Scientia Agricultura Sinica

Previous Articles    

Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit in Semi-Arid Area of Jilin Province

LI Qian, QIN YuBo, YIN CaiXia, KONG LiLi, WANG Meng, HOU YunPeng, SUN Bo, ZHAO YinKai, XU Chen, LIU ZhiQuan   

  1. Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Agro-Environment in Northeast Region, Ministry of Agriculture and Rural Affairs, Changchun 130033
  • Received:2021-03-15 Accepted:2021-05-06 Published:2021-06-03

Abstract: 【Objective】 To study the effects of different drip fertigation modes on maize yield, nutrient absorption, soil nitrogen balance, water use efficiency and economic benefits, in order to provide a theoretical basis for drip irrigation maize production in semi-arid area of Jilin province. 【Method】Field experiment was carried out in Minle Village of Jilin Province for 2018-2019. Five treatments were set up: drip fertigation with plastic film (DFM), shallow buried drip fertigation (DF), shallow buried drip fertigation urea (DIU), shallow buried drip irrigation (DI), and farmer practices (FP). We collected plant samples at jointing stage, bell stage,silking stage, filling stage and mature stage, divided into stem, leaf and grain parts, measured the shoot dry matter weight and the contents of nitrogen, phosphorus and potassium, respectively. Based on these data, the nutrient absorption were calculated or evaluated. The soil samples from 0-100 cm soil depth were respectively collected before sowing and after harvest of maize to study soil nitrogen balance.The soil samples from 0-200 cm soil depth were respectively collected before sowing and after harvest of maize to study water use efficiency. 【Result】The maize yield of drip fertigation treatments (DFM, DF, DIU and DI) were higher than farmers' conventional treatment 10.3%-20.6%, the rate of yield increase in the dry year (2018) (13.7%-27.9%) was higher than that in the rainy year (2019) (7.2%-13.7%), meanwhile, the accumulation of nitrogen, phosphorus and potassium in mature stage was increased by 15.7%-31.7%(P<0.05), 11.0%-35.6% (P<0.05) and 5.2%-20.9%, especially increased the nitrogen, phosphorus and potassium uptake after silking by 63.1%-95.2% (P<0.05), 11.6%-63.0% and 40.0%-110.0% (P<0.05); it also significantly increased the water use efficiency (WUE) by 21.8%-33.9% and decreased the apparent nitrogen loss by 13.8%-92.0%. Compared with shallow buried drip fertigation (DF), DFM treatment increased the yield and water use efficiency in dry years, but differences were not significant in rainy years, DFM treatment significantly reduced soil nitrogen apparent loss by 74.2%, but there was no significant difference in net income between in two treatments, and the benefit/cost ratio of DFM treatment was lower than that of DF treatment significantly. Under shallow buried drip irrigation, there were no significant differences in maize yield, nitrogen apparent loss and water use efficiency between DF and DIU treatments. However, the accumulation of dry matter and P and K in DF treatment at mature stage were significantly higher than those in DIU treatment. There was no significant difference between DF treatment and DIU treatment in net income and benefit/cost ratio. The maize yield of DI treatment was 13.7% higher than that of FP treatment in dry years, but not significantly in rainy years. It also significantly increased N and P accumulation at mature stage and N and K accumulation after silking. The net income of DI treatment was not significantly different from that of FP treatment, but the ratio of production and input was significantly lower than that of FP treatment.【Conclusion】Drip fertigation technology could increase maize yield, N, P and K accumulation and water use efficiency, and reduce N apparent loss in semi-arid areas, and the effect was significant in dry years. The maize yield, nutrient accumulation and WUE of DFM treatment were higher than DF, but no difference in rainy years. The benefit/cost ratio of DF was higher than DFM. Considering the production staus and economic benefits, DF was more suitable for local producer. There was no significant difference in the yield, nutrient uptake and water use efficiency between shallow buried drip fertigation urea technology and shallow buried drip fertigation technology, as also net income and the benefit/cost ratio, the low cost DIU treatment simplified the production process, and also had the obvious effect on increasing grain yield. In conclusion, shallow buried drip fertigation urea technology was suitable for the current situation of maize production in semi-arid area of Jilin Province.

Key words: drip fertigation, maize, yield, nutrient absorption, water use efficiency, economic benefit

[1] MA HongXia, SUN Hua, GUO Ning, LIU ShuSen, ZHANG HaiJian, SHI Jie. Early Molecular Diagnosis of Southern Corn Rust Based on Conventional PCR and Nested PCR Assays [J]. Scientia Agricultura Sinica, 2023, 56(9): 1686-1695.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[5] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[6] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[7] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[8] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[9] FAN Xin, LI YuXin, KUANG JiWei, YANG Ting, LIU MiaoMiao, CAO YunGang, HUANG JunRong. Preparation of Ultrasound-Assisted Zein Ethylene Scavenger Film and Its Preservation Property of Bananas [J]. Scientia Agricultura Sinica, 2023, 56(8): 1574-1584.
[10] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[11] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[12] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[13] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[14] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[15] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!