Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1131-1144.doi: 10.3864/j.issn.0578-1752.2025.06.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality

ZHANG YaFeng1,2(), DONG WeiJin1,2, LI QiYun1,2, LU Yang2, ZHANG ZhengKun2(), SUI Li2()   

  1. 1 Faculty of Agronomy, Jilin Agricultural University, Changchun 130118
    2 Institute of Plant Protection, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, Jilin
  • Received:2024-11-13 Accepted:2024-12-13 Online:2025-03-25 Published:2025-03-25
  • Contact: ZHANG ZhengKun, SUI Li

Abstract:

【Objective】 The objective of this study is to explore the interaction between Beauveria bassiana colonization and potassium in tomato (Solanum lycopersicum) plants, and to evaluate the effects of the interaction on tomato fruit quality under different potassium fertilizer application rates.【Method】 Six treatment groups were set up by using pot experiments, including control group and B. bassiana inoculation treatment group under different potassium fertilizer application rates, and the amount of potassium fertilizer was set according to 0, 50% and 100% of tomato field application rate. After inoculation of B. bassiana, the colonization rate of B. bassiana in tomato plants was evaluated by PDA plate assay, and the effect of potassium on the colonization of B. bassiana was determined by colonization rate detection. The effects of B. bassiana colonization on plant potassium utilization and plant growth were determined by detecting potassium content in soil, leaves and fruits under different treatments. The effects of interaction between B. bassiana and potassium on the flavor quality and shelf life of tomato fruits were determined by analyzing fruit shape index, peel hardness, shelf life, soluble sugar and titratable acid content. A multiple regression model was constructed to analyze the correlation between their interaction and tomato quality.【Result】 Potassium could improve the colonization rate of B. bassiana in tomato plants; under the condition of normal exogenous potassium application, the colonization rate of B. bassiana was the highest, reaching 90.00%; the colonization of B. bassiana significantly promoted the absorption and utilization of potassium in tomato plants. In the absence of additional potassium fertilizer, the potassium content in the soil at the seedling stage decreased by 39.15%, and the potassium content in the fruit increased by 1.83%, respectively. The colonization of B. bassiana could significantly promote the accumulation of soluble sugar and vitamin C in tomato fruits, and effectively reduce the content of titratable acid, thus optimizing the sugar acid ratio of fruits and improving the overall flavor quality. Under the condition of applying normal amount of potassium fertilizer, the colonization of B. bassiana made the flavor quality of tomato fruit reach the best state. Among them, the soluble sugar content of fruit increased by 1.02%, the titratable acid content decreased by 25.97%, the sugar acid ratio of fruit increased by 37.17%, and the shelf life of fruit prolonged by 40.24%. The combined effect of potassium and B. bassiana had the greatest influence on soluble sugar content.【Conclusion】 The colonization of B. bassiana can improve fruit quality and prolong the shelf life of fruits by regulating the potassium utilization efficiency of tomato plants. In addition, the multiple regression equation constructed in this study can effectively predict and evaluate the quality of tomatoes.

Key words: Beauveria bassiana, tomato (Solanum lycopersicum), endophytic colonization, economic crop, utilization of nutrient elements, fruit quality

Fig. 1

Endophytic colonization of B. bassiana in tomato leaves"

Fig. 2

Potassium content of tomato in different periods"

Fig. 3

Analysis of fruit morphology index"

Fig. 4

Postharvest storability of fruit"

Table 1

Effects of potassium fertilizer application rate and B. bassiana colonization on tomato quality"

处理Treatment 可溶性糖含量
Soluble sugar content (g·100 g-1)
可滴定酸含量
Titratable acid content (g·100 g-1)
维生素C含量
Vitamin C content (mg·100 g-1)
糖酸比
Sugar acid ratio
Control 2.91±0e 1.81±0.08a 10.32±0.21c 1.61±0.08b
Bb 2.93±0cd 1.68±0.10ab 15.48±0.69ab 1.76±0.10b
K1 2.94±0bc 1.88±0.04a 14.09±0.52b 1.57±0.03b
K1+Bb 2.95±0b 1.74±0.08ab 15.48±0.34ab 1.70±0.08b
K2 2.93±0cd 1.54±0.08b 15.77±0.17a 1.91±0.10b
K2+Bb 2.96±0a 1.14±0.08c 16.47±0.72a 2.62±0.18a

Fig. 5

Correlation analysis of the effects of B. bassiana and potassium fertilizer on fruit quality *: P≤0.05; **: P≤0.01; ***: P≤0.001; ****: P≤0.0001"

Table 2

Multiple linear regression equation of the effects of potassium fertilizer application rate and B. bassiana colonization on tomato quality"

品质指标Quality index 方程Equation (y=) 调整决定系数Adjust R2 PP value
可溶性糖含量Soluble sugar content 2.8822+0.0178x1+0.0133x2 0.7343 <0.0001
可滴定酸含量Titratable acid content 2.3722-0.2244x1-0.2017x2 0.4993 <0.0001
维生素C含量Vitamin C content 7.7544+2.4156x1+1.6117x2 0.6437 <0.0001
糖酸比Sugar acid ratio 0.7906+0.3278x1+0.2892x2 0.5004 <0.0001

Fig. 6

Multiple linear fitting of fruit quality index"

[1]
AZEVEDO J L, MACCHERONI W, PEREIRA J O, DE ARAÚJO W L. Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 2000, 3(1): 15-16.
[2]
SHARAYA R, GILL R, KALWAN G, NAEEM M, TUTEJA N, GILL S S. Plant-microbe interaction mediated salinity stress tolerance for sustainable crop production. South African Journal of Botany, 2023, 161: 454-471.
[3]
隋丽, 路杨, 姜媛媛, 万婷玉, 徐文静, 张正坤, 李启云. 内生性虫生真菌在生物防治中的研究现状与展望. 玉米科学, 2021, 29(6): 169-174, 183.
SUI L, LU Y, JIANG Y Y, WAN T Y, XU W J, ZHANG Z K, LI Q Y. Advance and prospect of endophytic entomopathogenic fungi in biological control. Journal of Maize Sciences, 2021, 29(6): 169-174, 183. (in Chinese)
[4]
KOMAGATA Y, SEKINE T, OE T, KAKUI S, YAMANAKA S. Simultaneous use of Beauveria bassiana and Bacillus subtilis-based biopesticides contributed to dual control of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and tomato powdery mildew without antagonistic interactions. Egyptian Journal of Biological Pest Control, 2024, 34: 18.
[5]
WANG X, YAN G W, LIU W J, CHEN H L, YUAN Q, WANG Z Y, LIU H. Endophytic Beauveria bassiana of tomato resisted the damage from whitefly Bemisia tabaci by mediating the accumulation of plant-specialized metabolites. Journal of Agricultural and Food Chemistry, 2023, 71(36): 13244-13254.
[6]
隋丽, 路杨, 谢敏, 邹晓威, 李启云, 张正坤. 亚洲玉米螟对球孢白僵菌分生孢子和芽生孢子-玉米共生体的取食选择和嗅觉反应. 昆虫学报, 2023, 66(11): 1482-1489.
SUI L, LU Y, XIE M, ZOU X W, LI Q Y, ZHANG Z K. Feeding preference and olfactory responses of Ostrinia furnacalis (Lepidoptera: Pyralidae) to Beauveria bassiana aerial conidia and blastospore-corn symbionts. Acta Entomologica Sinica, 2023, 66(11): 1482-1489. (in Chinese)
[7]
SUI L, ZHU H, XU W J, GUO Q F, WANG L, ZHANG Z K, LI Q Y, WANG D L. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. Fungal Ecology, 2020, 47: 100940.
[8]
CARUSO A G, BERTACCA S, PARRELLA G, RIZZO R, DAVINO S, PANNO S. Tomato brown rugose fruit virus: A pathogen that is changing the tomato production worldwide. Annals of Applied Biology, 2022, 181(3): 258-274.
[9]
CARETTO S, PARENTE A, SERIO F, SANTAMARIA P. Influence of potassium and genotype on vitamin E content and reducing sugar of tomato fruits. HortScience, 2008, 43(7): 2048-2051.
[10]
SONNTAG F, NAUMANN M, PAWELZIK E, SMIT I. Improvement of cocktail tomato yield and consumer-oriented quality traits by potassium fertilization is driven by the cultivar. Journal of the Science of Food and Agriculture, 2019, 99(7): 3350-3358.

doi: 10.1002/jsfa.9552 pmid: 30584798
[11]
隋丽, 万婷玉, 路杨, 徐文静, 张正坤, 李启云. 内生真菌对植物促生、抗逆作用研究进展. 中国生物防治学报, 2021, 37(6): 1325-1331.

doi: 10.16409/j.cnki.2095-039x.2021.06.024
SUI L, WAN T Y, LU Y, XU W J, ZHANG Z K, LI Q Y. Review of fungal endophytes on plant growth promotion and stress resistance. Chinese Journal of Biological Control, 2021, 37(6): 1325-1331. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.06.024
[12]
RIVAS-FRANCO F, HAMPTON J G, NARCISO J, ROSTÁS M, WESSMAN P, SAVILLE D J, JACKSON T A, GLARE T R. Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones. Biological Control, 2020, 150: 104347.
[13]
ISLAM M R, SARKER U, AZAM M G, HOSSAIN J, ALAM M A, ULLAH R, BARI A, HOSSAIN N, EL SABAGH A, ISLAM M S. Potassium augments growth, yield, nutrient content, and drought tolerance in mung bean (Vigna radiata L. Wilczek.). Scientific Reports, 2024, 14(1): 9378.
[14]
HIRSCH J, GALIDEVARA S, STROHMEIER S, DEVI K U, REINEKE A. Effects on diversity of soil fungal community and fate of an artificially applied Beauveria bassiana strain assessed through 454 pyrosequencing. Microbial Ecology, 2013, 66(3): 608-620.
[15]
SUI L, LU Y, ZHOU L Y, LI N N, LI Q Y, ZHANG Z K. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Frontiers in Microbiology, 2023, 14: 1227269.
[16]
GOMES F P, OLIVA M A, MIELKE M S, ALMEIDA A F, AQUINO L A. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Scientia Horticulturae, 2010, 126(3): 379-384.
[17]
DAOUD B, PAWELZIK E, NAUMANN M. Different potassium fertilization levels influence water-use efficiency, yield, and fruit quality attributes of cocktail tomato—A comparative study of deficient-to-excessive supply. Scientia Horticulturae, 2020, 272: 109562.
[18]
WU Y B, FEI Y J, ZHU Q, ZHANG Y, MA C Y, SUN K, DAI C C. Endophytic fungus regulates the root secretion of IAA and ABA to increase rice nitrogen accumulation by promoting soil nitrogen fixation. Plant Growth Regulation, 2024, 104: 1449-1464.
[19]
隋丽, 徐文静, 张正坤, 杨芷, 王志慧, 杜茜, 汪洋洲, 陈日曌, 李启云, 路杨. GFP标记的球孢白僵菌在玉米中的定殖. 中国生物防治学报, 2018, 34(6): 848-857.

doi: 10.16409/j.cnki.2095-039x.2018.06.007
SUI L, XU W J, ZHANG Z K, YANG Z, WANG Z H, DU Q, WANG Y Z, CHEN R Z, LI Q Y, LU Y. Colonization of GFP-tagged Beauveria bassiana in maize. Chinese Journal of Biological Control, 2018, 34(6): 848-857. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2018.06.007
[20]
SUI L, LU Y, ZHU H, WAN T Y, LI Q Y, ZHANG Z K. Endophytic blastospores of Beauveria bassiana provide high resistance against plant disease caused by Botrytis cinerea. Fungal Biology, 2022, 126(8): 528-533.
[21]
屈帅, 李惠霞, 张天一, 寇桂香, 陈萍, 杨彦梅. 钾镁互作对番茄养分吸收、积累及分配的影响. 植物营养与肥料学报, 2023, 29(5): 935-948.
QU S, LI H X, ZHANG T Y, KOU G X, CHEN P, YANG Y M. Interactive effects of potassium and magnesium on nutrient uptake, accumulation and allocation of tomato. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 935-948. (in Chinese)
[22]
WANG L, JIN N, XIE Y D, ZHU W, YANG Y, WANG J Y, LEI Y Z, LIU W K, WANG S Y, JIN L, YU J H, LYU J. Improvements in the appearance and nutritional quality of tomato fruits resulting from foliar spraying with silicon. Foods, 2024, 13(2): 223.
[23]
SUBRAMANIYAN L, VEERASAMY R, PRABHAKARAN J, SELVARAJ A, ALGARSWAMY S, KARUPPASAMI K M, THANGAVEL K, NALLIAPPAN S. Biostimulation effects of seaweed extract (Ascophyllum nodosum) on phytomorpho-physiological, yield, and quality traits of tomato (Solanum lycopersicum L.). Horticulturae, 2023, 9(3): 348.
[24]
罗安才, 杨晓红, 邓英毅, 李纯凡, 向可术, 李道高. 柑橘果实发育过程中有机酸含量及相关代谢酶活性的变化. 中国农业科学, 2003, 36(8): 941-944.
LUO A C, YANG X H, DENG Y Y, LI C F, XIANG K S, LI D G. Organic acid concentrations and the relative enzymatic changes during the development of citrus fruits. Scientia Agricultura Sinica, 2003, 36(8): 941-944. (in Chinese)
[25]
SUI L, LU Y, YANG H P, LIU Z M, WANG L, ZOU X W, LI Q Y, ZHANG Z K. Endophytic Beauveria bassiana promotes sunflower growth and confers resistance against sclerotinia disease. BioControl, 2025, 70: 119-130.
[26]
WEI Q Y, LI Y Y, XU C, WU Y X, ZHANG Y R, LIU H. Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisia tabaci. Arthropod-Plant Interactions, 2020, 14(3): 289-300.
[27]
PARSA S, ORTIZ V, GÓMEZ-JIMÉNEZ M I, KRAMER M, VEGA F E. Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris. Biological Control, 2018, 116: 74-81.

doi: 10.1016/j.biocontrol.2016.09.001 pmid: 29302156
[28]
郜永博, 王世显, 魏珉, 李静, 高中强, 孟伦, 杨凤娟. 氮磷钾用量对基质培茄子产量、根系形态和根际微生物数量与酶活性的影响. 中国农业科学, 2021, 54(21): 4623-4634. doi: 10.3864/j.issn.0578-1752.2021.21.012.
GAO Y B, WANG S X, WEI M, LI J, GAO Z Q, MENG L, YANG F J. Effects of nitrogen, phosphorus and potassium dosage on the yield, root morphology, rhizosphere microbial quantity and enzyme activity of eggplant under substrate cultivation. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634. doi: 10.3864/j.issn.0578-1752.2021.21.012. (in Chinese)
[29]
刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响. 中国农业科学, 2023, 56(4): 635-648. doi: 10.3864/j.issn.0578-1752.2023.04.004.
LIU N, XIE C, HUANG H Y, YAO R, XU S, SONG H L, YU H Q, ZHAO X H, WANG J, JIANG C J, WANG X G. Effects of potassium application on root and nodule characteristics, nutrient uptake and yield of peanut. Scientia Agricultura Sinica, 2023, 56(4): 635-648. doi: 10.3864/j.issn.0578-1752.2023.04.004. (in Chinese)
[30]
ZHAO C H, ONYINO J, GAO X Q. Current advances in the functional diversity and mechanisms underlying endophyte-plant interactions. Microorganisms, 2024, 12(4): 779.
[31]
BEHIE S W, BIDOCHKA M J. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: An additional branch of the soil nitrogen cycle. Applied and Environmental Microbiology, 2014, 80(5): 1553-1560.

doi: 10.1128/AEM.03338-13 pmid: 24334669
[32]
BARROW J R, OSUNA P. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal of Arid Environments, 2002, 51(3): 449-459.
[33]
WANG Q, ZHANG X Y, XIE Q Q, TAO J W, JIA Y J, XIAO Y R, TANG Z Z, LI Q F, YUAN M, BU T L. Exploring plant growth- promoting traits of endophytic fungi isolated from Ligusticum chuanxiong Hort and their interaction in plant growth and development. Journal of Fungi, 2024, 10(10): 713.
[34]
ARUNACHALAM T, GADE K, MAHADULE P A, SOUMIA P S, GOVINDASAMY V, GAWANDE S J, MAHAJAN V. Optimizing plant growth, nutrient uptake, and yield of onion through the application of phosphorus solubilizing bacteria and endophytic fungi. Frontiers in Microbiology, 2024, 15: 1442912.
[35]
詹寿发, 卢丹妮, 毛花英, 熊蓉露, 黄丹, 陈晔. 2株溶磷、解钾与产IAA的内生真菌菌株的筛选、鉴定及促生作用研究. 中国土壤与肥料, 2017(3): 142-151.
ZHAN S F, LU D N, MAO H Y, XIONG R L, HUANG D, CHEN Y. Isolation of two phosphate/potassium-solubilizing and IAA-producing strains of endophytic fungi and their plant growth promoting function. Soil and Fertilizer Sciences in China, 2017(3): 142-151. (in Chinese)
[36]
魏云飞, 宋克光, 王策, 刘焕, 钟凯, 李敏. 微生物菌剂调控连作番茄生长和养分吸收的效应. 山东农业科学, 2024, 56(5): 110-115.
WEI Y F, SONG K G, WANG C, LIU H, ZHONG K, LI M. Regulation effects of microbial agents on growth and nutrient uptake of continuous cropping tomato. Shandong Agricultural Sciences, 2024, 56(5): 110-115. (in Chinese)
[37]
HE D W, LI R, FENG Z Q, LI D Y, YANG T G, CHEN J R, QIU L J, ZHANG Z. Effects of combined nitrogen and potassium application on cherry tomato production efficiency under deficit irrigation. Scientia Horticulturae, 2024, 328: 112958.
[38]
刘军, 高丽红, 黄延楠. 日光温室两种茬口下番茄干物质及氮磷钾分配规律研究. 中国农业科学, 2004, 37(9): 1347-1351.
LIU J, GAO L H, HUANG Y N. Study on distribution of nitrogen, phosphorus and potassium of tomato in different crops in solar greenhouse. Scientia Agricultura Sinica, 2004, 37(9): 1347-1351. (in Chinese)
[39]
褚屿, 骆洪义, 林举梅, 左世福, 张喜琦, 陈堂鑫, 徐震, 王志远. 番茄对氮磷钾及中微量元素的吸收规律研究. 中国土壤与肥料, 2021(1): 247-255.
CHU Y, LUO H Y, LIN J M, ZUO S F, ZHANG X Q, CHEN T X, XU Z, WANG Z Y. Study on the absorption law of nitrogen, phosphorus, potassium and trace elements of tomatoes. Soil and Fertilizer Sciences in China, 2021(1): 247-255. (in Chinese)
[40]
LIU J, HU T T, FENG P Y, YAO D L, GAO F, HONG X. Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agricultural Water Management, 2021, 250: 106831.
[41]
ANDRADE-LINARES D R, GROSCH R, RESTREPO S, KRUMBEIN A, FRANKEN P. Effects of dark septate endophytes on tomato plant performance. Mycorrhiza, 2011, 21(5): 413-422.
[42]
WU K J, HU C X, WANG J, GUO J D, SUN X C, TAN Q L, ZHAO X H, WU S W. Comparative effects of different potassium sources on soluble sugars and organic acids in tomato. Scientia Horticulturae, 2023, 308: 111601.
[43]
SUNG J, SONN Y, LEE Y, KANG S, HA S, KRISHNAN H B, OH T K. Compositional changes of selected amino acids, organic acids, and soluble sugars in the xylem sap of N, P, or K-deficient tomato plants. Journal of Plant Nutrition and Soil Science, 2015, 178(5): 792-797.
[44]
ZHAO W J, WU K Q, WU Y, YU H Y, CAO W, MA H. Effects of biochar amendment on greenhouse tomato quality, nutrient uptake and use efficiency under various irrigation and fertilization regimes. Scientia Horticulturae, 2024, 337: 113441.
[45]
LUO A R, ZHANG X S, WANG C, ZHOU C N. Effects of different water and potassium supply on glucose, fructose, and sucrose carbon allocation in tomato fruit. Journal of Plant Growth Regulation, 2023, 42(2): 684-700.
[46]
KABAŞ A, ERCAN U, KABAS O, MOICEANU G. Prediction of total soluble solids content using tomato characteristics: Comparison artificial neural network vs. multiple linear regression. Applied Sciences, 2024, 14(17): 7741.
[47]
吴宣毅, 曹红霞, 王虎兵, 郝舒雪. 不同种植行距和灌水量对中国西北地区日光温室短季节栽培番茄品质的交互影响. 中国农业科学, 2018, 51(5): 940-951. doi: 10.3864/j.issn.0578-1752.2018.05.012.
WU X Y, CAO H X, WANG H B, HAO S X. Effect of planting row spacing and irrigation amount on comprehensive quality of short-season cultivation tomato in solar greenhouse in northwest China. Scientia Agricultura Sinica, 2018, 51(5): 940-951. doi: 10.3864/j.issn.0578-1752.2018.05.012. (in Chinese)
[48]
LAI Y P, WANG W T, ZHAO J J, TU S, YIN Y W, YE L Y. Chitosan Na-montmorillonite films incorporated with citric acid for prolonging cherry tomatoes shelf life. Food Packaging and Shelf Life, 2022, 33: 100879.
[49]
PARK J Y, BAEK K H, LEE H, SONG J S, PARK S, JEE S H, JUNG S, CHOI J, LEE S, PARK S. Extension of tomato shelf life via nitric oxide treatment using air plasma. Plasma Chemistry and Plasma Processing, 2025, 45(1): 297-311.
[50]
KUMARI S V G, PAKSHIRAJAN K, PUGAZHENTHI G. Application of active and environment-friendly poly (3-hydroxybutyrate)/ grapeseed oil/MgO nanocomposite packaging for prolonging the shelf-life of cherry tomatoes (Solanum lycopersicum L. var. cerasiforme). Sustainable Chemistry and Pharmacy, 2024, 41: 101681.
[51]
LIU Z Y, HU T L, YU C X, TAN W M, SHEN Y Y, DUAN L S. Design of aminoethoxyvinylglycine functional analogues to delay postharvest ripening of tomato fruit. Postharvest Biology and Technology, 2023, 195: 112096.
[52]
GINÉ-BORDONABA J, ECHEVERRIA G, UBACH D, AGUILÓ- AGUAYO I, LÓPEZ M L, LARRIGAUDIÈRE C. Biochemical and physiological changes during fruit development and ripening of two sweet cherry varieties with different levels of cracking tolerance. Plant Physiology and Biochemistry, 2017, 111: 216-225.
[53]
隋丽, 路杨, 周麟妍, 李南楠, 张正坤, 李启云. 球孢白僵菌定殖提高番茄对灰霉病抗性及其作用机理. 植物保护学报, 2024, 51(1): 203-210.
SUI L, LU Y, ZHOU L Y, LI N N, ZHANG Z K, LI Q Y. Enhanced tomato resistance to gray mold by fungus Beauveria bassiana colonization and its mechanism of action. Journal of Plant Protection, 2024, 51(1): 203-210. (in Chinese)
[1] PAN Jing, MENG ZhiHao, WANG Sen, WANG HaiBo, HE Ping, CHANG YuanSheng, ZHENG WenYan, LI LinGuang, WANG Chen, WANG Ping, HE XiaoWen. Diversity Analysis and Comprehensive Evaluation of Fruit Quality Traits in Reciprocal Cross Progenies of Apple Golden Delicious and Fuji Nagafu No.2 [J]. Scientia Agricultura Sinica, 2024, 57(24): 4945-4963.
[2] MA Jia, PENG JieLi, JIA Nan, WANG Xu, WANG ZhanWu, HU Dong. Effects of Streptomyces sp. TOR3209 on Chlorophyll Fluorescence Characteristics and Xanthophyll Cycle in Tomato Plants Under Cold Stress [J]. Scientia Agricultura Sinica, 2024, 57(22): 4522-4540.
[3] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[4] ZENG YanXin, GONG HaoNan, YOU ChunXiang, LU JingSheng, GAO WenSheng, WANG XiaoFei. Effects of Different Rootstocks on Growth and Fruit Quality of Young Ruixianghong Apple Trees with Multi-Stem Shape [J]. Scientia Agricultura Sinica, 2024, 57(14): 2847-2861.
[5] GAO ChengAn, WAN HongJian, YE QingJing, CHENG Yuan, LIU ChenXu, HE Yong. Identification and Comparative Analysis of Processed/Fresh-Eating Chili Pepper Fruits at Different Maturation Stages by Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(12): 2424-2438.
[6] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[7] SHI Ying, CHEN SiYi, ZENG YiKe, TANG Jun, LI DiPing, LI GuoJing, HUANG XianBiao, LI ChunLong, XIE ZongZhou, LIU JiHong. Mechanism Underlying the Improved Quality of Bagged Fruits in Ponkan [J]. Scientia Agricultura Sinica, 2023, 56(14): 2776-2786.
[8] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[9] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[10] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[11] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[12] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[13] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[14] ZHANG Ji,LI JunJie,WAN LianJie,YANG JiangBo,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Potassium Application Levels on Nutrient, Yield and Quality of Newhall Navel Orange [J]. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286.
[15] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!