Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (18): 3615-3628.doi: 10.3864/j.issn.0578-1752.2023.18.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Application of Organic Fertilizer on Rare and Abundant Bacterial Sub-Communities in Greenhouse Tomato Soil

LIU Lei(), SHI JianShuo(), ZHANG GuoYin, GAO Jing, LI Pin, REN Yanli, WANG LiYing()   

  1. Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences/Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051
  • Received:2022-10-09 Accepted:2023-03-20 Online:2023-09-16 Published:2023-09-21
  • Contact: WANG LiYing

Abstract:

Objective】The objective of the present study was to distinguish the rare and abundant bacteria from the whole community and to explore their responses to long-term application of organic fertilizer respectively, so as to provide new insights into the relationships between soil biodiversity and ecosystem functioning under major agricultural activities. 【Method】Based on the long-term fertilization experiment of greenhouse tomato, soils were collected under four different treatments, including no fertilizer (M0), low organic fertilizer 5.68 t·hm-2 (M1), medium organic fertilizer 8.52 t·hm-2 (M2), and high organic fertilizer 11.36 t·hm-2 (M3). Illumina MiSeq platform was used to analyze the diversity, community composition, co-occurrence network and potential functions differences of the rare and abundant bacterial sub-communities, and their various responses to long-term fertilization, to illustrate the key factors driving the distinct distribution patterns and responses for rare and abundant bacteria. 【Result】Compared with the abundant bacterial sub-community, the rare bacterial sub-community showed higher α- and β-diversity and distinct community composition, as well as potential functions. A functional prediction detected that abundant bacteria contributed primary functions in the greenhouse ecosystem, such as nutrient and energy metabolism, meanwhile rare bacteria contribute a substantial fraction of auxiliary functions (e.g., metabolism of cofactors), which indicated they played important roles in the functional redundancy of microbial communities. Contrasting responses of rare and abundant bacterial sub-communities to long-term fertilization were revealed in this study, in which the rare bacteria was more sensitive. Compared with no fertilizer, the long-term application of organic and chemical fertilizer significantly increased the OTU richness, Shannon diversity, and total relative abundance by 19.8%-53.8%, 5.8%-8.0%, and 1.1-1.2 times, respectively, and changed the community composition and structure of rare bacterial sub-communities. In addition, with the increased application rates of organic fertilizer, the OTU richness of rare bacteria also increased significantly, accompanied by obvious changing in community composition and structure. However, the abundant bacteria exhibited less sensitivity to long-term fertilization, with only the community composition altered. Besides, the co-occurrence network complexity increased with organic fertilizer rates, especially in rare sub-communities. Both the results of the NMDS and mantel test revealed that the controlling factors affecting rare and abundant bacterial sub-communities were different. A variety of soil factors associated with deterministic processes, i.e., SOC, soil nutrients of total N and P, Olsen-P and available K, and pH, as well as macro- and medium-aggregate, significantly influenced abundant bacteria. Structural equation model (SEM) further showed that soil organic matter and total phosphorus directly drove abundant bacterial diversity. On the other hand, less effects of environmental filtering and more scattered distribution patterns were found in rare bacteria, indicating different assemblies of rare and abundant sub-communities. 【Conclusion】Compared with the abundant bacteria and the whole community, the rare bacteria sub-community showed higher diversity and unique community composition, which improved the functional redundancy of the microbial community. Long-term fertilization altered the whole bacterial community mainly by affecting rare bacteria (i.e., increasing diversity, changing community composition, increasing co-occurrence network complexity) rather than the abundant bacteria. The controlling factors that mediated the assembly of the rare and abundant bacterial sub-communities were also different.

Key words: rare bacteria, abundant bacteria, organic fertilizer, greenhouse tomato, diversity, community assembly, ecosystem function

Table 1

Annual input of nutrient under different fertilizer treatments"

处理 Treatment 有机肥养分投入量
Organic nutrient input (kg·hm-2)
化肥养分投入量
Inorganic nutrient input (kg·hm-2)
总养分投入量
Total nutrient input (kg·hm-2)
氮 N 磷 P2O5 钾 K2O 氮 N 磷 P2O5 钾 K2O 氮 N 磷 P2O5 钾 K2O
M0 0 0 0 0 0 0 0 0 0
M1 157 88 118 192 88 327 349 177 445
M2 236 133 177 192 88 327 428 221 504
M3 315 177 236 192 88 327 506 265 563

Table 2

Soil properties under different application rates of manure"

处理
Treatment
pH 有机质
SOM
(g·kg-1)
全氮
TN
(g·kg-1)
全磷
TP
(g·kg-1)
全钾
TK
(g·kg-1)
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
有效磷
Olsen-P
(mg·kg-1)
M0 8.39±0.05a 12.83±0.15d 0.75±0.01c 0.72±0.04c 1.94±0.02a 24.25±14.24a 4.03±0.85a 4.60±1.60c
M1 7.98±0.10b 26.23±0.38c 1.37±0.10b 1.09±0.02b 1.98±0.03a 12.76±5.73a 4.48±0.41a 55.27±2.90b
M2 7.82±0.10b 33.00±2.36b 1.63±0.15ab 1.21±0.04ab 1.99±0.02a 13.21±9.97a 5.67±1.08a 82.20±6.33a
M3 7.57±0.06c 37.11±0.43a 1.84±0.03a 1.29±0.06a 1.98±0.02a 11.69±1.71b 4.95±0.56a 90.63±5.08a
处理
Treatment
速效钾
AK
(mg·kg-1)
碳氮比
C/N
电导率
EC
(μs·cm-1)
质量含水量
W
(%)
大团聚体
Maccoaggregate
(%)
中团聚体
Mediumaggregate
(%)
黏粒
Clay
(%)
粉粒
Silt
(%)
M0 71.50±15.55c 8.53±3.44b 108.03±31.09a 14.89±0.71a 22.21±2.06b 15.27±4.27b 27.37±0.67a 49.33±3.71a
M1 189.00±30.05b 10.83±5.81ab 190.43±79.75a 14.52±1.83a 32.82±12.18a 36.35±6.40a 26.03±1.33a 50.00±1.15a
M2 233.00±36.51ab 21.26±0.10a 273.60±104.45a 15.16±1.01a 32.61±1.10a 46.13±4.61a 26.03±0.67a 48.67±2.40a
M3 283.50±6.87a 16.09±4.60a 518.33±198.95a 14.97±0.77a 39.85±4.85a 44.06±0.28a 24.70±1.15a 50.67±1.76a

Table 3

The α-diversities of bacterial sub-communities under different fertilizer treatment"

处理
Treatment
OTU丰富度 OTU richness Shannon多样性指数 Shannon diversity index
稀有Rare 丰富Abundant 整体Whole 稀有Rare 丰富Abundant 整体Whole
M0 912.67±18.68d 26.33±2.73a 1947.00±91.11b 6.56±0.21b 2.95±0.20a 5.85±0.30b
M1 1093.00±31.32c 25.67±0.88a 2349.33±58.94a 6.94±0.03ab 3.16±0.05a 6.56±0.05a
M2 1153.33±16.59b 23.00±0.58a 2480.00±27.54a 6.99±0.01ab 3.07±0.03a 6.69±0.01a
M3 1403.67±92.65a 24.67±4.18a 2482.00±36.51a 7.079±0.06a 3.10±0.13a 6.74±0.06a

Fig. 1

Composition of bacterial sub-communities under different fertilizer treatment Rare: The rare bacterial sub-community; Abundant: The abundant bacterial sub-community; Whole: The whole bacterial community. The same as below"

Fig. 2

The bacterial β-diversities of different sub-communities according to the Bray-Curtis dissimilarity"

Fig. 3

Non-metric multidimensional scaling (NMDS) ordination of different sub-communities based on Bray-Curtis distances"

Fig. 4

Co-occurrence networks of different sub-communities"

Table 4

Mantel test on pearson correlations of different bacterial sub-communities with environmental factors"

土壤性质
Soil property
稀有 Rare 丰富 Abundant 整体 Whole
r P r P r P
pH 0.328 0.005 0.545 0.001 0.610 0.002
SOM 0.215 0.044 0.690 0.001 0.761 0.001
TN 0.246 0.030 0.669 0.001 0.738 0.001
TP 0.229 0.043 0.707 0.001 0.767 0.001
TK 0.071 0.286 0.175 0.156 0.189 0.125
NO3--N 0.052 0.372 -0.204 0.853 -0.215 0.857
NH4+-N 0.156 0.156 0.008 0.416 0.036 0.394
Olsen-P 0.107 0.241 0.711 0.001 0.756 0.001
AK 0.136 0.149 0.619 0.005 0.660 0.003
C/N 0.248 0.024 0.394 0.020 0.445 0.009
EC 0.199 0.080 0.247 0.109 0.281 0.066
W -0.029 0.599 -0.141 0.702 -0.136 0.710
Macroaggregate 0.161 0.096 0.413 0.002 0.454 0.003
Mediumaggregate 0.177 0.096 0.601 0.013 0.667 0.005
Clay -0.558 0.646 -0.022 0.486 -0.020 0.460
Silt 0.063 0.332 0.058 0.247 0.111 0.266

Fig. 5

Structural euation model (SEM) illustrating the effects of fertilization and soil attributes on different bacterial sub-communities Solid and dotted lines indicate significant and non-significant paths, respectively. Numbers adjacent to the arrows indicatestandardized path coefficients. R2 value above each variable represents the proportion of the variance explained by the SEM model. R: The rare bacterial sub-community; A: The abundant bacterial sub-community; F: Fertilization rates"

Fig. 6

The differences in potential functions of abundant and rare taxa"

[1]
FALKOWSKI P G, FENCHEL T, DELONG E F. The microbial engines that drive Earth’s biogeochemical cycles. Science, 2008, 320(5879): 1034-1039.

doi: 10.1126/science.1153213
[2]
JIA X, DINI-ANDREOTE F, FALCÃO SALLES J. Community assembly processes of the microbial rare biosphere. Trends in Microbiology, 2018, 26(9): 738-747.

doi: S0966-842X(18)30047-7 pmid: 29550356
[3]
MO Y Y, ZHANG W J, YANG J, LIN Y S, YU Z, LIN S J. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. The ISME Journal, 2018, 12(9): 2198-2210.

doi: 10.1038/s41396-018-0153-6
[4]
王敬国. 设施菜田退化土壤修复与资源高效利用. 北京: 中国农业大学出版社, 2011.
WANG J G. Management of Degraded Vegetable Soils in Greenhouses. Beijing: China Agricultural University Press, 2011. (in Chinese)
[5]
ZHANG X M, ZHANG Q, LIANG B, LI J L. Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments. Applied Soil Ecology, 2017, 121: 82-89.

doi: 10.1016/j.apsoil.2017.08.016
[6]
TIAN T, CHEN Z Q, TIAN Y Q, GAO L H. Microbial diversity in solar greenhouse soils in Round-Bohai Bay-Region, China: the influence of cultivation year and environmental condition. Environmental Science and Pollution Research, 2017, 24(29): 23236-23249.

doi: 10.1007/s11356-017-9837-0
[7]
XU Q C, LING N, QUAISER A, GUO J J, RUAN J Y, GUO S W, SHEN Q R, VANDENKOORNHUYSE P. Rare bacteria assembly in soils is mainly driven by deterministic processes. Microbial Ecology, 2022, 83(1): 137-150.

doi: 10.1007/s00248-021-01741-8
[8]
ZHANG Y M, WU G, JIANG H C, YANG J, SHE W Y, KHAN I, LI W J. Abundant and rare microbial biospheres respond differently to environmental and spatial factors in Tibetan hot springs. Frontiers in Microbiology, 2018, 9: 2096.

doi: 10.3389/fmicb.2018.02096 pmid: 30283408
[9]
XUE Y Y, CHEN H H, YANG J R, LIU M, HUANG B Q, YANG J. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. The ISME Journal, 2018, 12(9): 2263-2277.

doi: 10.1038/s41396-018-0159-0
[10]
LIU L M, YANG J, YU Z, WILKINSON D M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. The ISME Journal, 2015, 9(9): 2068-2077.

doi: 10.1038/ismej.2015.29
[11]
ZHANG Y, DONG S K, GAO Q Z, GANJURJAV H, WANG X X, GENG W. “Rare biosphere” plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes. Agriculture, Ecosystems & Environment, 2019, 279: 187-193.

doi: 10.1016/j.agee.2018.11.025
[12]
JIANG Y L, SONG H F, LEI Y B, KORPELAINEN H, LI C Y. Distinct co-occurrence patterns and driving forces of rare and abundant bacterial subcommunities following a glacial retreat in the eastern Tibetan Plateau. Biology and Fertility of Soils, 2019, 55(4): 351-364.

doi: 10.1007/s00374-019-01355-w
[13]
LIANG Y T, XIAO X, NUCCIO E E, YUAN M T, ZHANG N, XUE K, COHAN F M, ZHOU J Z, SUN B. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environmental Microbiology, 2020, 22(4): 1327-1340.

doi: 10.1111/1462-2920.14945 pmid: 32067386
[14]
JIAO S, CHEN W M, WEI G H. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Molecular Ecology, 2017, 26(19): 5305-5317.

doi: 10.1111/mec.14218 pmid: 28665016
[15]
LYNCH M D J, NEUFELD J D. Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 2015, 13(4): 217-229.

doi: 10.1038/nrmicro3400 pmid: 25730701
[16]
YACHI S, LOREAU M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463-1468.
[17]
LEITÃO R P, ZUANON J, VILLÉGER S, WILLIAMS S E, BARALOTO C, FORTUNEL C, MENDONÇA F P, MOUILLOT D. Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings Biological Sciences, 2016, 283(1828): 20160084.
[18]
JIAO S, LUO Y T, LU M M, XIAO X, LIN Y B, CHEN W M, WEI G H. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. Environmental Pollution, 2017, 225: 497-505.

doi: S0269-7491(16)32803-2 pmid: 28336094
[19]
PAN C C, FENG Q, LI Y L, LI Y Q, LIU L D, YU X Y, REN S L. Rare soil bacteria are more responsive in desertification restoration than abundant bacteria. Environmental Science and Pollution Research, 2022, 29(22): 33323-33334.

doi: 10.1007/s11356-021-16830-x
[20]
邢肖毅, 倪绯, 张亚丽, 黎颖惠, 杨贤均, 尹丹红. 增温对土壤丰富和稀有微生物的差异性影响. 环境科学与技术, 2022, 45(5): 70-76.
XING X Y, NI F, ZHANG Y L, LI Y H, YANG X J, YIN D H. Effects of warming on diversity of abundant and rare microbial communities in soil. Environmental Science & Technology, 2022, 45(5): 70-76. (in Chinese)

doi: 10.1021/es101444k
[21]
LOGARES R, AUDIC S, BASS D, BITTNER L, BOUTTE C, CHRISTEN R, CLAVERIE J M, DECELLE J, DOLAN J R, DUNTHORN M, EDVARDSEN B, GOBET A, KOOISTRA W H C F, MAHÉ F, NOT F, OGATA H, PAWLOWSKI J, PERNICE M C, ROMAC S, SHALCHIAN-TABRIZI K, SIMON N, STOECK T, SANTINI S, SIANO R, WINCKER P, ZINGONE A, RICHARDS T A, DE VARGAS C, MASSANA R. Patterns of rare and abundant marine microbial eukaryotes. Current Biology: CB, 2014, 24(8): 813-821.

doi: 10.1016/j.cub.2014.02.050
[22]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

doi: 10.1126/science.1182570 pmid: 20150447
[23]
CHEN Q L, DING J, ZHU D, HU H W, DELGADO-BAQUERIZO M, MA Y B, HE J Z, ZHU Y G. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141: 107686.

doi: 10.1016/j.soilbio.2019.107686
[24]
姜灿烂, 何园球, 刘晓利, 陈平帮, 王艳玲, 李辉信. 长期施用有机肥对旱地红壤团聚体结构与稳定性的影响. 土壤学报, 2010, 47(4): 715-722.
JIANG C L, HE Y Q, LIU X L, CHEN P B, WANG Y L, LI H X. Effect of long-term application of organic manure on structure and stability of aggregate in upland red soil. Acta Pedologica Sinica, 2010, 47(4): 715-722. (in Chinese)
[25]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[26]
CHAI Y X, JIANG S J, GUO W J, QIN M S, PAN J B, BAHADUR A, SHI G X, LUO J J, JIN Z C, LIU Y J, ZHANG Q, AN L Z, FENG H Y. The effect of slope aspect on the phylogenetic structure of arbuscular mycorrhizal fungal communities in an alpine ecosystem. Soil Biology and Biochemistry, 2018, 126: 103-113.

doi: 10.1016/j.soilbio.2018.08.016
[27]
ZHENG W, ZHAO Z Y, LV F L, WANG R Z, WANG Z H, ZHAO Z Y, LI Z Y, ZHAI B N. Assembly of abundant and rare bacterial and fungal sub-communities in different soil aggregate sizes in an apple orchard treated with cover crop and fertilizer. Soil Biology and Biochemistry, 2021, 156: 108222.

doi: 10.1016/j.soilbio.2021.108222
[28]
ZHOU Q, ZHANG X M, HE R J, WANG S R, JIAO C C, HUANG R, HE X W, ZENG J, ZHAO D Y. The composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of Phragmites australis. Diversity, 2019, 11(6): 98.

doi: 10.3390/d11060098
[29]
PEDRÓS-ALIÓ C. Marine microbial diversity: can it be determined? Trends in Microbiology, 2006, 14(6): 257-263.

doi: 10.1016/j.tim.2006.04.007
[30]
DINI-ANDREOTE F, STEGEN J C, VAN ELSAS J D, SALLES J F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): E1326-E1332.
[31]
关健飞, 沈智超, 曹阳. 稀有微生物群落研究进展. 湖北农业科学, 2020, 59(15): 5-11.
GUAN J F, SHEN Z C, CAO Y. Research progress on rare microbial community. Hubei Agricultural Sciences, 2020, 59(15): 5-11. (in Chinese)
[32]
MURPHY C L, BIGGERSTAFF J, EICHHORN A, EWING E, SHAHAN R, SORIANO D, STEWART S, VANMOL K, WALKER R, WALTERS P, ELSHAHED M S, YOUSSEF N H. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the Phylum. Environmental Microbiology, 2021, 23(8): 4326-4343.

doi: 10.1111/emi.v23.8
[33]
XUN W B, ZHAO J, XUE C, ZHANG G S, RAN W, WANG B R, SHEN Q R, ZHANG R F. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environmental Microbiology, 2016, 18(6): 1907-1917.

doi: 10.1111/1462-2920.13098 pmid: 26486414
[34]
JIAO S, WANG J M, WEI G H, CHEN W M, LU Y H. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere, 2019, 235: 248-259.

doi: S0045-6535(19)31415-8 pmid: 31260865
[35]
TAO C Y, LI R, XIONG W, SHEN Z Z, LIU S S, WANG B B, RUAN Y Z, GEISEN S, SHEN Q R, KOWALCHUK G A. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome, 2020, 8(1): 137.

doi: 10.1186/s40168-020-00892-z
[36]
WANG X F, WEI Z, YANG K M, WANG J N, JOUSSET A, XU Y C, SHEN Q R, FRIMAN V P. Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology, 2019, 37(12): 1513-1520.

doi: 10.1038/s41587-019-0328-3 pmid: 31792408
[37]
ANDERSON K J. Temporal patterns in rates of community change during succession. The American Naturalist, 2007, 169(6): 780-793.

pmid: 17479464
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[3] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[4] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[5] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[6] WU Yue, SUI XinHua, DAI LiangXiang, ZHENG YongMei, ZHANG ZhiMeng, TIAN YunYun, YU TianYi, SUN XueWu, SUN QiQi, MA DengChao, WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[7] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[8] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[9] YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[10] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[11] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[12] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[13] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[14] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[15] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!