Scientia Agricultura Sinica ›› 2005, Vol. 38 ›› Issue (12): 2555-2565 .

• RESEARCH NOTES • Previous Articles     Next Articles

Genetic Diversity Among Barley Germplasm with Known Origins Based on the RAMP and ISSR Markers

,,,,   

  1. 四川农业大学小麦研究所
  • Received:2004-12-16 Revised:1900-01-01 Online:2005-12-10 Published:2005-12-10

Abstract: The genetic diversity and genetic relationships among 60 barley accessions, including 33 Chinese endemic barley landraces, 19 wild barley accessions from Xizang, China, and 8 barley cultivars from other countries, were evaluated by RAMP and ISSR markers. In RAMP analysis, a total of 116 bands were observed in 22 markers, among with 98 bands were polymorphic. Each primer could amplify 1 to 10 polymorphic bands, with an average of 5.27 bands. The percentage of polymorphic bands (PPB), mean polymorphism information content (PIC) and effective number of alleles (Ne) were 84.48%, 0.277 and 1.602, respectively. Among the 60 barley accessions, the RAMP-based genetic similarity (RAMP-GS) ranged from 0.551 to 0.965, with a mean of 0.830. In ISSR analysis, a total of 113 bands were detected, among which 111 bands were polymorphic. The number of bands from each ISSR marker ranged from 1 to 10, with an average of 5.95. The PPB, PIC and Ne were 98.23%, 0.427 and 2.033, respectively. The ISSR-derived genetic similarity (ISSR-GS) ranged from 0.203 to 0.931, with a mean of 0.676. The cluster analysis indicated that all the 60 barley accessions could be distinguished by both RAMP and ISSR markers. Mantel test indicated that RAMP and ISSR were significantly associated. These results suggested that high level of genetic diversity among the barley germplasm has been detected by RAMP and ISSR markers, and ISSR was superior to RAMP. Key words: Barley; RAMP; ISSR; Genetic diversity; Genetic relationshi

Key words: Barley, RAMP, ISSR, Genetic diversity, Genetic relationship, Cluster analysis

[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[9] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[10] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[11] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[12] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[13] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[14] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[15] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!