Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 4969-4983.doi: 10.3864/j.issn.0578-1752.2021.23.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China

TAO YouFeng(),PU ShiLin(),ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun()   

  1. Sichuan Agricultural University/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province/Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture, Wenjiang 611130, Sichuan
  • Received:2021-02-19 Accepted:2021-07-05 Online:2021-12-01 Published:2021-12-06
  • Contact: WanJun REN E-mail:894478816@qq.com;1396817400@qq.com;rwjun@126.com

Abstract:

【Objective】The effects of reducing hills and stabilizing basic-seedlings (RHSB) on population canopy quality characteristics of mechanical transplanting indica hybrid rice were investigated in this study, which could provide theoretical support for the promotion and application of mechanical transplanting technology of hybrid rice in low-light paddy region of Southwest China. 【Method】 A two-factor random block design experiment with different rice varieties (Fyou 498 is a loose plant type, and Yixiangyou 2115 is a compact upper and drooping lower plant type at middle and late stages) and different basic seedlings rate (42×104/hm2 and 63×104/hm2) was conducted to study the effects of different field collocation patterns (conventional field collocation (CFC) and RHSB) on the canopy architecture, photosynthetic characteristics, and microclimate environment (e.g. canopy temperature, humidity, and light transmittances) of mechanical transplanting hybrid rice population in 2016 and 2017. 【Result】(1) Compared with CFC, RHSB with a greater specific leaf weight of the upper three leaves (Fsecond leaf=23.67** and Fthird leaf= 16.91** in 2017) could maintain a similar green leaf area per stem and grain/leaf ratio at heading stage. Compared with CFC, RHSB also led to the 23.84%, 23.53%, and 13.79% significant increase in photosynthetic rate, stomatal conductance, and transpiration rate of flag leaf at heading stage, respectively. (2) RHSB markedly decreased the canopy convergent index, but increased the canopy amplitude, which increased in light transmittance and ventilation of canopy. RHSB increased the angle of primary tillerings of Fyou 498 at booting stage and heading stage in 2016, but decreased the angle of primary tillerings of Yixiangyou 2115 in 2016 and 2017. (3) Correlation analysis indicated that daily average temperature and diurnal variations of temperature and humidity at booting stage were significantly or extremely significantly positively correlated with the specific leaf weight of the flag leaf and the 2nd leaf at heading stage, but significantly negatively correlated with plant convergent index at heading stage. Furthermore, the daily average temperature and diurnal variations of humidity at booting stage was significantly positively correlated with canopy amplitude at heading stage. Daily average temperature and diurnal variations of temperature at heading stage were significantly or extremely significantly negatively correlated with the angle of primary tillering at tilling stage, jointing stage, and 20 d after heading stage. However, the inverse relation was observed by daily average relative humidity. RHSB could optimize the canopy architecture of rice, which contributed to the increase in canopy temperature and diurnal the variations of temperature at booting and heading stages, and increase diurnal the variations of humidity at booting, heading and 20 d after heading stage, but decrease in the relative humidity.【Conclusion】As one of the main technology that improved the mechanization level of rice production in the low-light region of Southwest China, RHSB optimized the population canopy structure and light distribution of mechanical transplanting hybrid rice, which resulted in the increase in the temperature and humidity difference between day and night within the population, and reduced the relative humidity. This contributed to the improvement in the population quality and photosynthetic rate, and contributed to the increase in rice grain yield.

Key words: rice, mechanical transplanting, field collocation pattern, microclimate environment, reducing hills and stabilizing basic-seedlings

Table 1

Experimental design and seedling quality"

年份
Year
品种
Variety
基本苗
Basic seedling
田间配置
Field collocation
pattern
栽插规格
Planting specifications (cm×cm)
穴苗数
Seedlings per
hill
叶龄
Leaf age
白根数
White root number per plant
2016 F优498
Fyou498
LB CFC 30×12 1.5 2.72 9.38
RHSB 30×23 2.9
宜香优2115 Yixiangyou2115 CFC 30×12 1.5 2.75 9.77
RHSB 30×23 2.9
2017 宜香优2115 Yixiangyou2115 LB CFC 30×12 1.5 2.73 9.50
RHSB 30×23 2.9
HB CFC 30×12 2.3
RHSB 30×23 4.3

Fig. 1

Diagram of different field collocation LB and HB: The basic seedlings was 42×104 and 63×104 seedlings/hm2, respectively; CFC: Conventional field collocation; RHSB: Reducing hills and stabilizing basic-seedlings field collocation. The same as below"

Table 2

Leaf quality of different field collocation patterns at heading stage"

年份
Year
处理
Treatment
单茎绿叶面积
Leaf area per stem (cm2/stem)
粒叶比
Ratio of grain weight to leaf area (mg·cm-2)
比叶重Specific leaf weight (mg·cm-2)
剑叶 FL 倒二叶 L2 倒三叶 L3
2016 F优498
Fyou498
CFC 353.70a 16.54a 4.60a 4.66a 4.80a
RHSB 339.10a 17.06a 4.20a 4.39a 4.67a
宜香优2115
Yixiangyou2115
CFC 339.92a 11.81a 3.37a 3.83a 3.99a
RHSB 384.37a 11.95a 3.35a 3.50a 4.18a
平均值
Mean
F优498 Fyou498 346.40a 16.80a 4.40a 4.52a 4.74a
宜香优2115 Yixiangyou2115 362.15a 11.88b 3.36b 3.66b 4.08b
CFC 346.81a 14.18a 3.98a 4.24a 4.39a
RHSB 361.74a 14.51a 3.77a 3.94a 4.43a
ANOVA 品种 V 1.03 45.24** 13.73* 12.02* 10.28*
配置 C 0.92 0.20 0.56 1.45 0.03
品种×配置V×C 3.62 0.7 0.46 0.02 0.61
2017 LB CFC 331.74a 13.90b 3.62a 4.15b 3.82a
RHSB 322.64a 16.14a 3.90a 4.42a 4.18a
HB CFC 314.67b 14.12a 3.80a 4.26b 4.02b
RHSB 355.36a 13.14a 4.11a 4.60a 4.67a
平均值
Mean
LB 327.19a 15.02a 3.76a 4.29a 4.00b
HB 335.01a 13.63a 3.71a 4.43a 4.34a
CFC 323.20a 14.01a 3.71a 4.21b 3.92b
RHSB 339.00a 14.64a 4.01a 4.51a 4.43a
ANOVA 基本苗 B 0.75 4.72 1.47 5.47 7.61*
配置C 3.06 0.96 3.66 23.67** 16.91**
基本苗×配置B×C 7.60* 6.32* 0.01 0.33 1.46

Table 3

Effect of field allocation pattern on the angle of primary tillerings at different stages (°)"

年份
Year
处理
Treatment
分蘖盛期
TS
拔节期
JS
孕穗期
BS
齐穗期
HS
齐穗20d 20dAHS
2016 F优498
Fyou498
CFC 8.42a 20.82a 12.01b 7.32b
RHSB 4.33b 17.57b 13.97a 9.53a
宜香优2115
Yixiangyou2115
CFC 5.89a 15.51a 10.26a 7.25a
RHSB 4.32b 15.04a 10.30a 5.89a
平均值
Mean
F优498 Fyou498 6. 37a 19.20a 12.99a 8.43a
宜香优2115 Yixiangyou2115 5.11b 15.28b 10.28b 6.57b
CFC 7.16a 18.17a 11.14a 7.29a
RHSB 4.32b 16.31b 12.14a 7.71a
ANOVA 品种 V 28.65** 33.41** 25.06** 9.77*
配置 C 142.82** 7.52* 3.43 0.51
品种×配置V×C 28.35** 4.24 3.16 9.01*
2017 LB CFC 6.72a 19.40a 13.62a 11.75a
RHSB 5.41b 15.16b 11.12a 9.88b
HB CFC 5.74a 14.37a 10.38a 7.87a
RHSB 4.68b 12.47a 8.90a 8.01a
平均值Mean LB 6.07a 17.28a 12.37a 10.81a
HB 5.21b 13.42b 9.64a 7.94b
CFC 6.23a 16.89a 12.00a 9.81a
RHSB 5.04b 13.82b 10.01a 8.94b
ANOVA 基本苗 B 8.11* 10.59* 3.72 137.34**
配置C 15.76** 6.68* 1.98 12.53*
基本苗×配置B×C 0.18 0.97 0.13 16.78**

Fig. 2

Effect of field allocation pattern on plant canopy width and convergent index at different stages *, ** indicate significant at 0.05 and 0.01 probability levels, respectively. V: Variety; C: Collocation; B: Basic-seedings; V×C: Interaction between variety and collocation; B×C: Interaction between basic-seedings and collocation. ANOVA: F-value. TS: Tilling stage; JS: Jointing stage; BS: Booting stage; HS: Heading stage; 20 d AHS: 20 d after heading stage. The same as below"

Fig. 3

Diurnal variation of canopy temperature under different field allocation patterns in 2017 A: Booting stage; B: Heading stage; C: 20 d after heading stage"

Table 4

Effects of different field allocation patterns on temperature about daily average & diurnal difference of canopy in 2017 (℃)"

处理
Treatment
日均温Daily average temperature 昼夜温差Diurnal temperature difference
孕穗期BS 齐穗期HS 齐穗后20 d 20 d AHS 孕穗期BS 齐穗期HS 齐穗后20 d 20 d AHS
LB CFC 28.98b 29.42b 24.78a 19.75b 18.08b 5.47a
RHSB 29.81a 30.27a 24.61a 25.73a 25.27a 5.32a
HB CFC 30.19b 30.47a 24.52a 27.13a 24.80a 5.68b
RHSB 30.53a 31.16a 24.66a 28.18a 27.48a 6.17a
平均值
Mean
LB 29.40b 29.84b 24.70a 22.74b 21.67b 5.40b
HB 30.36a 30.82a 24.59a 27.65a 26.14a 5.93a
CFC 29.59b 29.95b 24.65a 23.44b 21.44b 5.58a
RHSB 30.17a 30.72a 24.64a 26.95a 26.37a 5.75a
ANOVA 基本苗B 153.36** 22.18** 1.01 47.60** 10.42* 14.98**
配置C 56.49** 13.92** 0.02 24.34** 12.75* 1.50
基本苗×配置B×C 9.83* 0.15 2.34 11.92* 2.66 5.41

Fig. 4

Diurnal variation of canopy relative humidity under different field allocation patterns in 2017 A: Booting stage; B: Heading stage; C: 20 d after heading stage"

Table 5

Effects of different field allocation patterns on relative humidity about daily average & diurnal difference of canopy in 2017 (%)"

处理
Treatment
日均相对湿度Daily average relative humidity 昼夜湿差Diurnal relative humidity difference
孕穗期BS 齐穗期HS 齐穗后20 d 20 dAHS 孕穗期BS 齐穗期HS 齐穗后20 d 20 dAHS
LB CFC 88.22a 90.71a 98.98a 30.07b 23.03b 1.17b
RHSB 81.70b 84.52b 98.37b 40.88a 40.49a 4.71a
HB CFC 81.58a 84.13a 98.71a 39.92b 37.40a 3.08a
RHSB 82.24a 82.06a 98.86a 46.34a 40.76a 2.02b
平均值
Mean
LB 84.96a 87.62a 98.67a 35.48b 31.76b 2.94a
HB 81.91b 83.10b 98.79a 43.13a 39.08a 2.55a
CFC 84.90a 87.42a 98.84a 35.00b 30.21b 2.12b
RHSB 81.97b 83.29b 98.61b 43.61a 40.63a 3.36a
ANOVA 基本苗B 27.96** 44.69** 2.06 19.56** 7.65* 2.02
配置C 25.78** 37.42** 8.40* 24.81** 15.48** 20.07**
基本苗×配置B×C 38.58** 9.31* 23.04** 1.61 7.09* 69.39**

Fig. 5

Effects of different field allocation patterns on canopy light transmittance rate after heading stage"

Table 6

Photosynthetic characteristics of different field collocation patterns at heading stage in 2017"

处理
Treatment
净光合速率
Pn (μmol CO2·m2·s-1)
气孔导度
Gs (μmol H2O·m2·s-1)
胞间CO2浓度
Ci (μmol CO2·mol-1)
蒸腾速率
Tr (mmol H2O·m2·s-1)
LB CFC 14.45b 0.46a 301.70a 6.15a
RHSB 16.38a 0.48a 294.51a 6.07a
HB CFC 13.14b 0.23b 281.77a 3.71b
RHSB 17.79a 0.35a 284.41a 5.16a
平均值
Mean
LB 15.41a 0.47a 298.11a 6.11a
HB 15.47a 0.29b 283.09b 4.44b
CFC 13.80b 0.34b 291.74a 4.93b
RHSB 17.09a 0.42a 289.46a 5.61a
ANOVA 基本苗B 0.01 111.16** 30.65** 169.42**
配置C 38.31** 17.95** 0.70 28.06**
基本苗×配置B×C 6.58* 8.17* 3.28 35.03**

Table 7

Relationship between canopy structure and microclimate environment (n=12)"

处理
Treatment
日均温度
Daily average temperature
昼夜温差
Diurnal temperature difference
日均相对湿度
Daily average relative humidity
昼夜湿差
Diurnal relative humidity difference
孕穗期
BS
齐穗期
HS
齐穗后20 d
20 d AHS
孕穗期
BS
齐穗期
HS
齐穗后20 d
20 d AHS
孕穗期
BS
齐穗期
HS
齐穗后20 d
20 d AHS
孕穗期
BS
齐穗期
HS
齐穗后20 d
20 d AHS
比叶重Specific leaf weight 剑叶FL 0.59* 0.28 -0.16 0.63* 0.47 0.36 -0.56* -0.49 -0.46 0.73** 0.52 0.36
倒二叶L2 0.64* 0.47 0.03 0.61* 0.60* 0.42 -0.57* -0.64* -0.63* 0.68* 0.77** 0.34
倒三叶L3 0.57* 0.61* 0.04 0.54 0.76** 0.33 -0.46 -0.75** -0.63* 0.63* 0.52 0.10
一次分蘖
角度
Primary tillering
angle
分蘖盛期TS -0.45 -0.86** -0.23 -0.21 -0.70** -0.14 0.30 0.74** 0.38 -0.14 -0.51 -0.15
拔节期JS -0.22 -0.74** 0.07 -0.18 -0.60* 0.21 0.15 0.71** 0.12 -0.07 -0.41 0.08
齐穗期HS -0.51 -0.49 -0.06 -0.51 -0.61* -0.27 0.50 0.64* 0.54 -0.46 -0.58* -0.11
齐穗后20 d 20 d AHS -0.82** -0.60* 0.06 -0.82** -0.74** -0.47 0.79** 0.82** 0.70** -0.70** -0.69** -0.36
冠层幅度Plant canopy width 齐穗期HS 0.57* 0.36 0.18 0.54 0.56* 0.51 -0.54 -0.52 -0.63* 0.63* 0.51 0.48
齐穗后20 d 20 d AHS 0.39 0.47 -0.14 0.51 0.73** 0.01 -0.52 -0.73** -0.28 0.56* 0.69** 0.43
收敛指数Plant convergent index 齐穗期HS -0.61* -0.44 -0.12 -0.58* -0.62* -0.49 0.57* 0.59* 0.62* -0.64* -0.56* -0.49
齐穗后20 d 20 d AHS -0.47 -0.46 0.18 -0.62* -0.76** -0.08 0.62* 0.77** 0.35 -0.66* -0.75** -0.49
[1] 周虹. 四川省水稻产业现状及发展对策. 四川农业科技, 2015(9):46-48.
ZHOU H. Current status and development countermeasures of rice industry. Science and Technology of Sichuan Agriculture, 2015(9):46-48. (in Chinese)
[2] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48(17):3404-3414.
ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K. Innovation and practice of high-yield rice cultivation technology in China. Scientia Agricultura Sinica, 2015, 48(17):3404-3414. (in Chinese)
[3] 田青兰, 刘波, 孙红, 何莎, 钟晓媛, 赵敏, 任万军. 不同播栽方式下杂交籼稻茎秆生长和穗粒形成特点及与气象因子的关系. 中国水稻科学, 2016, 30(5):507-524.
TIAN Q L, LIU B, SUN H, HE S, ZHONG X Y, ZHAO M, REN W J. Characteristics of stem growth and formation of grain of indica hybrid rice in different planting methods and their correlation with meteorological factors. Chinese Journal of Rice Science, 2016, 30(5):507-524. (in Chinese)
[4] 彭国照, 杨秀容. 四川盆区水稻气候年景及产量模型研究. 中国农业气象, 2001, 22(4):6-10.
PENG G Z, YANG X R. A study on the rice climatic harvest patterns and yield model in Sichuan basin. Chinese Journal of Agrometeorology, 2001, 22(4):6-10. (in Chinese)
[5] 何连华, 陈多, 张驰, 田青兰, 吴振元, 李秋萍, 钟晓媛, 邓飞, 胡剑锋, 凌俊英, 任万军. 机插栽培籼杂交稻的日产量及与株型的关系. 中国农业科学, 2019, 52(6):981-996.
HE L H, CHEN D, ZHANG C, TIAN Q L, WU Z Y, LI Q P, ZHONG X Y, DENG F, HU J F, LING J Y, REN W J. The daily yield of medium hybrid rice in machine transplanting and its relationship with plant type. Scientia Agricultura Sinica, 2019, 52(6):981-996. (in Chinese)
[6] 贾现文, 朱起超, 杨志远, 孙永健, 郭翔, 石勇, 马均. 移栽秧龄对机插杂交稻产量及群体质量的影响. 农业工程学报 2014, 30(12):18-25.
JIA X W, ZHU Q C, YANG Z Y, SUN Y J, GUO X, SHI Y, MA J. Effect of seedling age on yield and population quality of mechanized transplanted hybrid rice. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(12):18-25. (in Chinese)
[7] 王海月, 张桥, 武云霞, 严奉君, 郭长春, 孙永健, 徐徽, 杨志远, 马均. 不同株距下氮肥减量配施运筹对机插杂交稻的产量及光合特性的影响. 中国水稻科学, 2019, 33(5):447-456.
WANG H Y, ZHANG Q, WU Y X, YAN F J, GUO C C, SUN Y J, XU H, YANG Z Y, MA J. Effects of reduced urea application on yield and photosynthetic characteristics of mechanically-transplanted rice under different planting spaces. Chinese Journal of Rice Science, 2019, 33(5) : 447-456. (in Chinese)
[8] 雷小龙, 刘利, 刘波, 黄光忠, 郭翔, 马荣朝, 任万军. 机械化种植对杂交籼稻F优498产量构成与株型特征的影响. 作物学报, 2014, 40(4):719-730.
LEI X L, LIU L, LIU B, HUANG G Z, GUO X, MA R C, REN W J. Effects of mechanized planting methods on yield components and plant type characteristics of indica hybrid rice Fyou 498. Acta Agronomica Sinica, 2014, 40(4):719-730. (in Chinese)
[9] 龙旭, 汪仁全, 孙永健, 马均. 不同施氮量下三角形强化栽培水稻群体发育与产量形成特征. 中国水稻科学, 2010, 24(2):162-168.
LONG X, WANG R Q, SUN Y J, MA J. Characteristics of population development and yield formation of rice under triangle-planted system of rice intensification at different nitrogen application amounts. Chinese Journal of Rice Science, 2010, 24(2):162-168. (in Chinese)
[10] 陈德春, 杨文钰, 任万军. 秧苗平面分布对水稻群体动态和冠层透光率及穗部性状的影响. 应用生态学报, 2007, 18(2):359-365.
CHEN D C, YANG W Y, REN W J. Effects of rice seedlings horizontal distribution on the dynamics of rice population, canopy light transmittance rate and panicle characteristics. Chinese Journal of Applied Ecology, 2007, 18(2):359-365. (in Chinese)
[11] 闫川, 丁艳锋, 王强盛, 李刚华, 黄丕生, 王绍华. 行株距配置对水稻茎秆形态生理与群体生态的影响. 中国水稻科学, 2007, 21(5):530-536.
YAN C, DING Y F, WANG Q S, LI G H, HUANG P S, WANG S H. Effects of row-spacing on morphological and eco-physiological characteristics in rice. Chinese Journal of Rice Science, 2007, 21(5):530-536. (in Chinese)
[12] 郭保卫, 朱聪聪, 朱大伟, 张洪程, 江峰, 葛梦婕. 钵苗机插密度对不同类型水稻齐穗期株型及冠层微环境的影响. 生态学杂志, 2015, 34(1):9-17.
GUO B W, ZHU C C, ZHU D W, ZHANG H C, JIANG F, GE M J. Effects of planting density on plant form and micrometeorology in different types of rice with potted seedlings by mechanical- transplanting method. Chinese Journal of Ecology, 2015, 34(1):9-17. (in Chinese)
[13] 马连坤, 董坤, 朱锦惠, 董艳. 小麦与蚕豆间作系统施氮对蚕豆赤斑病发生和冠层微气候的影响. 应用生态学报, 2019, 30(3):951-960.
MA L K, DONG K, ZHU J H, DONG Y. Effects of N application on faba bean chocolate spot and canopy microclimate in wheat and faba bean intercropping system. Chinese Journal of Applied Ecology, 2019, 30(3):951-960. (in Chinese)
[14] SAHILE S, FININSA C, SAKHUJA P K, AHMED S. Effect of mixed cropping and fungicides on chocolate spot (Botrytis fabae) of faba bean (Vicia faba) in Ethiopia. Crop Protection, 2008, 27:275-282.
doi: 10.1016/j.cropro.2007.06.003
[15] 任万军, 陶有凤, 钟晓媛, 赵敏, 邓飞, 王丽. 一种机插杂交稻减穴稳苗大穗栽培方法: ZL201610435960.X. 2020-03-10[2021-02-18].
REN W J, TAO Y F, ZHONG X Y, ZHAO M, DENG F, WANG L. A cultivation method of mechanical transplanting hybrid rice with reducing hills and stabilizing basic-seedlings to obtain large panicle: ZL201610435960.X. 2020-03-10[2021-02-18]. (in Chinese)
[16] 任万军, 陈勇, 邓飞, 陶有凤, 周伟, 王丽, 李刚华, 钟晓媛, 雷小龙. 杂交籼稻高产形成与精确定量机械化轻简栽培. 北京: 科学出版社, 2020: 197-199.
REN W J, CHEN Y, DENG F, TAO Y F, ZHOU W, WANG L, LI G H, ZHONG X Y, LEI X L. High Yield Formation and Precise Quantitative Mechanized Cultivation of Indica Hybrid Rice. Beijing: Science Press, 2020: 197-199. (in Chinese)
[17] 蒲石林, 邓飞, 胡慧, 钟晓媛, 王丽, 李武, 李书先, 廖爽, 任万军. 杂交稻不同机插穴距及苗数配置对干物质生产与产量的影响. 浙江大学学报(农业与生命科学版), 2018, 44(1):21-30.
PU S L, DENG F, HU H, ZHONG X Y, WANG L, LI W, LI S X, LIAO S, REN W J. Effects of different hill spacings and seedling numbers per hill on dry matter production and yield of machine- transplanting hybrid rice. Journal of Zhejiang University(Agriculture & Life Sciences), 2018, 44(1):21-30. (in Chinese)
[18] 任哓波, 阎洪, 任万军, 冯生强, 代廷云, 孙加威. 成都市推广水稻机械化育插秧技术的实践与思考. 四川农业科技, 2020(3):23-24.
REN X B, YAN H, REN W J, FENG S Q, DAI T Y, SUN J W. Practice and thinking of popularizing rice mechanical seedling raising and transplanting technology in Chengdu city. Science and Technology of Sichuan Agriculture, 2020(3):23-24. (in Chinese)
[19] 张锦, 章家恩, 秦钟, 傅玲, 梁开明. 稻鸭共作对水稻部分株型结构指标的影响. 中国生态农业学报, 2012, 20(1):1-6.
ZHANG J, ZHANG J E, QIN Z, FU L, LIANG K M. Effect of integrated rice-duck farming on rice canopy structure index. Chinese Journal of Eco-Agriculture, 2012, 20(1):1-6. (in Chinese)
[20] 梁玉刚, 潘恒, 张启飞, 黄璜, 陈灿. 稻-鸭-泥鳅耦合对水稻部分株型结构的影响. 核农学报, 2017, 31(10) : 1998-2006.
LIANG Y G, PAN H, ZHANG Q F, HUANG H, CHEN C. Effects of rice-duck-loach coupling on rice canopy structure index. Journal of Nuclear Agricultural Sciences, 2017, 31(10):1998-2006. (in Chinese)
[21] 康文启, 欧阳由男, 章善庆, 董成琼, 朱练峰, 禹盛苗, 许德海, 金千瑜. 分蘖角度动态型水稻的形态特征及生长特性分析. 中国水稻科学, 2007, 21(4):372-378.
KANG W Q, OUYANG Y N, ZHANG S Q, DONG C Q, ZHU L F, YU S M, XU D H, JIN Q Y. Morphological and ontogenic characterization of rice with dynamic tiller angle. Chinese Journal of Rice Science, 2007, 21(4):372-378. (in Chinese)
[22] 林松明, 孟维伟, 南镇武, 徐杰, 李林, 张正, 李新国, 郭峰, 万书波. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究. 中国生态农业学报, 2020, 28(1):31-41.
LIN S M, MENG W W, NAN Z W, XU J, LI L, ZHANG Z, LI X G, GUO F, WAN S B. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield. Chinese Journal of Eco-Agriculture, 2020, 28(1):31-41. (in Chinese)
[23] 赵刚, 樊廷录, 李兴茂, 张建军, 党翼, 李尚中, 王磊, 王淑英, 程万莉, 倪胜利. 宽幅播种旱作冬小麦幅间距与基因型对产量和水分利用效率的影响. 中国农业科学, 2020, 53(11):2171-2181.
ZHAO G, FAN T L, LI X M, ZHANG J J, DANG Y, LI S Z, WANG L, WANG S Y, CHENG W L, NI S L. Effects of wide-range distance and genotype on yield and water use efficiency of winter wheat. Scientia Agricultura Sinica, 2020, 53(11):2171-2181. (in Chinese)
[24] 陈云, 张亚军, 张宏路, 朱安, 黄健, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插株距对优质食味水稻品种产量和群体质量的影响. 中国水稻科学, 2020, 34(6):550-560.
CHEN Y, ZHANG Y J, ZHANG H L, ZHU A, HUANG J, ZHANG H, GU J F, LIU L J, YANG J C. Effects of plant spacing on grain yield and population quality in mechanically-transplanted rice with good tasting quality. Chinese Journal of Rice Science, 2020, 34(6):550-560. (in Chinese)
[25] 张洪程, 郭保卫, 陈厚存, 周兴涛, 张军, 朱聪聪, 陈京都, 李桂云, 吴中华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 杨雄. 水稻有序摆、抛栽的生理生态特征及超高产形成机制. 中国农业科学, 2013, 46(3):463-475.
ZHANG H C, GUO B W, CHEN H C, ZHOU X T, ZHANG J, ZHU C C, CHEN J D, LI G Y, WU Z H, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, YANG X. Eco-physiological characteristics and super high yield formation mechanism of ordered transplanting and optimized broadcasting rice. Scientia Agricultura Sinica, 2013, 46(3):463-475. (in Chinese)
[26] 孙永健, 马均, 孙园园, 徐徽, 严奉君, 代邹, 蒋明金, 李玥. 水氮管理模式对杂交籼稻冈优 527 群体质量和产量的影响. 中国农业科学, 2014, 47(10):2047-2061.
SUN Y J, MA J, SUN Y Y, XU H, YAN F J, DAI Z, JIANG M J, LI Y. Effects of water and nitrogen management patterns on population quality and yield of hybrid rice Gangyou 527. Scientia Agricultura Sinica, 2014, 47(10):2047-2061. (in Chinese)
[27] 张边江, 华春, 周峰, 周泉澄, 陈全战, 王荣富, 焦德茂. 转 PEPC+PPDK 双基因水稻的光合特性. 中国农业科学, 2008, 41(10):3008-3014.
ZHANG B J, HUA C, ZHOU F, ZHOU Q C, CHEN Q Z, WANG R F, JIAO D M. Photosynthetic characteristics of transgenic rice with PEPC+PPDK gene. Scientia Agricultura Sinica, 2008, 41(10):3008-3014. (in Chinese)
[28] BANNAYAN M, KOBAYASHI K, KIM H Y, LIEFFERING M, OKADA M, MIURA S. Modeling the interactive effects of atmospheric CO2 and N on rice growth and yield. Field Crops Research, 2005, 93:237-251.
doi: 10.1016/j.fcr.2004.10.003
[29] 于亚辉, 刘郁, 陈广红, 王绍林, 夏明, 阕补超, 郑英杰, 徐正进. 控制水稻分蘖角度对群体生态特性的影响. 气象与环境学报, 2008, 24(5):67-71.
YU Y H, LIU Y, CHEN G H, WANG S L, XIA M, QUE B C, ZHENG Y J, XU Z J. Effect of controlling tiller angle on population ecological characteristics of paddy rice. Journal of Meteorology and Environment, 2008, 24(5):67-71. (in Chinese)
[30] SINGH P, MAZUMDAR P, HARIKRISHNA J A, BABU S. Sheath blight of rice: A review and identification of priorities for future research. Planta, 2019, 250:1387-1407.
doi: 10.1007/s00425-019-03246-8
[31] 王旭清, 王法宏, 任德昌, 曹宏鑫, 董玉红. 小麦垄作栽培的田间小气候效应及对植株发育和产量的影响. 中国农业气象, 2003, 24(2):5-8.
WANG X Q, WANG F H, REN D C, CAO H X, DONG Y H. Micro-climatic effect of raised-bed planting of wheat and its influence on plant development and yield. Chinese Journal of Agrometeorology, 2003, 24(2):5-8. (in Chinese)
[32] 贺帆. 不同氮肥水平对水稻冠层小气候和群体健康的影响. 安徽农业科学, 2010, 38(5):2285-2287, 2338.
HE F. Effects of N rates on canopy microclimate and community health in irrigated rice. Journal of Anhui Agricultural Sciences, 2010, 38(5):2285-2287, 2338. (in Chinese)
[33] 田青兰, 刘波, 钟晓媛, 赵敏, 孙红, 任万军. 不同播栽方式下杂交籼稻非结构性碳水化合物与枝梗和颖花形成及产量性状的关系. 中国农业科学, 2016, 49(1):35-53.
TIAN Q L, LIU B, ZHONG X Y, ZHAO M, SUN H, REN W J. Relationship of NSC with the formation of branches and spikelets and the yield traits of indica hybrid rice in different planting methods. Scientia Agricultura Sinica, 2016, 49(1):35-53. (in Chinese)
[34] 于亚辉, 徐正进. 不同栽培条件下水稻分蘖角度动态变化分析. 中国农学通报, 2006, 22(2):179-181.
YU Y H, XU Z J. Analysis on dynamic change of tiller angle under different cultivation conditions in rice. Chinese Agricultural Science Bulletin, 2006, 22(2):179-181. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!