Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (21): 4344-4358.doi: 10.3864/j.issn.0578-1752.2023.21.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Effect of Interaction Between Vitamin A and Acetic Acid on the Expression of Genes Related to Milk Composition Synthesis in Bovine Mammary Epithelial Cells

GUO YongMei(), LIU Yang, WU Rui, YAN SuMei(), ZHAO YanLi, GUO XiaoYu   

  1. College of Animal Science, Inner Mongolia Agricultural University/Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018
  • Received:2023-01-31 Accepted:2023-05-25 Online:2023-11-01 Published:2023-11-06
  • Contact: YAN SuMei

Abstract:

【Objective】Our previous research found that vitamin A (VA) has a significant effect on promoting the expression of genes related to milk fat and milk protein synthesis in bovine mammary epithelial cells (BMECs). Based on this, this experiment was conducted by adding acetic acid (AA) to explore whether there is an interaction between VA and AA in the expression of genes related to milk composition synthesis, then gaining a more systematic understanding of the regulatory mechanism of VA involvement in milk fat and protein synthesis, this study would provide scientific basis for the rational addition of VA to feed for dairy cows and the improvement of milk quality.【Method】In this experiment, cells were cultured using digestive method of collagenase. Two factor completely randomized trial design was used in this study. The third generation BMECs was randomly divided into 6 treatment groups, with 6 replicates in each group. After starvation treatment of serum-free medium for 24 hours, medium with VA and AA at different concentrations was added, respectively. The six treatment groups were sequentially named as control group (0 mg·mL-1VA+0 mol·L-1 AA), AA treatment group 1 (0 mg·mL-1VA+0.006 mol·L-1 AA), AA treatment group 2(0 mg·mL-1VA+0.01 mol·L-1 AA), VA treatment group(0.001 mg·mL-1VA+0 mol·L-1 AA), VAAA1 group(0.001 mg·mL-1VA+0.006 mol·L-1 AA), and VAAA2 group(0.001 mg·mL-1VA+0.01 mol·L-1 AA). After 24 hours of continuous culture, the cells and culture medium were collected as required, and the cell proliferation rate was measured using MTT method; the content of triglycerides and the activities of key enzymes in milk fat and protein synthesis were measured using kits. The relative expression of genes related to milk fat and milk protein synthesis was measured and calculated by real-time quantitative PCR.【Result】The results showed that adding VA significantly increased the cell proliferation rate (P<0.001), but no significant effect on the cell proliferation rate was found followed by addition of AA or VA and AA (P>0.05). There was an interaction effect between VA and AA on milk fat synthesis. AA increased the triglyceride (TG) content in BMECs (P=0.01), but the addition of VA inhibited TG synthesis in the meantime (P=0.01). AA up-regulated the activities of fatty acid synthase (FASN) and acetyl CoA carboxylase (ACACA) as well as peroxisome proliferator-activated receptor γ (PPARG) gene expression in BMECs (P<0.05; P<0.05; P<0.001), while significant inhibitory effect of VA was observed (P<0.001; P=0.01; P<0.01). AA significantly increased the content of mammalian rapamycin target protein (mTOR) (P=0.05), ribosome S6 protein kinase (S6K1) enzyme activity (P<0.001), and the gene expression of CSN3 in BMECs (P=0.02). VA and AA had an interaction effect on the gene expression of mTOR and CSN2, because the simultaneous addition of VA and AA attenuated the down-regulatory effect on mTOR and CSN2 gene expression after addition of VA or AA alone.【Conclusion】To sum up, AA treatment group 2 had a better promoting effect on milk fat synthesis, while VAAA2 group had a weaker effect; AA treatment group 1 had a better promoting effect on milk protein synthesis, while VAAA1 group had a weaker effect. Therefore, 0.01 mol·L-1 of AA alone is better for promoting milk fat synthesis, while 0.006 mol·L-1 of AA is more conducive to milk protein synthesis.

Key words: vitamin A, acetic acid, interaction, bovine mammary epithelial cells, milk composition

Table1

Experimental design"

组别
Treatment
VA浓度
Concentration of vitamin A (mg·mL-1)
AA浓度
Concentration of acetic acid (mol·L-1)
对照组 Control 0 0
AA处理1组
AA treatment group 1
0 0.006
AA处理2组
AA treatment group 2
0 0.01
VA处理组VA treatment group 0.001 0
VAAA1组 VAAA1 group 0.001 0.006
VAAA2组 VAAA2 group 0.001 0.01

Table 2

Effects of vitamin A and acetic acid on cellular proliferation rate and triglycerides content in BMECs"

VA浓度
Concentration of vitamin A (mg·mL-1)
AA浓度
Concentration of acetic acid (mol·L-1)
细胞增殖率
RGR (%)
甘油三酯
TG (mg·mg-1 pro)
0 0 1.00 0.014C
0.006 0.95 0.044AB
0.01 0.96 0.059A
0.001 0 1.16 0.025BC
0.006 1.20 0.025BC
0.01 1.10 0.011C
SEM 0.010 0.003
主效应 Main effect
VA 0 0.97a 0.037a
0.001 1.15b 0.020b
AA 0 1.08 0.020b
0.006 1.08 0.033a
0.01 1.03 0.033a
P
P value
VA <0.001 0.01
AA 0.48 0.01
AA×VA 0.44 <0.01

Table 3

Effect of vitamin A and acetic acid on the activity of key enzymes for milk fat synthesis in BMECs"

VA浓度
Concentration of vitamin A
(mg·mL-1)
AA浓度
Concentration of acetic acid
(mol·L-1)
酶活性 Activity of enzymes (IU·mL-1)
乙酰辅酶A羧化酶
ACC
脂肪酸合成酶
FAS
硬脂酰辅酶A去饱和酶 SCD 脂蛋白酯酶
LPL
0 0 0.375BC 0.042BCD 0.039B 0.104B
0.006 1.151A 0.075A 0.081AB 0.469A
0.01 1.177A 0.068AB 0.043B 0.122B
0.001 0 0.663B 0.064ABC 0.061B 0.276AB
0.006 0.275BC 0.037CD 0.070AB 0.213AB
0.01 0.149C 0.019D 0.118A 0.368AB
SEM 0.086 0.005 0.007 0.038
主效应 Main effect
VA 0 0.901a 0.062a 0.054 0.232
0.001 0.345b 0.040b 0.083 0.286
AA 0 0.506 0.053 0.050 0.190
0.006 0.713 0.056 0.076 0.341
0.01 0.663 0.043 0.080 0.245
P
P value
VA <0.001 0.01 0.06 0.43
AA 0.19 0.39 0.10 0.20
AA×VA <0.001 <0.01 0.05 0.01

Fig. 1

Effects of vitamin A and acetic acid on gene expression related to milk fat synthesis in BMECs"

Table 4

Effects of vitamin A and acetic acid on enzyme activity related to milk protein synthesis in BMECs"

VA浓度
Concentration of vitamin A
(mg·mL-1)
AA浓度
Concentration of acetic acid
(mol·L-1)
酶活性 Activity of enzymes
雷帕霉素靶蛋白
mTOR (pg·mL-1)
p70核糖体蛋白S6激酶1
S6K1 (IU·mL-1)
0 0 9.45 0.013
0.006 11.05 0.018
0.01 11.88 0.170
0.001 0 8.71 0.012
0.006 9.18 0.014
0.01 9.99 0.015
SEM 0.33 0.005
主效应 Main effect
VA 0 10.79a 0.016a
0.001 9.30b 0.013b
AA 0 9.08a 0.012b
0.006 10.11ab 0.016a
0.01 10.94b 0.016a
P
P value
VA 0.02 <0.001
AA 0.05 <0.001
AA×VA 0.66 0.19

Fig. 2

Effects of vitamin A and acetic acid on gene expression related to milk protein synthesis in BMECs"

[1]
实施九大任务提振奶业发展: “十四五”奶业竞争力如何提升有了行动方案. 北方牧业, 2022(6): 13-14.
Implementing nine tasks to boost the development of dairy industry-How to improve the competitiveness of dairy industry in the 14 th Five-Year Plan has an action plan. BeiFang MuYe, 2022(6): 13-14. (in Chinese)
[2]
刘阳. 维生素A和乙酸对奶牛乳腺上皮细胞乳脂乳蛋白合成相关基因表达的影响[D]. 呼和浩特: 内蒙古农业大学, 2017.
LIU Y. Effects of vitamin A and acetic acid on gene expression related to milk fat and protein synthesis in bovine mammary epithelial cells[D]. Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese)
[3]
LETTINGA K D, GUTTER W, VAN NOORDEN C J, SCHELLENS J P, FREDERIKS W M. Early effects of high doses of retinol (vitamin A) on the in situ cellular metabolism in rat liver. Liver, 1996, 16(1): 1-11.

doi: 10.1111/liv.1996.16.issue-1
[4]
OLDHAM E R, EBERHART R J, MULLER L D. Effects of supplemental vitamin A or β-carotene during the dry period and early lactation on udder health. Journal of Dairy Science, 1991, 74(11): 3775-3781.

doi: 10.3168/jds.S0022-0302(91)78569-X
[5]
PURDIE N G, TROUT D R, POPPI D P, CANT J P. Milk synthetic response of the bovine mammary gland to an increase in the local concentration of amino acids and acetate. Journal of Dairy Science, 2008, 91(1): 218-228.

pmid: 18096943
[6]
塔娜, 李红磊, 侯先志, 考桂兰, 高民, 李大彪. 乙酸钠和β-羟丁酸钠对奶牛乳腺上皮细胞乳脂和乳蛋白合成相关基因表达的影响. 动物营养学报, 2014, 26(6): 1527-1534.

doi: 10.3969/j.issn.1006-267x.2014.06.013
TANA, LI H L, HOU X Z, KAO G L, GAO M, LI D B. Effects of sodium acetate and sodium β-hydroxybutyrate on expressions of genes involved in milk fat and protein synthesis in bovine mammary epithelial cells. Chinese Journal of Animal Nutrition, 2014, 26(6): 1527-1534. (in Chinese)
[7]
齐利枝, 生冉, 闫素梅, 赵艳丽. 乙酸浓度对奶牛乳腺上皮细胞甘油三酯含量及瘦素和过氧化物酶增殖物激活受体γ基因表达量的影响. 动物营养学报, 2013, 25(7): 1519-1525.

doi: 10.3969/j.issn.1006-267x.2013.07.016
QI L Z, SHENG R, YAN S M, ZHAO Y L. Effects of acetate concentration on triacylglycerol content and expression levels of lept in and PPARγ genes in bovine mammary epithelial cells. Chinese Journal of Animal Nutrition, 2013, 25(7): 1519-1525. (in Chinese)
[8]
韩慧娜, 闫素梅, 齐利枝, 生冉, 赵艳丽. 乙酸对奶牛乳腺上皮细胞乳脂肪酸从头合成相关基因表达量的影响. 动物营养学报, 2015, 27(3): 926-931.
HAN H N, YAN S M, QI L Z, SHENG R, ZHAO Y L. Effects of acetic acid on expression levels of genes involved in milk fatty acids de novo synthesis in bovine mammary epithelial cells. Chinese Journal of Animal Nutrition, 2015, 27(3): 926-931. (in Chinese)
[9]
生冉. 乙酸参与奶牛乳腺上皮细胞内乳脂肪与乳蛋白合成的调控机理研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
SHENG R. Regulation mechanism of acetate involved in milk fat and milk protein synthesis in the bovine mammary epithelial cells[D]. Hohhot: Inner Mongolia Agricultural University, 2015. (in Chinese)
[10]
王新朋, 闫素梅, 齐利枝, 生冉, 赵艳丽. β-羟丁酸浓度对奶牛乳腺上皮细胞内乳蛋白合成相关基因表达量的影响. 动物营养学报, 2014, 26(12): 3836-3842.

doi: 10.3969/j.issn.1006-267x.2014.12.038
WANG X P, YAN S M, QI L Z, SHENG R, ZHAO Y L. Effects of β-hydroxybutyric acid on expressions of genes involved in milk protein synthesis in bovine mammary epithelial cells. Chinese Journal of Animal Nutrition, 2014, 26(12): 3836-3842. (in Chinese)
[11]
苏芮, 刘阳, 闫素梅, 史彬林, 赵艳丽, 石惠宇. 维生素A对奶牛乳腺上皮细胞乳脂和乳蛋白合成相关基因表达的影响. 动物营养学报, 2018, 30(8): 3151-3158.
SU R, LIU Y, YAN S M, SHI B L, ZHAO Y L, SHI H Y. Effects of vitamin A on gene expressions related to milk fat and protein synthesis in bovine mammary epithelial cells. Chinese Journal of Animal Nutrition, 2018, 30(8): 3151-3158. (in Chinese)
[12]
TIMONEDA J, RODRÍGUEZ-FERNÁNDEZ L, ZARAGOZÁ R, MARÍN M P, CABEZUELO M T, TORRES L, VIÑA J R, BARBER T. Vitamin A deficiency and the lung. Nutrients, 2018, 10(9): 1132.

doi: 10.3390/nu10091132
[13]
方桂红, 程莉. 维生素A的生理功能及毒性研究进展. 轻工科技, 2012, 28(8): 10-11, 15.
FANG G H, CHENG L. Research progress on physiological function and toxicity of vitamin A. Light Industry Science and Technology, 2012, 28(8): 10-11, 15. (in Chinese)
[14]
哈斯额尔敦, 白晨, 萨茹丽, 敖长金. 牛奶甘油三酯脂肪酸酯化位置结构特点及其在乳腺中合成代谢的研究进展. 动物营养学报, 2021, 33(6): 3036-3042.

doi: 10.3969/j.issn.1006-267x.2021.06.005
KHAS-ERDENE, BAI C, SA R L, AO C J. A review of properties of fatty acid esterification structure in bovine milk triglycerides and its biosynthesis in mammary gland. Chinese Journal of Animal Nutrition, 2021, 33(6): 3036-3042. (in Chinese)
[15]
孔庆洋. 乙酸钠和丁酸钠对奶牛乳腺上皮细胞及腺泡乳脂合成相关基因表达的影响[D]. 哈尔滨: 东北农业大学, 2012.
KONG Q Y. Effect of sodium acetate and sodium butyrate on expression of genes related to milk fat synthesis of dairy cow mammary epithelial cells and acinus[D]. Harbin: Northeast Agricultural University, 2012. (in Chinese)
[16]
ZHAO Y L, GUO X Y, YAN S M, SHI B L, SHENG R. Acetate regulates milk fat synthesis through the mammalian target of rapamycin/eukaryotic initiation factor 4E signaling pathway in bovine mammary epithelial cells. Journal of Dairy Science, 2021, 104(1): 337-345.

doi: 10.3168/jds.2020-18246 pmid: 33189285
[17]
MATAMOROS C, HAO F, TIAN Y, PATTERSON A D, HARVATINE K J. Interaction of sodium acetate supplementation and dietary fiber level on feeding behavior, digestibility, milk synthesis, and plasma metabolites. Journal of Dairy Science, 2022, 105(11): 8824-8838.

doi: 10.3168/jds.2022-21911
[18]
郭冬生, 彭小兰, 夏维福. 乳的合成过程及其在生产中的应用技术. 乳业科学与技术, 2007, 30(4): 195-196, 194.
GUO D S, PENG X L, XIA W F. The synthesis process of milk and the application in production. Journal of Dairy Science and Technology, 2007, 30(4): 195-196, 194. (in Chinese)
[19]
BAUMAN D E, MATHER I H, WALL R J, LOCK A L. Major advances associated with the biosynthesis of milk. Journal of Dairy Science, 2006, 89(4): 1235-1243.

doi: 10.3168/jds.S0022-0302(06)72192-0 pmid: 16537956
[20]
王丽芳, 张兴夫. 黄花蒿醇提物对奶牛乳腺细胞中共轭亚油酸合成相关酶基因表达的作用. 中国农业科学, 2019, 52(18): 3271-3278.

doi: 10.3864/j.issn.0578-1752.2019.18.018
WANG L F, ZHANG X F. Effects of Artemisia annua extracts on CLA synthesis and mechanism. Scientia Agricultura Sinica, 2019, 52(18): 3271-3278. (in Chinese)
[21]
LI Z P, LU S Y, CUI K Q, SHAFIQUE L, REHMAN S U, LUO C, WANG Z Q, RUAN J, QIAN Q, LIU Q Y. Fatty acid biosynthesis and transcriptional regulation of Stearoyl-CoA Desaturase 1 (SCD1) in buffalo milk. BMC Genetics, 2020, 21(1): 23.

doi: 10.1186/s12863-020-0829-6 pmid: 32122301
[22]
JACOBS A A A, DIJKSTRA J, LIESMAN J S, VANDEHAAR M J, LOCK A L, VAN VUUREN A M, HENDRIKS W H, VAN BAAL J. Effects of short- and long-chain fatty acids on the expression of stearoyl-CoA desaturase and other lipogenic genes in bovine mammary epithelial cells. Animal, 2013, 7(9): 1508-1516.

doi: 10.1017/S175173111300061X pmid: 23597233
[23]
MA N, ABAKER J A, WEI G, CHEN H, SHEN X, CHANG G. A high-concentrate diet induces an inflammatory response and oxidative stress and depresses milk fat synthesis in the mammary gland of dairy cows. Journal of Dairy Science, 2022, 105(6): 5493-5505.

doi: 10.3168/jds.2021-21066
[24]
王红芳, 刘红云, 杨维仁, 刘建新, 杨在宾. 外源反-10, 顺-12共轭亚油酸对体外培养牛乳腺上皮细胞SREBP-1基因表达和蛋白质合成的影响. 中国农业科学, 2011, 44(23): 4892-4901.

doi: 10.3864/j.issn.0578-1752.2011.23.016
WANG H F, LIU H Y, YANG W R, LIU J X, YANG Z B. Effects of exogenetic trans-10, Cis-12 CLA on genes expression and protein synthesis of SREBP-1 gene in bovine mammary epithelial cells. Scientia Agricultura Sinica, 2011, 44(23): 4892-4901. (in Chinese)
[25]
王俊锋, 黄静龙, 梁国义. 泌乳反刍动物乳蛋白的合成机理及调控途径的研究. 饲料工业, 2005, 26(7): 13-17.
WANG J F, HUANG J L, LIANG G Y. Study on synthesis mechanism and regulation of milk protein in lactating ruminants. Feed Industry, 2005, 26(7): 13-17. (in Chinese)
[26]
庞孝飞, 汪超. 牛乳乳清蛋白的主要组成及其营养特点. 畜牧与饲料科学, 2016, 37(3): 52-54.
PANG X F, WANG C. A review on major components and nutritional properties of cow milk whey protein. Animal Husbandry and Feed Science, 2016, 37(3): 52-54. (in Chinese)
[27]
ZHAO Y L, YAN S M, CHEN L, SHI B L, GUO X Y. Effect of interaction between leucine and acetate on the milk protein synthesis in bovine mammary epithelial cells. Animal Science Journal, 2019, 90(1): 81-89.

doi: 10.1111/asj.13125 pmid: 30397989
[28]
BROCKMAN J L, SCHROEDER M D, SCHULER L A. PRL activates the cyclin D1 promoter via the Jak2/stat pathway. Molecular Endocrinology, 2002, 16(4): 774-784.

pmid: 11923474
[29]
王立娜. 氨基酸与STAT5A基因互作对奶牛乳腺上皮细胞泌乳的调节作用及机理[D]. 哈尔滨: 东北农业大学, 2014.
WANG L N. Effect of interaction between amino acids and STAT5A on lactation of dairy cow mammary epithelial cells and its mechanism[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese)
[30]
RIUS A G, APPUHAMY J A D R N, CYRIAC J, KIROVSKI D, BECVAR O, ESCOBAR J, MCGILLIARD M L, BEQUETTE B J, AKERS R M, HANIGAN M D. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 2010, 93(7): 3114-3127.

doi: 10.3168/jds.2009-2743 pmid: 20630229
[31]
ANDERSON S M, RUDOLPH M C, MCMANAMAN J L, NEVILLE M C. Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis!. Breast Cancer Research, 2007, 9(1): 204.

doi: 10.1186/bcr1653
[32]
LUYIMBAZI D, AKCAKANAT A, MCAULIFFE P F, ZHANG L, SINGH G, GONZALEZ-ANGULO A M, CHEN H Q, DO K A, ZHENG Y H, HUNG M C, et al. Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Molecular Cancer Therapeutics, 2010, 9(10): 2770-2784.

doi: 10.1158/1535-7163.MCT-09-0980 pmid: 20876744
[33]
曹洋, 艾阳, 张源淑. 乳蛋白合成的信号通路与营养调控. 畜牧与兽医, 2014, 46(6): 133-136.
CAO Y, AI Y, ZHANG Y S. Signal pathway of milk protein synthesis and nutritional regulation. Animal Husbandry & Veterinary Medicine, 2014, 46(6): 133-136. (in Chinese)
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] REN GuoDong, HAO XiaoYan, ZHANG XuanZi, LIU Sen, ZHANG HongXiang, TIAN GuangYuan, ZHANG JianXin. Effects of Guanidinoacetic Acid and Betaine Supplementation on Growth Performance, Rumen Fermentation and Blood Metabolites in Lambs [J]. Scientia Agricultura Sinica, 2023, 56(4): 766-778.
[3] FENG Xiao, WU ChaoSheng, YANG YuLing, FU LiXiao, CHEN LongWei, TANG XiaoZhi. Effects of Different Salt Ions on the Gel Properties and Molecular Interactions of Quinoa Protein [J]. Scientia Agricultura Sinica, 2023, 56(21): 4318-4329.
[4] LIU DeShuai, FENG Mei, SUN YuTong, WANG Ye, CHI JingNan, YAO WenKong. Analysis of the Interaction Between VvGAI1 and VvJAZ9 Proteins in Grape and Its Expression Pattern Under Low Temperature [J]. Scientia Agricultura Sinica, 2023, 56(15): 2977-2994.
[5] WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue. Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2023, 56(15): 3020-3031.
[6] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[7] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[8] SHI XiaoLong, GUO Pei, REN JingYao, ZHANG He, DONG QiQi, ZHAO XinHua, ZHOU YuFei, ZHANG Zheng, WAN ShuBo, YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[9] WANG Bing,LI HuiMin,CAO HaiQun,WANG GuiRong. Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2021, 54(8): 1653-1672.
[10] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[11] YANG FengKe,HE BaoLin,DONG Bo,WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region [J]. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325.
[12] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[13] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[14] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
[15] YUAN GuiBo,MO ShuangRong,QIAN Ying,ZANG DongNan,YANG Fan,JIANG HongLiang,WU Yuan,DING HaiDong. Screening of Interacting Protein of Tomato SIVQ6 by GST Pull-Down [J]. Scientia Agricultura Sinica, 2020, 53(15): 3146-3157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!