlinear weakening Min[q(x1), q(x2)]>q(x1x2)>Max[q(x1), q(x2)]
非线性减弱 Nonlinear weakening q(x1x2)>Min[q(x1), q(x2)]
独立 Independent q(x1x2)=q(x1) + q(x2)

Table 2

Influencing factors classification of geographic detector"

影响因子
Influencing factor
级别
Level
级别说明
Level description
横坡垄作 Transverse ridge tillage 1-5 1.坡顶 2.坡肩 3.坡背 4.坡脚 5.坡足 1. Top 2. Shoulder 3. Back 4. Foot 5. Toe
顺坡水线 Longitudinal waterline 1-5 1.上坡 2.中上坡 3.中坡 4.中下坡 5.下坡 1. Upper 2. Mid-upper 3. Middle 4. Mid-lower 5. Lower
土壤容重 Soil density 1-4 通过ArcGIS 10.2的自然间断点方法提取 Extracted by natural breaks method in ArcGIS 10.2
土壤有机碳 Soil organic carbon 1-4 通过ArcGIS 10.2的自然间断点方法提取 Extracted by natural breaks method in ArcGIS 10.2
高程 Elevation 1-4 通过ArcGIS 10.2的自然间断点方法提取 Extracted by natural breaks method in ArcGIS 10.2
坡度 Slope 1-4 通过ArcGIS 10.2的自然间断点方法提取 Extracted by natural breaks method in ArcGIS 10.2

Fig. 3

Soil erodibility change in the transverse ridge tillage direction"

Fig. 4

The effect of transverse ridge tillage on soil erodibility, K Different lowercase letters indicted that there were significant differences (P<0.05) in the microtopography in the ridge/furrow in the transverse ridge tillage direction"

Fig. 5

Soil erodibility change in the longitudinal waterline direction"

Fig. 6

The effect of longitudinal waterline on soil erodibility Different lowercase letters indicted that there were significant differences (P<0.05) in terrain positions in the ridge/furrow in the longitudinal waterline direction"

Table 3

Single factor and its interaction contribution rate in the ridge"

影响因子
Influencing factor
横坡垄作
Transverse ridge tillage
顺坡水线
Longitudinal waterline
土壤容重
Soil density
土壤有机碳
Soil organic carbon
高程
Elevation
坡度
Slope
横坡垄作 Transverse ridge tillage 0.511
顺坡水线 Longitudinal waterline 1.000* 0.040
土壤容重 Soil density 0.761* 0.468* 0.081
土壤有机碳 Soil organic carbon 0.774* 0.270* 0.467* 0.070
高程 Elevation 0.898* 0.321* 0.590* 0.241# 0.148
坡度 Slope 0.712* 0.460* 0.439* 0.555* 0.574* 0.169

Table 4

Single factor and its interaction contribution rate in the furrow"

影响因子
Influencing factor
横坡垄作
Transverse ridge tillage
顺坡水线
Longitudinal waterline
土壤容重
Soil density
土壤有机碳
Soil organic carbon
高程
Elevation
坡度
Slope
横坡垄作 Transverse ridge tillage 0.185
顺坡水线 Longitudinal waterline 1.000* 0.084
土壤容重 Soil density 0.758* 0.485* 0.103
土壤有机碳 Soil organic carbon 0.740* 0.281* 0.373* 0.059
高程 Elevation 0.901* 0.123# 0.396* 0.267* 0.079
坡度 Slope 0.500* 0.453* 0.434* 0.463* 0.414* 0.067
[1]
刘兴土, 阎百兴. 东北黑土区水土流失与粮食安全. 中国水土保持, 2009(1): 17-19.
LIU X T, YAN B X. Soil erosion and food security in black soil region of Northeast China. Soil and Water Conservation in China, 2009(1): 17-19. (in Chinese)
[2]
范昊明, 蔡强国, 王红闪. 中国东北黑土区土壤侵蚀环境. 水土保持学报, 2004, 18(2): 66-70.
FAN H M, CAI Q G, WANG H S. Condition of soil erosion in phaeozem region of northeast China. Journal of Soil Water Conservation, 2004, 18(2): 66-70. (in Chinese)
[3]
AN J A, ZHENG F L, LU J A, LI G F. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions. Soil Science, 2012, 177(8): 517-526.

doi: 10.1097/SS.0b013e3182639de1
[4]
陈雪, 蔡强国, 王学强. 典型黑土区坡耕地水土保持措施适宜性分析. 中国水土保持科学, 2008, 6(5): 44-49.
CHEN X, CAI Q G, WANG X Q. Suitability of soil and water conservation measures on sloping farmland in typical black soil regions of Northeast China. Science of Soil and Water Conservation, 2008, 6(5): 44-49. (in Chinese)
[5]
CHEN S Q, ZHANG G H, ZHU P Z, WANG C S, WAN Y Q. Impact of slope position on soil erodibility indicators in rolling hill regions of northeast China. Catena, 2022, 217: 106475.

doi: 10.1016/j.catena.2022.106475
[6]
YANG X H, GRAY J, CHAPMAN G, ZHU Q, TULAU M, MCINNES-CLARKE S. Digital mapping of soil erodibility for water erosion in New South Wales, Australia. Soil Research, 2018, 56(2): 158.

doi: 10.1071/SR17058
[7]
刘宝元, 张科利, 焦菊英. 土壤可蚀性及其在侵蚀预报中的应用. 自然资源学报, 1999, 14(4): 345-350.
LIU B Y, ZHANG K L, JIAO J Y. Soil erodibility and its use in soil erosion prediction model. Journal of Natural Resources, 1999, 14(4): 345-350. (in Chinese)

doi: 10.11849/zrzyxb.1999.04.010
[8]
娄义宝, 康宏亮, 王文龙, 沙小燕, 冯兰茜, 聂慧莹, 史倩华. 黄土高原沟壑区沟头植被根系垂直分布及其对土壤抗侵蚀性的影响. 中国农业科学, 2023, 56(1): 90-103. doi: 10.3864/j.issn.0578-1752.2023.01.007.
LOU Y B, KANG H L, WANG W L, SHA X Y, FENG L Q, NIE H Y, SHI Q H. Vertical distribution of vegetation roots and its influence on soil erosion resistance of gully heads on the gullied loess plateau. Scientia Agricultura Sinica, 2023, 56(1): 90-103. doi: 10.3864/j.issn.0578-1752.2023.01.007. (in Chinese)
[9]
魏慧, 赵文武, 王晶. 土壤可蚀性研究述评. 应用生态学报, 2017, 28(8): 2749-2759.

doi: 10.13287/j.1001-9332.201708.011
WEI H, ZHAO W W, WANG J. Research progress on soil erodibility. Chinese Journal of Applied Ecology, 2017, 28(8): 2749-2759. (in Chinese)

doi: 10.13287/j.1001-9332.201708.011
[10]
GUO M M, CHEN Z X, WANG W L, WANG T C, WANG W X, CUI Z Q. Revegetation induced change in soil erodibility as influenced by slope situation on the Loess Plateau. Science of the Total Environment, 2021, 772: 145540.

doi: 10.1016/j.scitotenv.2021.145540
[11]
陈卓鑫, 王文龙, 郭明明, 王天超, 郭文召, 王文鑫, 康宏亮, 杨波, 赵满. 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响. 自然资源学报, 2020, 35(2): 387-398.

doi: 10.31497/zrzyxb.20200211
CHEN Z X, WANG W L, GUO M M, WANG T C, GUO W Z, WANG W X, KANG H L, YANG B, ZHAO M. Effects of vegetation restoration on soil erodibility on different geomorphological locations in the loess-tableland and gully region of the Loess Plateau. Journal of Natural Resources, 2020, 35(2): 387-398. (in Chinese)

doi: 10.31497/zrzyxb.20200211
[12]
王文鑫, 王文龙, 郭明明, 王天超, 康宏亮, 杨波, 赵满, 陈卓鑫. 黄土高塬沟壑区植被恢复对沟头土壤团聚体特征及土壤可蚀性的影响. 中国农业科学, 2019, 52(16): 2845-2857. doi:10.3864/j.issn.0578-1752.2019.16.010.
WANG W X, WANG W L, GUO M M, WANG T C, KANG H L, YANG B, ZHAO M, CHEN Z X. Effects of natural vegetation restoration on characteristics of soil aggregate and soil erodibility of gully heads in gully region of the loess plateau. Scientia Agricultura Sinica, 2019, 52(16): 2845-2857. doi:10.3864/j.issn.0578-1752.2019.16.010. (in Chinese)
[13]
王亚娟, 陈云明, 孙亚荣, 赵敏. 宁南山区侵蚀沟不同部位土壤理化性质及可蚀性研究. 水土保持学报, 2023, 37(2): 11-18.
WANG Y J, CHEN Y M, SUN Y R, ZHAO M. Study on physical and chemical properties and erodibility of soil in different parts of erosion gully in the mountainous area of South Ningxia. Journal of Soil and Water Conservation, 2023, 37(2): 11-18. (in Chinese)
[14]
张琪, 崔佳慧, 李绒萱, 刘博, 仝如强, 王宇. 吉林省中东部耕地土壤可蚀性因子的演变. 吉林农业大学学报, 2021, 43(1): 82-85.
ZHANG Q, CUI J H, LI R X, LIU B, TONG R Q, WANG Y. Evolution of arable soil erodibility factor in central and eastern Jilin Province. Journal of Jilin Agricultural University, 2021, 43(1): 82-85. (in Chinese)
[15]
孔亚平, 张科利, 杨红丽. 土壤可蚀性模拟研究中的坡长选定问题. 地理科学, 2005, 25(3): 3374-3378.
KONG Y P, ZHANG K L, YANG H L. Selecting on slope length of the soil erodibility simulation. Scientia Geographica Sinica, 2005, 25(3): 3374-3378. (in Chinese)
[16]
张永勤. 武夷山山地土壤可蚀性K值的垂直分异及成因分析. 亚热带水土保持, 2012, 24(3): 19-22.
ZHANG Y Q. Analysis on the vertical differentiation & affected factors of soil erodibility K value in mountain soils of Wuyi Mountain. Subtropical Soil and Water Conservation, 2012, 24(3): 19-22. (in Chinese)
[17]
刘宝元, 阎百兴, 沈波, 王志强, 魏欣. 东北黑土区农地水土流失现状与综合治理对策. 中国水土保持科学, 2008, 6(1): 1-8.
LIU B Y, YAN B X, SHEN B, WANG Z Q, WEI X. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China. Science of Soil and Water Conservation, 2008, 6(1): 1-8. (in Chinese)
[18]
王磊, 何超, 郑粉莉, 边锋, 覃超, 徐锡蒙. 黑土区坡耕地横坡垄作措施防治土壤侵蚀的土槽试验. 农业工程学报, 2018, 34(15): 141-148.
WANG L, HE C, ZHENG F L, BIAN F, QIN C, XU X M. Soil-Bin experiment on effects of contour ridge tillage for controlling hillslope soil erosion in black soil region. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 141-148. (in Chinese)
[19]
HOU T Y, FILLEY T R, TONG Y N, ABBAN B, SINGH S, THANOS PAPANICOLAOU A N, WACHA K M, WILSON C G, CHAUBEY I. Tillage-induced surface soil roughness controls the chemistry and physics of eroded particles at early erosion stage. Soil and Tillage Research, 2021, 207: 104807.

doi: 10.1016/j.still.2020.104807
[20]
温云浩, 王立新, 刘铁军. 东北黑土区不同垄作坡面产流产沙过程. 水土保持研究, 2022, 29(5): 8-13, 20.
WEN Y H, WANG L X, LIU T J. Process of runoff and sediment generation on different slopes with ridged cropping in the black soil area of northeast China. Research of Soil and Water Conservation, 2022, 29(5): 8-13, 20. (in Chinese)
[21]
AN J, WU Y Z, WU X Y, WANG L Z, XIAO P Q. Soil aggregate loss affected by raindrop impact and runoff under surface hydrologic conditions within contour ridge systems. Soil and Tillage Research, 2021, 209: 104937.

doi: 10.1016/j.still.2021.104937
[22]
SHARPLEY A N, WILLIAMS J R. EPIC-erosion/productivity impact calculator: 1. Model documentation. Beltsville, MD: U.S. Department of Agriculture Technical Bulletin, No.1768.
[23]
WANG J F, LI X H, CHRISTAKOS G, LIAO Y L, ZHANG T, GU X, ZHENG X Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 2010, 24(1): 107-127.

doi: 10.1080/13658810802443457
[24]
刘华征, 贾燕锋, 范昊明, 王佳楠, 韩文宁. 东北松嫩典型黑土区长缓坡耕地土壤侵蚀沿坡长变化规律及其对土壤质量的影响. 自然资源学报, 2022, 37(9): 2292-2305.

doi: 10.31497/zrzyxb.20220907
LIU H Z, JIA Y F, FAN H M, WANG J N, HAN W N. Variation of soil erosion intensity along the long gentle farming slopes and its influence on soil quality in the typical mollisol region, Songnen Plain, Northeast China. Journal of Natural Resources, 2022, 37(9): 2292-2305. (in Chinese)

doi: 10.31497/zrzyxb.20220907
[25]
张明礼, 杨浩, 高明, 杨九东, 刘晓海. 利用137Cs示踪技术研究滇池流域土壤侵蚀. 土壤学报, 2008, 45(6): 1017-1025.
ZHANG M L, YANG H, GAO M, YANG J D, LIU X H. Study on soil erosion in Dianchi Catchment using 137Cs tracer. Acta Pedologica Sinica, 2008, 45(6): 1017-1025. (in Chinese)
[26]
谭贞学, 王占礼, 马春艳, 刘俊娥, 袁殷. 黄土坡面下坡位土壤侵蚀过程的模拟试验. 中国水土保持科学, 2009, 7(2): 12-17, 28.
TAN Z X, WANG Z L, MA C Y, LIU J E, YUAN Y. Simulated- rainfall experimental research on soil erosion processes on downslope segment of loess hillslope. Science of Soil and Water Conservation, 2009, 7(2): 12-17, 28. (in Chinese)
[27]
XU X M, ZHENG F L, WILSON G V, HE C, LU J, BIAN F. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China. Soil and Tillage Research, 2018, 177: 1-11.

doi: 10.1016/j.still.2017.10.005
[28]
盖浩, 刘平奇, 张梦璇, 陈柏旭, 王迎春, 王立刚. 黑土坡耕地横坡垄作对减少径流及土壤有机碳流失的作用. 水土保持学报, 2022, 36(2): 300-304, 311.
GAI H, LIU P Q, ZHANG M X, CHEN B X, WANG Y C, WANG L G. Effects of ridge planting on reducing runoff and soil organic carbon loss in black soil slope. Journal of Soil and Water Conservation, 2022, 36(2): 300-304, 311. (in Chinese)
[29]
宋鸽, 史东梅, 蒋光毅, 江娜, 叶青, 张健乐. 土壤管理措施对坡耕地侵蚀退化耕层的恢复作用. 中国农业科学, 2021, 54(8): 1702-1714. doi: 10.3864/j.issn.0578-1752.2021.08.010.
SONG G, SHI D M, JIANG G Y, JIANG N, YE Q, ZHANG J L. Effects of different fertilization methods on restoration of eroded and degraded cultivated-layer in slope farmland. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714. doi: 10.3864/j.issn.0578-1752.2021.08.010. (in Chinese)
[30]
水利部, 中国科学院, 中国工程院. 中国水土流失防治与生态安全-东北黑土区卷. 北京: 科学出版社, 2010.
Ministry of Water Resources, Chinese Academy of Sciences, Chinese Academy of Engineering. Soil Erosion Control and Ecological Security in China Black Soil Region of Northeast China Volume Beijing: Science Press, 2010. (in Chinese)
[31]
王小康, 谷举, 刘刚, 师宏强. 横、顺坡垄作对黑土坡面侵蚀-沉积周期规律的影响. 土壤学报, 2022, 59(2): 430-439.
WANG X K, GU J, LIU G, SHI H Q. The influence of transverse and longitudinal ridge tillage on soil erosion and deposition cycles for mollisol slope. Acta Pedologica Sinica, 2022, 59(2): 430-439. (in Chinese)
[32]
牟廷森, 沈海鸥, 贺云锋, 李春丽, 郭聃, 刘殿民. 黑土区垄作方式对坡耕地土壤侵蚀的调控效果. 水土保持通报, 2022, 42(2): 22-30.
MOU T S, SHEN H O, HE Y F, LI C L, GUO D, LIU D M. Effects of ridge tillage patterns on soil erosion of sloping croplands in black soil region of northeastern China. Bulletin of Soil and Water Conservation, 2022, 42(2): 22-30. (in Chinese)
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] GUO YongMei, LIU Yang, WU Rui, YAN SuMei, ZHAO YanLi, GUO XiaoYu. Effect of Interaction Between Vitamin A and Acetic Acid on the Expression of Genes Related to Milk Composition Synthesis in Bovine Mammary Epithelial Cells [J]. Scientia Agricultura Sinica, 2023, 56(21): 4344-4358.
[3] FENG Xiao, WU ChaoSheng, YANG YuLing, FU LiXiao, CHEN LongWei, TANG XiaoZhi. Effects of Different Salt Ions on the Gel Properties and Molecular Interactions of Quinoa Protein [J]. Scientia Agricultura Sinica, 2023, 56(21): 4318-4329.
[4] LIU DeShuai, FENG Mei, SUN YuTong, WANG Ye, CHI JingNan, YAO WenKong. Analysis of the Interaction Between VvGAI1 and VvJAZ9 Proteins in Grape and Its Expression Pattern Under Low Temperature [J]. Scientia Agricultura Sinica, 2023, 56(15): 2977-2994.
[5] WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue. Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2023, 56(15): 3020-3031.
[6] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[7] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[8] SHI XiaoLong, GUO Pei, REN JingYao, ZHANG He, DONG QiQi, ZHAO XinHua, ZHOU YuFei, ZHANG Zheng, WAN ShuBo, YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[9] WANG Bing,LI HuiMin,CAO HaiQun,WANG GuiRong. Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2021, 54(8): 1653-1672.
[10] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[11] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[12] YANG FengKe,HE BaoLin,DONG Bo,WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region [J]. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[15] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!