Scientia Agricultura Sinica ›› 2005, Vol. 38 ›› Issue (08): 1636-1644 .

• HORTICULTURE • Previous Articles     Next Articles

Agrobacterium Mediated Transformation of BADH to the AtNHX1 Transgenic Tomato (Lycopersicum esculentum L. 'Moneymaker')

,,,,   

  1. 中国科学院植物研究所
  • Received:2005-03-15 Revised:1900-01-01 Online:2005-08-10 Published:2005-08-10

Abstract: To evaluate the effects of combined salt tolerant mechanisms, BADH gene from Atriplex hortensis was introduced into the T2 generation of transgenic tomato (L. esculentum 'Moneymaker') line X1OEA1 containing AtNHX1 by Agrobacterium tumefaciens mediated transformation. PCR, Southern blot, RT-PCR and betaine measurement indicated that BADH was integrated into the genome of X1OEA1 and functioned properly. Physiological responses of the double transformant to 200 mmol·L-1 NaCl treatment, reflected by photochemical efficiency of PSⅡ(Fv/Fm), relative electronic conductivity (Rc/Rc'), chlorophyll content (Chla+b, Chla/b) and net photosynthetic rate (Pn), were better than those in X1OEA1. The double gene transformed tomato TT0-2 showed the least decrease of Fv/Fm value while the salt concentration increased gradually, and the relative electronic conductivity of TT0-2 and X1OEA1 line T2 plant were 3.6 and 4.2 times higher under 200 mmol·L-1 NaCl treatment compared with normal condition. The stem's dry weight and fresh weight of TT0-2 were 12.5% and 19.8% higher than that of X1OEA1 line T2 plant, respectively, at the same time, the leaves' dry weight and fresh weight of which were 22.5% and 14.0% higher. The results indicated that multigene transformation could further improve salt tolerance of plant. Furthermore, the transformation system of tomato was optimized. The results have proved that Timentin is a better antibiotic than cefotaxim for the effective transformation of tomato.

Key words: Agrobacterium tumefaciens, BADH, AtNHX1, Double-gene transformation, Salt-tolerance, Tomato

[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[6] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[7] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[8] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[9] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[10] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[11] ZHANG Xiang,SHI YaXing,LU BaiShan,WU Ying,LIU Ya,WANG YuanDong,YANG JinXiao,ZHAO JiuRan. Creation of New Maize Variety with Fragrant Rice Like Flavor by Editing BADH2-1 and BADH2-2 Using CRISPR/Cas9 [J]. Scientia Agricultura Sinica, 2021, 54(10): 2064-2072.
[12] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[13] QI YongBin,ZHANG LiXia,WANG LinYou,SONG Jian,WANG JianJun. CRISPR/Cas9 Targeted Editing for the Fragrant Gene Badh2 in Rice [J]. Scientia Agricultura Sinica, 2020, 53(8): 1501-1509.
[14] ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
[15] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!