Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4537-4549.doi: 10.3864/j.issn.0578-1752.2020.22.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WEI Xin1,WANG HanTao2,WEI HengLing2,FU XiaoKang2,MA Liang2,LU JianHua2,WANG XingFen1(),YU ShuXun2(
)
[1] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007,58(2):221.
doi: 10.1093/jxb/erl164 pmid: 17075077 |
[2] |
SEKI M, UMEZAWA T, URANO K, SHINOZAKI K . Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 2007,10(3):296-302.
doi: 10.1016/j.pbi.2007.04.014 |
[3] | 张秋平, 杨宇红, 谢丙炎, 刘志敏 . 植物转录因子的超表达及其在分子育种中的应用. 分子植物育种, 2006,4(3):115-122. |
ZHANG Q P, YANG Y H, XIE B Y, LIU Z M . Overexpression of plant transcription factors and its application in molecular breeding. Molecular Plant Breeding, 2006,4(3):115-122. (in Chinese) | |
[4] |
CIOLKOWSKI I, WANKE D, BIRKENBIHL R P, SOMSSICH I E . Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 2008,68(1/2):81-92.
doi: 10.1007/s11103-008-9353-1 |
[5] | CAI M, QIU D Y, YUAN T, DING X H, LI H J, DUAN L, XU C G, LI X G, WANG S P . Identification of novel pathogen‐responsive cis‐elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant, Cell & Environment, 2008,31(1):86-96. |
[6] |
孙淑豪, 余迪求 . WRKY转录因子家族调控植物逆境胁迫响应. 生物技术通报, 2016,32(10):66-76.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.009 |
SUN S H, YU D Q . WRKY transcription factor family regulates plant stress response. Biotechnology Bulletin, 2016,32(10):66-76. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.009 |
|
[7] |
CHEN H, LAI Z, SHI J, XIAO Y, CHEN Z X, XU X . Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 2010,10(1):281-290.
doi: 10.1186/1471-2229-10-281 |
[8] |
PARK C Y, LEE J H, YOO J H, MOON B C, CHOI M S, KANG Y H, LEE S M, KIM H S, KANG K Y, CHUNG W S, LIM C O, CHO M J . WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 2005,579(6):1545-1550.
doi: 10.1016/j.febslet.2005.01.057 pmid: 15733871 |
[9] |
ZHANG C Q, XU Y, LU Y, YU H X, GU M H, LIU Q Q . The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta, 2011,234(3):541-554.
doi: 10.1007/s00425-011-1423-y |
[10] | SAHIN-CEVIK M . A WRKY transcription factor gene isolated from Poncirus trifoliata shows differential responses to cold and drought stresses. Plant Omics, 2012,5(5):438-445. |
[11] |
ULLAH A, SUN H, HAKIM X, ZHANG X L . A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiologia Plantarum, 2018,162(4):439-454.
doi: 10.1111/ppl.12651 pmid: 29027659 |
[12] |
HUH S U, CHOI L M, LEE G J, KIM Y J, PEAK K H . Capsicum annuum WRKY transcription factor d( CaWRKYd) regulates hypersensitive response and defense response upon tobacco mosaic virus infection. Plant Science, 2012,197:50-58.
doi: 10.1016/j.plantsci.2012.08.013 |
[13] |
CHU X, WANG C, CHEN X, LU W J, LI H, WANG X L, HAO L L, GUO X Q . The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE, 2015,10(11):e0143002.
doi: 10.1371/journal.pone.0143002 |
[14] |
LIU X, SONG Y, XING F, WANG N, WEN F, ZHU C . GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 2016,253(5):1265-1281.
doi: 10.1007/s00709-015-0885-3 pmid: 26410829 |
[15] |
ASAI T, TENA G, PLOTNIKOVA J, WILLMANN M R, CHIU W L, GOMEZ-GOMEZ L, BOLLER T, AUSUBEL F M, SHEEN J . MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002,415(6875):977-983.
doi: 10.1038/415977a pmid: 11875555 |
[16] |
JIANG Y J, QIU Y P, HU Y R, YU D Q . Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Frontiers in Plant Science, 2016,7:145-152.
doi: 10.3389/fpls.2016.00145 pmid: 26904091 |
[17] |
DING Z J, YAN J Y, XU X Y, YU D Q, LI G X, ZHANG S Q, ZHENG S J . Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently i. Arabidopsis. The Plant Journal, 2014,79(1):13-27.
doi: 10.1111/tpj.12538 pmid: 24773321 |
[18] | LIU L, ZHANG Z, DONG J, WANG T . Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environmental and Experimental Botany, 2016,123:50-58. |
[19] |
ZHAO J, ZHANG X, GUO R, WANG Y Q, GUO C L, LI Z, CHEN Z P, GAO H, WANG X P . Over-expression of a grape WRKY transcription factor gene, VlWRKY48, i. Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell, Tissue and Organ Culture, 2017,132(11):359-370.
doi: 10.1007/s11240-017-1335-z |
[20] |
LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2002,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M . Sequencing of allotetraploid cotton ( Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015,33(5):531-537.
doi: 10.1038/nbt.3207 pmid: 25893781 |
[22] |
TUNNACLIFFE A, WISE M J . The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007,94(10):791-812.
doi: 10.1007/s00114-007-0254-y pmid: 17479232 |
[23] |
XUE R, LIU Y, ZHENG Y, WU Y J, LI X J, PEI F K, NI J Z . Three-dimensional structure and mimetic-membrane association of consensus 11-amino-acid motif from soybean lea3 protein. Peptide Science, 2012,98(1):59-66.
doi: 10.1002/bip.21693 pmid: 23325560 |
[24] |
YAN H, JIA H, CHEN X, HAO L, AN H L, GUO X Q . The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgeni. Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant & Cell Physiology, 2014,55(12):2060-2076.
doi: 10.1093/pcp/pcu133 pmid: 25261532 |
[25] |
DING W W, FANG W B, SHI S Y, ZHAO Y Y, LI X J, XIAO K . Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Molecular Biology Reporter, 2016,34(6):1111-1126.
doi: 10.1007/s11105-016-0991-1 |
[26] |
FAN Q Q, SONG A P, JIANG J F, ZHANG T, SUN H N, WANG Y J, CHEN S M, CHEN F D . CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE, 2016,11(3):e0150572.
doi: 10.1371/journal.pone.0150572 pmid: 26938878 |
[27] |
LUO X, BAI X, SUN X, ZHU D, LIU B H, JI W, CAI H, CAO L, WU J, HU M R, LIU X, TANG L, ZHU Y M . Expression of wild soybean WRKY20 i. Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of Experimental Botany, 2013,64(8):2155-2169.
doi: 10.1093/jxb/ert073 pmid: 23606412 |
[28] |
ASHRAF M, FOOLAD M R . Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007,59(2):206-216.
doi: 10.1016/j.envexpbot.2005.12.006 |
[29] |
HU C A, DELAUNEY A J, VERMA D P . A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences of the USA, 1992,89(19):9354-9358.
doi: 10.1073/pnas.89.19.9354 pmid: 1384052 |
[30] |
MSANNE J, LIN J S, STONE J M, AWADA T . Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A an. RD29B genes and evaluation of transgenes. Planta, 2011,234(1):97-107.
doi: 10.1007/s00425-011-1387-y |
[31] |
MENG L S, WANG Z B, YAO S Q, LIU A Z . The ARF2-ANT- COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought i. Arabidopsis. Journal of Cell Science, 2015,128(21):3922-3932.
doi: 10.1242/jcs.171207 pmid: 26395398 |
[1] | WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16. |
[2] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[3] | MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202. |
[4] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[5] | SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830. |
[6] | WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517. |
[7] | LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629. |
[8] | DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198. |
[9] | HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980. |
[10] | LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599. |
[11] | LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444. |
[12] | REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525. |
[13] | XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264. |
[14] | LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294. |
[15] | SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709. |
|