Scientia Agricultura Sinica ›› 2006, Vol. 39 ›› Issue (10): 2107-2113 .

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Structural adaptability of yak lung

,   

  1. 南京农业大学
  • Received:2005-06-20 Revised:1900-01-01 Online:2006-10-10 Published:2006-10-10

Abstract: Fine structure of the yak lung was examined by microscopy and trans electro-microscopy, and then, the relationship between the morphological features and the adaptability to lower-oxygen was analyzed. The lobuli pulmonum occurred obviously. Most of the alveoli wall composed by type I alveolar cells which had gaps on it clearly. The arithmetic and conciliate averages of the air-blood barrier thickness were 0.53±0.10µm and 0.44±0.07µm respectively, which were notabilitly smaller than that of other smaller livestock. Those can facilitate the dispersion of oxygen through the barrier. The rate of muscle-layer thickness to outer diameter of the blood vessel was 5.00±0.93%, being similar as the camel house but smaller than the cow and bull, which can reduce pulmonary artery high pressure. There were lots of elastic fibres in pulmonary pleura, interlobular connective tissue, alveolar septa, the walls of different bronchus and blood vessels, which formed a complete elastic system in favor of the lung dilating and shrinking. Goblet cells that distributed not only in different bronchi but also in bronchioles, were good for dry air passing through the tract. These structural features were obtained by yaks as a result of their living in lower-oxygen on Qingzang Plateau from generation to generation.

Key words: Yak (Bos grunniens), lung, structure, adaptability

[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[3] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[6] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[7] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[8] LIU XiaXia,LI Yang,WANG Jing,HUANG MingXia,BAI Rui,SONG Yang,HU Qi,ZHANG JiaYing,CHEN RenWei. Adaptability Evaluation of Staple Crops Under Different Precipitation Year Types in Four Ecological Regions of Inner Mongolia Based on APSIM [J]. Scientia Agricultura Sinica, 2022, 55(10): 1917-1937.
[9] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[10] LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532.
[11] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[12] NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability [J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953.
[13] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[14] HAN KeYing,FENG Xiao,YANG YuLing,LI ShanShan,WEI SuMeng,CHEN YuMin. Effects of Camellia Oil on the Properties of Myofibrillar Protein Gel [J]. Scientia Agricultura Sinica, 2021, 54(20): 4446-4455.
[15] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!