Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1579-1589.doi: 10.3864/j.issn.0578-1752.2021.08.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XU ZhiYing1,2(),WANG BaiCui2,MA XiaoLan2,JIA ZiMiao2,YE XingGuo2,LIN ZhiShan2(),HU HanQiao1()
[1] | GREADZIELEWSKA A. The genus Dasypyrum-part 2. Dasypyrum villosum-a wild species used in wheat improvement. Euphytica, 2006,152(3):441-454. |
[2] | MINELLI S, CECCARELLI M, MARIANI M, DE P C, CIONINI P G. Cytogenetics of Triticum×Dasypyrum hybrids and derived lines. Cytogenetic and Genome Research, 2005,109(1/3):385-392. |
[3] | ZHANG Q P, LI Q, WANG X Y, WANG H Y, LANG S P, WANG Y N, WANG S L, CHEN P D, LIU D J. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005,145(3):317-320. |
[4] |
ZHANG R Q, FAN Y L, KONG L N, WANG Z J, WU J Z, XING L P, CAO A Z, FENG Y G. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theoretical and Applied Genetics, 2018,131(12):2613-1620.
doi: 10.1007/s00122-018-3176-5 pmid: 30167758 |
[5] | DE P C, VACCINO P, CIONINI P G, PASQQUINI M, BIZZARRI M, QUALSET C O. Wild Crop Relatives: Genomic and Breeding Resources: Cereals. Heidelberg: Springer, 2011: 185-292. |
[6] | ZHANG R Q, ZHANG M Y, WANG X E, CHEN P D. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theoretical and Applied Genetics, 2014,127(3):523-533. |
[7] |
LI H J, CONNER R L, CHEN Q, JIA X, LI H, GRAF R J, LAROCHE A, KUZYK A D. Different reactions to the wheat curl mite and Wheat streak mosaic virus in various wheat Haynaldia villosa 6V and 6VS lines. Plant Disease, 2002,86(4):423-428.
doi: 10.1094/PDIS.2002.86.4.423 pmid: 30818719 |
[8] | 刘畅, 李仕金, 王珂, 叶兴国, 林志珊. 簇毛麦6VS特异转录序列P21461及P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用. 作物学报, 2017,43(7):983-992. |
LIU C, LI S J, WANG K, YE X G, LIN Z S. Developing of specific transcription sequences P21461 and P33259 on Dasypyrum villosum 6VS and application of molecular markers in identifying wheat-D. villosum breeding materials with powdery mildew resistance. Acta Agronomica Sinica, 2017,43(7):983-992. (in Chinese) | |
[9] |
LI S J, WANG J, WANG K Y, CHEN J N, WANG K, DU L P, NI Z F, LIN Z S, YE X G. Development of PCR markers specific to Dasypyrum villosum genome based on transcriptome data and their application in breeding Triticum aestivum-D. villosum#4 alien chromosome lines. BMC Genomics, 2019,20:289.
pmid: 30987602 |
[10] | BIE T D, ZHAO R H, ZHU S Y, CHEN S L, CEN B Q, GAO D R, JIANG Z N, CHEN T T, WANG L, WU R L, HE H G. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Molecular Breeding, 2015,35(10):189. |
[11] | 陈竟男, 马晓兰, 王振, 李仕金, 谢皓, 叶兴国, 林志珊. 基于簇毛麦No.1026转录组的SSR序列分析及其PCR标记开发. 中国农业科学, 2019,52(1):6-15. |
12 | CHEN J N, MA X L, WANG Z, LI S J, XIE H, YE X G, LIN Z S. ssr sequences and development of pcr markers based on transcriptome of Dasypyrum villosum No.1026. Scientia Agricultura Sinica, 2019,52(1):6-15. (in Chinese) |
[12] | MA X L, XU Z Y, WANG J, CHEN H Q, YE X G, LIN Z S. Pairing and exchanging between Daypyrum villosum chromosomes 6V#2 and 6V#4 in the hybrids of two different wheat alien substitution lines. International Journal of Molecular Sciences, 2019,20(23):6063. |
[13] | COLIN R, CAVANAGH, CHAO S M, WANG S C, HUANG B E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(20):8057-8062. |
[14] | WANG S C, WONG D B, KERRIE F. Characterization of polyploid wheat genomic diversity using the high-density 90,000 SNP array. Plant Biotechnology Journal, 2014,12(6):1-10. |
[15] | SRBHI G, STELLA H E, YANG C Y, DUNCAN S, STEPHEN A, AMANDA B, PAUL A W, KING L P, KING J L. Detection of T. urartu introgressions in wheat and development of a panel of interspecific introgression lines. Frontiers in Plant Science, 2018,9:1565. |
[16] | RAZ A, MORAN N, TAMAR E, HANAN S. Ultra-dense genetic map of durum wheat×wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Molecular Breeding, 2014,34(4):1549-1562. |
[17] |
STUART J, LUCAS, AYTEN S, SELAMI Y. High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Functional and Integrative Genomics, 2017,17(6):667-685.
pmid: 28550605 |
[18] |
ZHOU S G, ZHANG J P, CHE Y G, LIU W H, LU Y Q, YSNG X M, LI X Q, JIA J Z, LIU X, LI L H. Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnology Journal, 2018,16(3):818-827.
doi: 10.1111/pbi.12831 pmid: 28921769 |
[19] | 曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克慧, 徐如强, 王际睿, 罗明成, 刘志勇. 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015,41(2):197-206. |
CAO T J, XIE J Z, WU Q H, CHEN Y X, WANG Z Z, ZHAO H, WANG X C, ZHAN K H, XU R Q, WANG J R, LUO M C, LIU Z Y. Genetic diversity of registered wheat varieties in henan province based on pedigree and single-nucleotide polymorphism. Acta Agronomica Sinica, 2015,41(2):197-206. (in Chinese) | |
[20] |
LI S J, LIN Z S, LIU C, WANG K, DU L P, YE X G. Development and comparative genomic mapping of Dasypyrum villosum 6V#4S- specific PCR markers using transcriptome data. Theoretical and Applied Genetics, 2017,130(10):2057-2068.
pmid: 28653149 |
[21] |
WEI W H, QIN R, SONG Y C, NING S B, GUO L Q, GU M G. Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas, 2003,138(1):21-26.
doi: 10.1034/j.1601-5223.2003.01544.x pmid: 12830981 |
[22] | 陈佩度, 周波, 齐莉莉, 刘大钧. 用分子原位杂交(GISH)鉴定小麦-簇毛麦双倍体、附加系、代换系和易位系. 遗传学报, 1995,22(5):380-386. |
CHEN P D, ZHOU B, QI L L, LIU D J. Identification of wheat- Haynaldia villosa amphiploid, addition, substitution and translocation lines by in situ hybridization using biotin-labelled genomic DNA as a probe. Acta Genetica Sinica, 1995,22(5):380-386. (in Chinese) | |
[23] | MUKAI Y, GILL B S. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 1991,34(3):448-452. |
[24] | FRIEBE B, JIANG J, GILL B S, DYCK P L. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993,86(2/3):141-149. |
[25] | 赵万春. 普通小麦-簇毛麦整臂互补易位系T1DS·1AL和T1DL·1VS的创制、鉴定和性状评估[D]. 杨凌: 西北农林科技大学, 2010. |
ZHAO W C. Development, identification and characterization of two new Triticum aestivum-Dasypyrum villosum conpensation robersonian translocation lines T1DS·1AL and T1DL·1VS[D]. Yangling: Northwest A&F University, 2010. (in Chinese) | |
[26] |
BAI S S, YUAN F P, ZHANG H B, ZHANG Z Y, ZHAO J X, YANG Q H, WU J, CHEN X H. Characterization of the Wheat- Psathyrostachys huashania Keng 2Ns/2D substitution line H139: A novel germplasm with enhanced resistance to wheat take-all. Frontiers in Plant Science, 2020,11:233.
pmid: 32210998 |
[27] |
LAUREN B, SURBHI G, YANG C Y, STELLA H E, DUNCAN S, STEPHEN A, AMANDA J, ALEXANDRA M, PRZEWIESLIK A, PAUL A, KING L P, KING J L. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theoretical and Applied Genetics, 2020,133(7):2213-2226.
doi: 10.1007/s00122-020-03591-3 pmid: 32313991 |
[28] |
QI L L, PUMPHRAY M O, FRIEBE B, ZHANG P, QIAN C, BOWDEN R L, ROUSE M N, JIN Y, GILL B S. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 2011,123(1):159-167.
pmid: 21437597 |
[29] | LIU C, QI L L, LIU W X, ZHAO W C, JAMIE W, BERND F, BIKRAM S G. Development of a set of compensating Triticum aestivum -Dasypyrum villosum robertsonian translocation lines. Genome, 2011,54(10):836-844. |
[30] | ZHANG R H, LIU B L, JIANG Z N, CHEN T T, WANG L, JI Y Y, HU Z B, HE H G, BIE T D. Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL. Frontiers in Plant Science, 2019,138:503-512. |
[1] | CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216. |
[2] | LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235. |
[3] | YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299. |
[4] | XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313. |
[5] | ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734. |
[6] | WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810. |
[7] | TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502. |
[8] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[9] | LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300. |
[10] | WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318. |
[11] | GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331. |
[12] | ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081. |
[13] | QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109. |
[14] | CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126. |
[15] | ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046. |
|