Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1052-1064.doi: 10.3864/j.issn.0578-1752.2025.06.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis

JIN YaRu1,2(), CHEN Bin1,2, WANG XinKai1,2, ZHOU TianTian2, LI Xiao2, DENG JingJing2, YANG YuWen2, GUO DongShu2, ZHANG BaoLong1,2()   

  1. 1 School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228
    2 Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2024-09-25 Accepted:2024-11-18 Online:2025-03-25 Published:2025-03-25
  • Contact: ZHANG BaoLong

Abstract:

【Objective】 Rice (Oryza sativa L.) is a staple cereal crop for about half of the global population, with protein being the second-most significant nutritional component in rice grains. The storage proteins in rice grains mostly consist of glutelin, prolamin, globulin, and albumin, among which the content of easy-to-digest glutelin is the highest. Consequently, common rice increases the burden of kidney and accelerates the progression of renal disorders. The method of generating low-glutelin rice germplasm will provide novel genetic material for the cultivation of functional rice cultivars suitable for individuals with kidney diseases. 【Method】 We utilized Suxiu 867 (SX867), an elite japonica rice cultivar appropriate for cultivation in Jiangsu province, as a transgenic recipient to delete a fragment of approximately 3 500 bp between the B subfamily glutelin-coding genes GluB4 and GluB5 using CRISPR/Cas9-mediated gene editing technology. The large fragment deletion was identified by PCR using the primers corresponding to the flanking sequence of gene editing target sites, while sequence-specific primers for Cas9 and hygromycin resistance gene cassettes were used to identify the low-glutelin rice mutant absent of transgenic elements. The protein component contents of homozygous low-glutelin mutants were analyzed qualitatively and quantitatively, and the expression levels of glutelin-coding genes in rice grains were detected by quantitative PCR. The agronomic traits and quality traits of homozygous low-glutelin mutants and recipient cultivar cultivated under the same cultivation conditions were measured. 【Result】 Homozygous mutants with a 3 448 bp deletion between GluB4 and GluB5 genes were generated successfully. In the mutants, the relative proportion of glutelin decreased significantly, while that of prolamin and globulin increased significantly. The glutelin content of homozygous mutants decreased to 45.54%-49.75% compared to recipient cultivar, and the reduction level is comparable to LGC-1, a low-glutelin rice germplasm commonly used as a donor of low-glutelin trait in commercialized rice cultivars. The expression levels of B subfamily glutelin-coding genes in homozygous mutant were decreased significantly, and the changing trends was consistent with that of LGC-1 derived rice cultivar. Except that plant height decreased and grain length increased significantly, other measured agronomic and quality traits of homozygous mutants were not changed significantly compared to recipient cultivar. 【Conclusion】 Using CRISPR/Cas9-mediated gene editing technology, rice mutants with significant lower glutelin content free from transgenic elements were obtained successfully providing a convenient and quick method to generate low-glutelin germplasm.

Key words: rice, glutelin, gene editing, GluB4, GluB5, low-glutelin rice

Fig. 1

Schematic diagrams of gene editing strategy and T-DNA region of CRISPR vector A: Gene structures and target sites of GluB4 and GluB5. Green boxes represent the exons of GluB4 and GluB5 genes, short black lines between exons represent introns or intergenic region; Red lines in green boxes indicate the location of spacer1, while yellow line in intergenic region indicates the location of spacer2; The sequences of two spacers and flanking regions are shown below the diagram of genes; Underlined red and blue letters indicate the sequences of target sites, and underlined black letters indicate the protospacer adjacent motif (PAM) sequence; Black arrows indicate the locations of the primers labeled above or below the arrows. B: Diagram of gene editing vector T-DNA segment. ZmpUBI: Promoter of maize Ubiquitin1 gene. SpCas9: Cas9 gene derived from Streptococcus pyogenes after codon optimization for rice; NOST: NOS terminator; 3: Rice U3b promoter; 35S Promoter: Cauliflower mosaic virus 35S promoter; HygR: Hygromycin resistance gene; 35ST: 35S terminator; LB: T-DNA left boundary; RB: T-DNA right boundary"

Fig. 2

Electrophoretic results of genotyping and transgenic elements detection of T1 generaation CRISPR-GluB45 transgenic lines Marker: DNA molecular weight standards; Line 2-7: T1 generation plants; 38-2 and 38-8: Homozygous lines with long fragment deletion; 38-4 and 38-15: Heterozygous lines; 38-1 and 38-6: Wild-type segregate without long fragment deletion; T0-38: T0 generation transgenic line of No. 38; SX867: Transgenic receptor cultivar; LGC-1: Japonica rice cultivar derived from LGC-1; Control: PCR negative control"

Fig. 3

Sanger sequencing chromatograms of genotyping results of 38-2 and 38-8 A: The chromatograms of Sanger sequencing of mixed PCR productions of 38-2 and 38-8 indicating the sequences flanking the large fragment deletion region; B: The chromatograms of Sanger sequencing of mixed PCR productions of 38-2 and 38-8 indicating the sequences flanking spacer1 in GluB4. * and · under the letters represent the corresponding bases in gene sequences and Sanger sequencing chromatograms"

Table 1

Determination results of relative content of protein components"

品种或突变体
Cultivar or mutant
基因型或品种特性
Genotype or cultivar feature
蛋白组分Protein fraction (%) 谷蛋白相对含量/野生型4
Relative glutelin content/ Wild type (%)
谷蛋白
Glutelin
球蛋白
Globulin
醇溶蛋白
Prolamin
其他
Others
SX867 转基因受体 Transgenic recipient 51.23 6.33 29.74 12.70 100.00
LGC-1 LGC-1转育品种LGC-1 derived cultivar 22.32 10.73 51.55 15.40 43.57
38-111 野生型3 Wild type 53.91 7.13 29.9 9.06 105.23
38-61 野生型3 Wild type 47.43 6.89 34.27 11.41 92.58
38-41 杂合突变体 Heterozygous mutant 36.22 10.53 41.28 11.97 70.70
38-151 杂合突变体 Heterozygous mutant 33.04 10.23 42.55 14.19 64.49
38-21 纯合突变体 Homozygous mutant 23.33 13.79 48.59 14.29 45.54
38-81 纯合突变体 Homozygous mutant 23.63 12.36 48.73 15.29 46.13
SX867 转基因受体 Transgenic recipient 52.36±0.33a 7.54±0.03a 26.47±0.93a 13.64±0.57a 100.00
LGC-1 LGC-1转育品种 LGC-1 derived cultivar 25.00±0.77b 13.01±1.28b 49.03±1.63b 12.98±0.43a 47.84
38-22 纯合突变体 Homozygous mutant 26.00±0.03b 13.18±1.84b 50.41±1.08b 10.41±0.79a 49.75
38-82 纯合突变体 Homozygous mutant 25.48±1.52b 13.62±0.28b 48.94±0.42b 11.97±1.66a 48.76

Fig. 4

SDS-PAGE results of brown rice Marker: Protein molecular weight standards; The right vertical lines indicate different components of rice storage protein; SX867: Transgenic receptor cultivar; LGC-1: Japonica rice cultivar derived from LGC-1; 38-2 and 38-8: Homozygous mutants with long fragment deletion"

Fig. 5

Gene expression levels of rice glutelin-coding genes SX867: Transgenic receptor cultivar; 38-2 and 38-8: T1 generation homozygous mutants; LGC-1: Japonica rice cultivar derived from LGC-1; GlutelinB×3: GluB1a, GluB1b, and GluB2"

Table 2

Statistical results of agronomic and quality trait"

指标Index SX867 38-2 38-8
总蛋白含量Total protein content (%) 8.52±0.45a 9.28±0.80a 8.65±0.65a
直链淀粉含量Amylose content (%) 16.82±0.29a 17.16±0.39a 16.90±0.96a
粒长Grain length (mm) 4.69±0.20a 4.86±0.34b 4.83±0.39b
粒宽Grain width (mm) 2.67±0.18a 2.64±0.21a 2.63±0.24a
株高Plant height (cm) 67.48±2.27a 64.65±2.87b 64.37±1.96b
分蘖数Tiller number 13.80±2.00a 14.73±2.07a 15.47±2.07a
每穗粒数Number of spikelets per panicle 143.13±13.45a 138.22±8.71a 133.35±10.88a
千粒重1000-grain weight (g) 27.45±0.41a 27.80±0.65a 27.08±0.24a

Fig. 6

Rice plant type, appearance phenotype and the morphology of starch grain A: The morphology of SX867, 38-2 and 38-8 mature plants, bar=10 cm; B-D: Seed appearance of SX867, 38-2 and 38-8, bar=1 cm; E-G: The appearance of SX867, 38-2 and 38-8 brown rice, bar=1 cm; H-J: The appearance of SX867, 38-2 and 38-8 milled rice, bar=1 cm; K-M: Starch particle morphology of SX867, 38-2 and 38-8 milled rice cross sections, bar=10 μm"

[1]
ZENG D L, TIAN Z X, RAO Y C, DONG G J, YANG Y L, HUANG L C, LENG Y J, XU J, SUN C, ZHANG G H, HU J, ZHU L, GAO Z Y, HU X M, GUO L B, XIONG G S, WANG Y H, LI J Y, QIAN Q. Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3: 17031.

doi: 10.1038/nplants.2017.31 pmid: 28319055
[2]
OKITA T W, HWANG Y S, HNILO J, KIM W T, ARYAN A P, LARSON R, KRISHNAN H B. Structure and expression of the rice glutelin multigene family. Journal of Biological Chemistry, 1989, 264(21): 12573-12581.

pmid: 2745459
[3]
KAWAKATSU T, YAMAMOTO M P, HIROSE S, YANO M, TAKAIWA F. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. Journal of Experimental Botany, 2008, 59(15): 4233-4245.
[4]
MOCHIZUKI T, HARA S. Usefulness of the low protein rice on the diet therapy in patients with chronic renal failure. Nihon Jinzo Gakkai Shi, 2000, 42(1): 24-29.
[5]
万建民, 翟虎渠, 刘世家, 江铃, 杨世湖, 陈亮明, 王春明. 功能性专用水稻品种W3660的选育. 作物杂志, 2004(5): 58.
WAN J M, ZHAI H Q, LIU S J, JIANG L, YANG S H, CHEN L M, WANG C M. Breeding of functional special rice variety W3660. Crops, 2004(5): 58. (in Chinese)
[6]
张云辉, 张所兵, 周金云亮, 林静, 汪迎节, 方先文. 水稻低谷蛋白创新种质的选育和鉴定. 植物遗传资源学报, 2015, 16(1): 158-162.

doi: 10.13430/j.cnki.jpgr.2015.01.024
ZHANG Y H, ZHANG S B, ZHOU J Y L, LIN J, WANG Y J, FANG X W. Enhancement and identification of new rice germplasms with low glutelin content. Journal of Plant Genetic Resources, 2015, 16(1): 158-162. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2015.01.024
[7]
KUSABA M, MIYAHARA K, IIDA S, FUKUOKA H, TAKANO T, SASSA H, NISHIMURA M, NISHIO T. Low glutelin content1: A dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. The Plant Cell, 2003, 15(6): 1455-1467.
[8]
IIDA S, AMANO E, NISHIO T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theoretical and Applied Genetics, 1993, 87(3): 374-378.
[9]
陈达刚, 周新桥, 刘传光, 李丽君, 李巨昌, 陈友订. 应用分子标记辅助选择培育籼型低谷蛋白水稻品系. 分子植物育种, 2016, 14(7): 1753-1758.
CHEN D G, ZHOU X Q, LIU C G, LI L J, LI J C, CHEN Y D. Breeding of indica rice lines with low glutelin content by molecular marker-assisted selection. Molecular Plant Breeding, 2016, 14(7): 1753-1758. (in Chinese)
[10]
CHEN K L, WANG Y P, ZHANG R, ZHANG H W, GAO C X. CRISPR/cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70: 667-697.

doi: 10.1146/annurev-arplant-050718-100049 pmid: 30835493
[11]
CHEN Z H, DU H X, TAO Y J, XU Y, WANG F Q, LI B, ZHU Q H, NIU H B, YANG J. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9. Plant Science, 2022, 324: 111449.
[12]
YANG Y H, SHEN Z Y, LI Y G, XU C D, XIA H, ZHUANG H, SUN S Y, GUO M, YAN C J. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. Journal of Integrative Plant Biology, 2022, 64(10): 1860-1865.

doi: 10.1111/jipb.13334
[13]
KIRCHMAIER S, LUST K, WITTBRODT J. Generation of DNA constructs using the golden GATEway cloning method. Methods in Molecular Biology, 2017, 1472: 157-168.

doi: 10.1007/978-1-4939-6343-0_12 pmid: 27671939
[14]
MA X L, ZHANG Q Y, ZHU Q L, LIU W, CHEN Y, QIU R, WANG B, YANG Z F, LI H Y, LIN Y R, XIE Y Y, SHEN R X, CHEN S F, WANG Z, CHEN Y L, GUO J X, CHEN L T, ZHAO X C, DONG Z C, LIU Y G. A robust CRISPR/Cas9 system for convenient, high- efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
[15]
MIAO J, GUO D S, ZHANG J Z, HUANG Q P, QIN G J, ZHANG X, WAN J M, GU H Y, QU L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 2013, 23(10): 1233-1236.

doi: 10.1038/cr.2013.123 pmid: 23999856
[16]
周田田, 唐兆成, 李笑, 朱鹏, 邓晶晶, 杨郁文, 张保龙, 郭冬姝. 利用基因编辑技术创制低谷蛋白水稻种质. 作物学报, 2024, 50(10): 2435-2446.

doi: 10.3724/SP.J.1006.2024.32060
ZHOU T T, TANG Z C, LI X, ZHU P, DENG J J, YANG Y W, ZHANG B L, GUO D S. Development of low-glutelin rice germplasm by gene editing technology. Acta Agronomica Sinica, 2024, 50(10): 2435-2446. (in Chinese)
[17]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
[18]
刘锐, 苗艺源, 黄家章, 郭孝萱, 张斌, 孙君茂. 营养功能型稻米产业研究进展与展望. 中国粮油学报, 2024, 39(6): 215-224.
LIU R, MIAO Y Y, HUANG J Z, GUO X X, ZHANG B, SUN J M. Research progress and prospect of functional rice industry. Journal of the Chinese Cereals and Oils Association, 2024, 39(6): 215-224. (in Chinese)
[19]
刘行丹, 邱颖波, 刘红梅, 刘建丰. 功能性水稻研究进展. 农业科技通讯, 2013(3): 37-40.
LIU X D, QIU Y B, LIU H M, LIU J F. Research progress of functional rice. Bulletin of Agricultural Science and Technology, 2013(3): 37-40. (in Chinese)
[20]
刘传光, 周新桥, 陈达刚, 郭洁, 陈平丽, 陈可, 李逸翔, 陈友订. 功能性水稻研究进展及前景展望. 广东农业科学, 2021, 48(10): 87-99.
LIU C G, ZHOU X Q, CHEN D G, GUO J, CHEN P L, CHEN K, LI Y X, CHEN Y D. Progress and prospect of functional rice research. Guangdong Agricultural Sciences, 2021, 48(10): 87-99. (in Chinese)
[21]
陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系. 中国水稻科学, 2023, 37(1): 55-65.

doi: 10.16819/j.1001-7216.2023.220302
CHEN T, ZHAO Q Y, ZHU Z, ZHAO L, YAO S, ZHOU L H, ZHAO C F, ZHANG Y D, WANG C L. Development of new low glutelin content Japonica rice lines with good eating quality and fragrance by molecular marker-assisted selection. Chinese Journal of Rice Science, 2023, 37(1): 55-65. (in Chinese)

doi: 10.16819/j.1001-7216.2023.220302
[22]
COLLABORATION G C K D. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet, 2020, 395(10225): 709-733.
[23]
CHANDRA D, CHO K, PHAM H A, LEE J Y, HAN O. Down-regulation of rice glutelin by CRISPR-Cas9 gene editing decreases carbohydrate content and grain weight and modulates synthesis of seed storage proteins during seed maturation. International Journal of Molecular Sciences, 2023, 24(23): 16941.
[24]
TAKEMOTO Y, COUGHLAN S J, OKITA T W, SATOH H, OGAWA M, KUMAMARU T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiology, 2002, 128(4): 1212-1222.

pmid: 11950970
[25]
田孟祥, 何友勋, 赵龙, 张时龙, 余本勋, 叶永印. 应用分子标记辅助选育低谷蛋白水稻新品种. 农业科技通讯, 2021(10): 149-151.
TIAN M X, HE Y X, ZHAO L, ZHANG S L, YU B X, YE Y Y. Breeding of new rice varieties with low valley protein by molecular markers. Bulletin of Agricultural Science and Technology, 2021(10): 149-151. (in Chinese)
[26]
WAKASA Y, KAWAKATSU T, ISHIMARU K, OZAWA K. Generation of major glutelin-deficient (GluA, GluB, and GluC) semi-dwarf Koshihikari rice line. Plant Cell Reports, 2024, 43(2): 51.
[27]
LIU Q, WANG C, JIAO X Z, ZHANG H W, SONG L L, LI Y X, GAO C X, WANG K J. Hi-TOM: A platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 2019, 62(1): 1-7.
[28]
HE W, WANG L, LIN Q L, YU F. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. Journal of Integrative Plant Biology, 2021, 63(12): 1999-2019.

doi: 10.1111/jipb.13176
[29]
KAWAKATSU T, HIROSE S, YASUDA H, TAKAIWA F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiology, 2010, 154(4): 1842-1854.

doi: 10.1104/pp.110.164343 pmid: 20940349
[30]
MORITA R, KUSABA M, IIDA S, NISHIO T, NISHIMURA M. Development of PCR markers to detect the glb1 and Lgc1 mutations for the production of low easy-to-digest protein rice varieties. Theoretical and Applied Genetics, 2009, 119(1): 125-130.

doi: 10.1007/s00122-009-1022-5 pmid: 19373444
[31]
ZHOU S R, YIN L L, XUE H W. Functional genomics based understanding of rice endosperm development. Current Opinion in Plant Biology, 2013, 16(2): 236-246.
[32]
BISELLI C, BAGNARESI P, CAVALLUZZO D, URSO S, DESIDERIO F, ORASEN G, GIANINETTI A, RIGHETTINI F, GENNARO M, PERRINI R, BEN HASSEN M, SACCHI G A, CATTIVELLI L, VALÈ G. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. BMC Genomics, 2015, 16: 1091.

doi: 10.1186/s12864-015-2321-7 pmid: 26689934
[33]
TAKAHASHI K, KOHNO H, KANABAYASHI T, OKUDA M. Glutelin subtype-dependent protein localization in rice grain evidenced by immunodetection analyses. Plant Molecular Biology, 2019, 100(3): 231-246.

doi: 10.1007/s11103-019-00855-5 pmid: 30911876
[1] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[2] XU YiHeng. The Dilemma and Way Out of Patent Regulation for Gene-Edited Crops [J]. Scientia Agricultura Sinica, 2025, 58(5): 831-839.
[3] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[4] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[5] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[6] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[7] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[8] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[9] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[10] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[11] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[12] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[13] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[14] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[15] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!