Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (16): 3318-3329.doi: 10.3864/j.issn.0578-1752.2012.16.011

• HORTICULTURE • Previous Articles     Next Articles

Diversity and Genetic Structure of Garlic (Allium sativum L.) Germplasm Resource in China

 WANG  Hai-Ping, Philipp  W.Simon, LI  Xi-Xiang, CHENG  Jia-Qi, SHEN  Di, SONG  Jiang-Ping, QIU  Yang, ZHANG  Xiao-Hui   

  1. 1.中国农业科学院蔬菜花卉研究所,北京 100081,中国
    2.USDA-ARS Vegetable Crops Research Unit and Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706,USA
  • Received:2011-11-04 Online:2012-08-15 Published:2012-05-28

Abstract: 【Objective】 The objective of the experiment is to understand the diversity and genetic structure of garlic germplasm resources in China. 【Method】 Two-hundred and twelve accessions of garlic germplasm preserved in China were detected and analyzed  based on AFLP, SSR and InDel. Neighbor-joined clustering was analyzed by software Mega, and the population genetic structure was studied by software Structure 2.1.  The effect of genetic structure on association analysis between the molecular markers and 21 quantitative traits including allicin content was evaluated by general linear model (GLM) by software SSPS13.0 .【Result】Totally, 502 allels were amplified by AFLP, SSR and InDel primers, and 492 of them were polymorphic among 212 accessions of garlic. All accessions were divided into 5 groups by both structure analysis and neighbor-joining clustering. However, the Shannon’s index of each group assumed by genetic structure analysis was smaller than that assumed by neighbor-joining clustering, which indicated that the genetic structure analysis could interpret genetic relationship among the individual accessions in more details. Most of traits including allicin content were slightly affected by population structure, which indicated that the germplasm in this study was acceptable to be the populations for association mapping.【Conclusion】The garlic germplasm resources in China possess a great diversity. The population structure of the garlic germplasm resources slightly affect the quantitative traits including the allicin content, which means that the population of the garlic germplasm is a potential candidate natural population for association analysis between the molecular markers and the quantitative traits.

Key words: garlic, association analysis, population structure, genetic diversity

[1]Azuara Hernandez L, Silos Espino H, Perales Segovia C, Gomez Leyva J F, Alpuche Solis A G,  Macias Valdez L M. Morphological and genetic characteristics allow the identification of a collection of garlic cultivars in the North-Central region of Mexico. Phyton (Buenos Aires), 2008, 77: 81-91.

[2]Baghalian K, Naghavi M R, Ziai S A, Badi H N. Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes. Scientia Horticulturae, 2006, 107 (4): 405-410.

[3]Baghalian K, Ziai S A, Naghavi M R, Badi H N, Khalichi A. Evaluation of allicin content and botanical traits in Iranian garlic (Allium sativum L.) ecotypes. Scientia Horticulturae, 2005, 103 (2): 155-166.

[4]Stavelikova H. Morphological characteristics of garlic (Allium sativum L.) genetic resources collection - Information. Horticultural Science, 2008, 35 (3): 130-135.

[5]Valsikova M, Kralova J. Evaluation of some morphological characteristics of garlic (Allium sativum L.) genotypes. Vegetable Crops Research Bulletin, 2006, 65: 111-116.

[6]Lahoz I, Fernández J A, Migliaro D, Macua J I, Egea-Gilabert C. Using molecular markers, nutritional traits and field performance data to characterize cultivated cardoon germplasm resources. Scientia Horticulturae, 2011, 127 (3): 188-197.

[7]分子标记. http://baike.baidu.com/view/660796.htm. 2009-10-19.

Molecular marker. http://baike.baidu.com/view/660796.htm. 2009-10- 19. (in Chinese)

[8]Vos P, Hogers R, Bleeker M, Reijans M, van D L T, Hornes M, Frijters A P J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23 4407-4414.

[9]Ipek M, Ipek A, Simon P W. Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. Journal of the American Society for Horticultural Science, 2003, 128 (2): 246-252.

[10]Kitazawa C, Nishimura H, Yamaguchi T, Nakano M, Yamanaka A. Novel morphological traits in the early developmental stages of Temnopleurus toreumaticus. Biological Bulletin, 2009, 217 (3): 215-221.

[11]Lee G A, Kwon S J, Park Y J, Lee M C, Kim H H, Lee J S, Lee S Y, Gwag J G, Kim C K, Ma K H. Cross-amplification of SSR markers developed from Allium sativum to other Allium species. Scientia Horticulturae, 2011, 128 (4): 401-407.

[12]徐培文, 曲士松, 黄宝勇, 石琰景, 刘恒英, 张  杰, 孙晋斌, 宋洪平. 应用RAPD技术分析大蒜种质遗传特性和检测蒜种纯度的研究. 山东农业科学, 2002(1): 7-12.

Xu P W, Qu S S, Huang B Y, Shi Y J, Liu H Y, Zhang J, Sun J B, Song H P. A preliminary study on genetic identification and purity assessments of garlic by RAPD. Shandong Agricultural Sciences, 2002(1):7-12. (in Chinese)

[13]陈  昕, 周涵韬, 杨志伟, 潘  文, 林  鹏. 大蒜种质资源遗传多样性的分子标记研究. 厦门大学学报:自然科学版, 2005, 44(s1): 144-149.

Chen X, Zhou H D,. Yang Z W, Pan W, Lin P. Assessment of genetic diversity of garlic(Allium sativum L.) by the technique of molecular marker. Journal of Xiamen UniversityI: Natural Science, 2005, 44 (s1):144-149.(in Chinese)

[14]Garcia-Diaz M, Kunkel T A. Mechanism of a genetic glissando: structural biology of indel mutations. Trends in Biochemical Sciences, 2006, 31 (4): 206-214.

[15]Matthee C A, Eick G, Willows-Munro S, Montgelard C, Pardini A T, Robinson T J. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Molecular Phylogenetics and Evolution, 2007, 42 (3): 827-837.

[16]van der Ham J L, Brugler M R, France S C. Exploring the utility of an indel-rich, mitochondrial intergenic region as a molecular barcode for bamboo corals (Octocorallia: Isididae). Marine Genomics, 2 (3/4): 183-192.

[17]Housley D J E, Ritzert E, Venta P J. Comparative radiation hybrid map of canine chromosome 1 incorporating SNP and indel polymorphisms. Genomics, 2004, 84 (2): 248-264.

[18]Li C, Zhao S, Zhang S, Li L, Liu Y, Chen J, Xue J. Genetic polymorphism of 29 highly informative InDel markers for forensic use in the Chinese Han population. Forensic Science International: Genetics, 2011, 5 (1): e27-e30.

[19]Li M-X, Gui H-S, Kwan Johnny S H, Sham Pak C. GATES: A Rapid and Powerful Gene-Based Association Test Using Extended Simes Procedure. The American Journal of Human Genetics, 2011, 88 (3): 283-293.

[20]Pan C H, Li A H, Dai Z Y, Zhang H X, Liu G Q Wang Z B, Ma Y Y, Yin Y J, Zhang Y F, Zuo S M, Chen Z X, Pan X B. InDel and SNP markers and their applications in map-based cloning of rice genes. Rice Science, 2008, 15 (4): 251-258.

[21]Lu B-R, Cai X, Xin J. Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Progress in Natural Science, 2009, 19 (10): 1241-1252.

[22]Steele K A, Ogden R, McEwing R, Briggs H, Gorham J. InDel markers distinguish Basmatis from other fragrant rice varieties. Field Crops Research, 2008, 105 (1-2): 81-87.

[23]Yuan Z, Chen X, He T, Feng J, Feng T, & Zhang C. Population genetic structure in apricot (Prunus armeniaca L.) cultivars revealed by fluorescent-AFLP markers in Southern Xinjiang, China. Journal of Genetics and Genomics, 2007, 34 (11): 1037-1047.

[24]Amar M H, Biswas M K, Zhang Z, Guo W W. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Scientia Horticulturae, 2011, 128 (3): 220-227.

[25]Ma K, Kwag J, Zhao W, Anupam D, Lee G, Kim H, Chung I, Kim N, Lee J, Ji J J, Kim T S, Park Y J. Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Scientia Horticulturae, 2009, 122 (3): 355-361.

[26]An C, Saha S, Jenkins J N, Ma D P, Scheffleer B E, Kohel R J, Yu J Z, Stelly D M. Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theoretical and Applied Genetics, 2008, 116 (7): 1015-1026.

[27]Morton N E. A history of association mapping In A R Collins. Linkage Disequilibrium and Association Mapping. Totowa: Humana Press, 2007.

[28]Aulchenko Y S. Effects of population structure in genome-wide association studies//Analysis of Complex Disease Association Studies. San Diego: Academic Press, 2011.

[29]Harris B P, Stokesbury K D E. The spatial structure of local surficial sediment characteristics on Georges Bank, USA. Continental Shelf Research, 2010, 30 (17): 1840-1853.

[30]Kline J B, Moore D J, Clevenger C V. Activation and association of the Tec tyrosine kinase with the human prolactin receptor: Mapping of a Tec/Vav-receptor binding site. Molecular Biology of the Cell, 2000, 11 1747.

[31]Wang M, Zhu C, Barkley N, Chen Z, Erpelding J, Murray S, Tuinstra M, Tesso T, Pederson G, Yu J. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theoretical and Applied Genetics, 2009, 120 (1): 13-23.

[32]Zhao W G, Park E J, Chung J W, Park Y J, Chung I M, Ahn J K, Kim G H. Association analysis of the amino acid contents in rice. Journal of Integrative Plant Biology, 2009, 51 (12): 1126-1137.

[33]Pagnotta M A, Mondini L, Atallah M. Morphological and molecular characterization of Italian emmer wheat accessions. Euphytica, 2005, 146 (1-2): 29-37.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[6] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[7] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[8] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[9] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[10] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[11] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[12] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[13] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[14] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[15] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!