Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 890-906.doi: 10.3864/j.issn.0578-1752.2025.05.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors

XIAO ChangChun1,2(), WEI XinYu1,2(), ZENG YueHui1,2, HUANG JianHong1,2, XU XuMing2,3()   

  1. 1 Biotechnology Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian
    2 Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365500, Fujian
    3 Rice Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian
  • Received:2024-07-22 Accepted:2024-08-20 Online:2025-03-07 Published:2025-03-07
  • Contact: WEI XinYu, XU XuMing

Abstract:

【Objective】The dynamic process of anthocyanin accumulation in black rice grains under different sowing dates and its relationship with meteorological factors were studied to provide reference for the breeding of high anthocyanin black rice varieties and adjusting sowing dates to optimize favorable meteorological conditions for black rice growth, thereby enhancing anthocyanin content in grains.【Method】Three black rice varieties (Heinuo, Lirenzi and Yanziuo 35) with significant difference in anthocyanin content in grains were selected as materials, and 5 sowing dates (B1-B5) were set for each from 2022 to 2023. Samples were taken every 5 days after flowering to determine anthocyanin content in grains. The anthocyanin accumulation characteristics of black rice in grains at each sowing date were analyzed based on Logistic equation. The response mechanism of anthocyanin accumulation characteristics to meteorological factors was discussed by path analysis and regression analysis. 【Result】The sowing date changed the meteorological factors during the grain filling period of black rice, and shortened overall growth period of black rice by shortening the initial heading date. The genotype was found to be the primary determinant of anthocyanin content in black rice grains, and its accumulation characteristics (Wa, MRa, MeRa, TMRa, WMRa, Da) were most significantly influenced by variations in sowing dates. There is an observed trend of decreasing followed by increasing anthocyanin accumulation with delayed sowing dates. Latesowing is more conducive to the accumulation of anthocyanins in grains than early sowing. The process of anthocyanin accumulation in grains exhibited a “slow-fast-slow” pattern with peak values reached 9.79-15.35 days after flowering; this process was regulated by year type, sowing date and intervariety factors. Path analysis results indicated that Wa is mainly determined by MeRa and Da, with MeRa contributing the most to Wa. Furthermore, characteristic parameters of anthocyanin accumulation in grains showed significant negative correlations with light and temperature climatic factors during the effective filling period. Notably, air temperature had a significant influence on anthocyanin accumulation: as Tamax, Dheat and Savg increased, Da decreased along with MeRa and Wa; an average temperature range of 25.0-27.4 ℃during the filling period was found to be optimal for anthocyanin accumulation in grains.【Conclusion】The effect of sowing date on anthocyanin accumulation in black rice grains reflects the comprehensive effect of meteorological factors, with temperature being the primary factor influencing anthocyanin accumulation. This, in turn, affects both the rate and duration of anthocyanin accumulation. Based on this, it is advisable to select black rice varieties with high anthocyanin content according to the planting system.Timely seeding from late June to early July can optimize the adaptation of meteorological elements during the grouting period, leading to an increase in grain anthocyanin content.

Key words: black rice, growth duration, anthocyanin accumulation, sowing date, meteorological factor

Fig. 1

Temperature, daily rainfall, sunshine duration and UV index for black rice filling in 2022-2023"

Table 1

Test varieties and basic information of black rice"

品种
Variety
类型
Type
栽培晚稻全生育期
Growth period (d)
籽粒花色苷含量
Anthocyanin content (u/1000 grain)
选育单位
Breeding units
黑糯
Heinuo
常规稻
Conventional rice
114 13.13Bb 三明市农业科学研究院 Sanming Academy of Agricultural Sciences
丽人紫
Lirenzi
常规稻
Conventional rice
118 8.49Cc 湖南省水稻研究所 Hunan Rice Research Institute
岩紫糯35
Yanzinuo35
常规稻
Conventional rice
115 15.23Aa 龙岩市农业科学研究所 Longyan Institute of Agricultural Science

Table 2

Date of flowering to maturity (filling stage) and the filling stage days of black rice under different sowing date treatment"

品种
Variety
年份
Year
播期处理<BOLD>S</BOLD>owing dates treatment
B1 B2 B3 B4 B5
黑糯
Heinuo
2022 06-09—07-13 (34) 07-01—08-01 (31) 07-18—08-17 (30) 08-13—09-13 (31) 09-17—10-23 (36)
2023 06-06—07-08 (32) 06-28—07-28 (30) 07-14—08-13 (31) 08-07—09-09 (33) 09-14—10-20 (35)
丽人紫
Lirenzi
2022 06-12—07-16 (34) 07-03—08-04 (32) 07-20—08-20 (31) 08-15—09-16 (32) 09-21—10-27 (36)
2023 06-09—07-11 (32) 06-30—07-31 (31) 07-15—08-16 (32) 08-09—09-11 (33) 09-15—10-20 (35)
岩紫糯35
Yanzinuo35
2022 06-06—07-13 (37) 06-28—07-31 (34) 07-15—08-17 (33) 08-10—09/13 (34) 09-16—10-24 (38)
2023 06-04—07-08 (34) 06-25—07-27 (32) 07-10—08-12 (33) 08-04—09-08 (35) 09-11—10-18 (37)

Fig. 2

Meteorological factors on the filling stage of black rice under different sowing date treatment A: Averagemaximum temperature; B: Averageminimum temperature; C: Average temperature; D: Total precipitation; E: Average ultraviolet index; F: Average sunshine duration; G: No. of heat damage days; H: No. of cold damage days. Heat damage is defined as the damage under mean air temperature ≥30 ℃ and maximum air temperature ≥37 ℃, Cold damage is defined as the damage under mean air temperature ≤22 ℃[29]; Differentlowercase letters indicated significant differences treatments at P<0.05 levels, respectively. The same as below"

Table 3

Logistic fitted equation and characteristic parameters of anthocyanin accumulation in black rice grains at different sowing date treatment"

年份
Year
品种 Variety <BOLD>播期处理</BOLD> <BOLD>S</BOLD>owing date treatment Logistic方程
Logistic equation W=K/(1+EXP(A-Bt)
R2 Wa
(u/1000 grain)
积累速率
Accumulation rate
(u/(1000 grain·d))
MRa Da
(d)
TMRa
(d)
WMRa (u/1000 grain)
MRa MeRa
2022 黑糯 Heinuo B1 W=10.900/(1+EXP(9.274-0.987t)) 0.999** 10.81b 2.69b 0.80b 9.39b 5.45b 13.33b
B2 W=3.550/(1+EXP(7.613-1.119t)) 0.999** 3.41d 0.99d 0.34d 6.80d 1.78d 10.28d
B3 W=3.104/(1+EXP(7.193-1.130t)) 0.999** 3.04e 0.88e 0.31d 6.36e 1.55e 9.80e
B4 W=4.352/(1+EXP(8.287-1.136t)) 0.999** 4.17c 1.24c 0.40c 7.30c 2.18c 10.72c
B5 W=13.444/(1+EXP(8.707-0.907t)) 0.997** 13.13a 3.05a 0.95a 9.59a 6.72a 13.88a
平均Average 6.91 1.77 0.56 7.89 3.54 11.60
丽人紫 Lirenzi B1 W=7.116/(1+EXP(8.412-0.914t)) 0.997** 7.09b 1.63b 0.52b 9.20b 3.56b 13.46b
B2 W=2.760/(1+EXP(7.413-1.014t)) 0.998** 2.71d 0.70d 0.24d 7.31d 1.38d 11.15d
B3 W=2.370/(1+EXP(7.758-1.079t)) 0.996** 2.31e 0.64d 0.22d 7.19e 1.19d 10.79e
B4 W=3.688/(1+EXP(7.693-0.998t)) 0.998** 3.64c 0.92c 0.31c 7.70c 1.84c 11.60c
B5 W=8.525/(1+EXP(8.590-0.842t)) 0.997** 8.49a 1.80a 0.56a 10.20a 4.26a 14.82a
平均值Average 4.85 1.14 0.37 8.32 2.45 12.36
岩紫糯35
Yanzinuo35
B1 W=12.240/(1+EXP(6.975-0.756t)) 0.996** 12.06b 2.32b 0.84b 9.22b 6.12b 14.37b
B2 W=5.079/(1+EXP(7.738-0.933t)) 0.998** 5.01d 1.19d 0.40d 8.29d 2.54d 12.46d
B3 W=4.325/(1+EXP(6.911-0.878t)) 0.999** 4.24e 0.95e 0.35e 7.86e 2.16e 12.29d
B4 W=7.945/(1+EXP(7.530-0.834t)) 1.000** 7.71c 1.66c 0.57c 9.02c 3.97c 13.68c
B5 W=15.447/(1+EXP(7.407-0.736t)) 1.000** 15.23a 2.84a 0.99a 10.06a 7.72a 15.35a
平均Average 8.85 1.79 0.63 8.89 4.50 13.63
2023 黑糯
Heinuo
B1 W=9.285/(1+EXP(9.480-1.017t)) 0.979** 9.10b 2.36b 0.69b 9.32b 4.64b 13.15b
B2 W=3.080/(1+EXP(7.436-1.157t)) 0.992** 3.02e 0.89e 0.31d 6.43e 1.54d 9.79e
B3 W=3.284/(1+EXP(8.643-1.210t)) 0.987** 3.22d 0.99d 0.31d 7.15d 1.64d 10.36d
B4 W=4.910/(1+EXP(9.728-1.187t)) 0.987** 4.81c 1.46c 0.42c 8.20c 2.46c 11.47c
B5 W=11.365/(1+EXP9.042-0.911t)) 0.990** 11.14a 2.59a 0.78a 9.53a 5.68a 13.72a
平均Average 6.26 1.66 0.50 8.12 3.19 11.70
丽人紫
Lirenzi
B1 W=6.225/(1+EXP(8.891-0.983t)) 0.994** 6.10b 1.53a 0.47a 9.05b 3.11b 13.01b
B2 W=2.426/(1+EXP(8.002-1.116t)) 0.998** 2.38e 0.68d 0.22d 7.17e 1.21e 10.66e
B3 W=2.685/(1+EXP(8.273-1.097t)) 0.991** 2.63d 0.74d 0.24d 7.54d 1.34d 11.09d
B4 W=4.005/(1+EXP(9.085-1.039t)) 0.994** 3.93c 1.04c 0.31c 8.75c 2.00c 12.50c
B5 W=7.370/(1+EXP(8.943-0.855t)) 0.999** 7.22a 1.58a 0.48a 10.06a 3.69a 14.61a
平均Average 4.45 1.11 0.34 8.51 2.27 12.37
岩紫糯35 Yanzinuo35 B1 W=10.657/(1+EXP(7.225-0.816t)) 0.997** 10.44b 2.17b 0.77a 9.42b 5.33b 13.82b
B2 W=3.987/(1+EXP(7.985-0.994t)) 0.993** 3.91e 0.99d 0.33d 8.03e 1.99e 11.94d
B3 W=4.669/(1+EXP(7.541-0.914t)) 0.998** 4.59d 1.07d 0.36d 8.47d 2.57d 12.73c
B4 W=8.750/(1+EXP(8.315-0.883t)) 0.999** 8.58c 1.93c 0.62c 8.86c 4.38c 13.63b
B5 W=12.569/(1+EXP(8.113-0.807t)) 0.998** 12.32a 2.44a 0.79a 10.27a 6.29a 15.28a
平均Average 7.97 1.72 0.57 9.01 4.11 13.48
因素Factor 均方Mean squares
年份Year (A) 8.79** 0.11** 0.05** 1.94** 2.08** 0.09**
播期sowing date (B) 225.99** 8.59** 0.82** 26.48** 58.29** 45.80**
品种Variety (C) 106.93** 3.74** 0.47** 6.68** 28.48** 27.24**
A×B 5.16** 0.23** 0.02** 0.64** 1.43** 1.16**
A×C 0.52** 0.01** 0.01** 0.09** 0.10** 0.15**
B×C 7.38** 0.33** 0.03** 1.14** 1.86** 1.03**
A×B×C 0.28** 0.01** 0.01** 0.17** 0.09** 0.06**

Fig. 3

Dynamic changes of anthocyanin accumulation rate in grain at different sowing date treatment"

Table 4

Characteristic parameters of the tested varieties at anthocyanin accumulation in grain at different sowing date treatment"

年份
Year
品种
Variety
<BOLD>播期处理</BOLD> <BOLD>S</BOLD>owing date treatment 积累速率
Accumulation rate (u/(1000 grain·d))
持续时间
Time of duration (d)
积累量
Accumulation (u/1000 grain)
Ra1 Ra2 Ra3 Ta1 Ta2 Ta3 Wa1 Wa2 Wa3
2022 黑糯 Heinuo B1 0.29b 2.36b 0.80b 8.06b 2.67b 2.61b 2.30b 6.29b 2.09b
B2 0.13d 0.87d 0.30d 5.63d 2.35c 2.30c 0.75d 2.05d 0.68d
B3 0.13d 0.77e 0.26e 5.20e 2.33cd 2.28cd 0.66e 1.79e 0.59e
B4 0.15c 1.08c 0.37c 6.14c 2.32d 2.27d 0.92c 2.51c 0.83c
B5 0.35a 2.68a 0.91a 8.14a 2.90 a 2.84a 2.84a 7.76a 2.57a
平均Average 0.21 1.55 0.53 6.63 2.51 2.46 1.49 4.08 1.35
丽人紫 Lirenzi B1 0.19b 1.43b 0.48b 7.76b 2.88b 2.82b 1.50b 4.11b 1.36b
B2 0.10cd 0.61d 0.21d 6.01d 2.60c 2.54c 0.58d 1.59d 0.53d
B3 0.08d 0.56e 0.19e 5.97d 2.44d 2.39d 0.50e 1.37e 0.45e
B4 0.12c 0.81c 0.27c 6.38c 2.64c 2.58c 0.78c 2.13c 0.71c
B5 0.21a 1.57a 0.53a 8.63a 3.13a 3.06a 1.80a 4.92a 1.63a
平均Average 0.14 1.00 0.34 6.95 2.74 2.67 1.03 2.82 0.94
岩紫糯35 Yanzinuo35 B1 0.35b 2.03b 0.69b 7.48b 3.48b 3.40b 2.59b 7.07b 2.34b
B2 0.16d 1.04d 0.35d 6.88d 2.82e 2.76e 1.07d 2.93d 0.97d
B3 0.14e 0.83e 0.28e 6.37e 3.00d 2.93d 0.91e 2.50e 0.83e
B4 0.23c 1.45c 0.49c 7.44c 3.16c 3.09c 1.68c 4.59c 1.52c
B5 0.40a 2.49a 0.85a 8.28a 3.58a 3.50a 3.27a 8.92a 2.96a
平均Average 0.25 1.57 0.53 7.29 3.21 3.14 1.90 5.20 1.72
2023 黑糯 Heinuo B1 0.24b 2.07b 0.70b 8.03b 2.59b 2.53b 1.96b 5.36b 1.78b
B2 0.12d 0.78e 0.27e 5.29e 2.28c 2.23c 0.65e 1.78e 0.59e
B3 0.12d 0.87d 0.30d 6.06d 2.18e 2.13e 0.69d 1.90d 0.63d
B4 0.15c 1.28c 0.43c 7.09c 2.22d 2.17d 1.04c 2.84c 0.94c
B5 0.28a 2.27a 0.77a 8.48a 2.89a 2.83a 2.40a 6.56a 2.17a
平均Average 0.18 1.45 0.49 6.99 2.43 2.38 1.35 3.69 1.22
丽人紫 Lirenzi B1 0.17b 1.34b 0.45b 7.71b 2.68b 2.62b 1.32b 3.59b 1.19b
B2 0.09d 0.59e 0.20d 5.99e 2.36e 2.31e 0.51e 1.40e 0.46e
B3 0.09d 0.65d 0.22d 6.34d 2.40d 2.35d 0.57d 1.55d 0.51d
B4 0.11c 0.91c 0.31c 7.48c 2.54c 2.48c 0.85c 2.31c 0.77c
B5 0.18a 1.38a 0.47a 8.92a 3.08a 3.01a 1.56a 4.26a 1.41a
平均Average 0.13 0.97 0.33 7.29 2.61 2.55 0.96 2.62 0.87
岩紫糯35 Yanzinuo35 B1 0.31b 1.91b 0.65b 7.24b 3.23b 3.16b 2.25b 6.15b 2.04b
B2 0.13e 0.87e 0.30d 6.71e 2.65e 2.59e 0.84e 2.30e 0.76d
B3 0.16d 0.93d 0.27e 7.03d 2.88d 2.82d 1.15d 2.68d 0.76d
B4 0.23c 1.69c 0.57c 7.92c 2.98c 2.92c 1.85c 5.05c 1.67c
B5 0.30a 2.14a 0.73a 8.88a 3.39a 3.32a 2.66a 7.26a 2.41a
平均Average 0.23 1.51 0.50 7.56 3.03 2.96 1.75 4.69 1.53

Table 5

Correlation and path analysis between characteristic parameters of anthocyanin accumulation and anthocyanin content in grain"

参数
Parameter
相关系数
Correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
→MRa →MeRa →TMRa →Da
MRa 0.97** -0.07 0.90 -0.04 0.18
MeRa 0.99** 0.91 -0.07 -0.04 0.18
TMRa 0.81** -0.05 -0.05 0.69 0.23
Da 0.85** 0.24 -0.05 0.71 -0.05

Fig. 4

Regression trend diagram between anthocyanin accumulation parameters of grain and sowing dates"

Table 6

Correlation between characteristic parameters of anthocyanin accumulation in grain and meteorological factors at filling stage"

相关系数
Correlation coefficient
Tamax Tamin Tavg F Uavg Savg Dheat Dcold
Tamin 0.81**
Tavg 0.97** 0.92**
F -0.14 0.40 0.08
Uavg 0.81** 0.65** 0.82** -0.07
Savg 0.76** 0.59** 0.72** -0.23 0.75**
Dheat 0.94** 0.62** 0.86** -0.33 0.85** 0.83**
Dcold -0.37 -0.45 -0.39 -0.14 -0.24 -0.19 -0.18
MRa -0.78** -0.71** -0.77** 0.03 -0.59** -0.63** -0.69** 0.31
MeRa -0.75** -0.70** -0.74** -0.54** -0.60** -0.64** 0.29
TMRa -0.86** -0.73** -0.85** 0.04 -0.73** -0.67** -0.78** 0.34
Da -0.82** -0.74** -0.81** -0.02 -0.63** -0.60** -0.71** 0.36
Wa -0.78** -0.75** -0.77** -0.02 -0.58** -0.61** -0.67** 0.35

Fig. 5

Regression trend diagram between anthocyanin accumulation parameters of grain and meteorological factors Wa: Anthocyanin content in grain; Da: Time of duration of grain anthocyanin accumulation; MeRa: The mean rate; Tamax: Averagemaximum temperature; Tamin: Averageminimum temperature; Tavg: Average temperature; Uavg: Average ultraviolet index; Savg: Average sunshine duration; Dheat: Number of heat damage days"

[1]
张启发. 保障粮食安全, 促进营养健康: 黑米主食化未来可期. 华中农业大学学报, 2021, 40(3): 1-2.
ZHANG Q F. Ensuring food security and promoting nutrition and health: Making black rice staple food for the future. Journal of Huazhong Agricultural University, 2021, 40(3): 1-2. (in Chinese)
[2]
JIANG X W, GUO H H, SHEN T R, TANG X L, YANG Y, LING W H. Cyanidin-3-O-β-glucoside purified from black rice protects mice against hepatic fibrosis induced by carbon tetrachloride via inhibiting hepatic stellate cell activation. Journal of Agricultural and Food Chemistry, 2015, 63(27): 6221-6230.

doi: 10.1021/acs.jafc.5b02181 pmid: 26073547
[3]
PEDRO A C, GRANATO D, ROSSO N D. Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability. Food Chemistry, 2016, 191: 12-20.
[4]
张名位, 郭宝江, 池建伟, 魏振承, 徐志宏, 张雁, 张瑞芬. 不同品种黑米的抗氧化作用及其与总黄酮和花色苷含量的关系. 中国农业科学, 2005, 38(7): 1324-1331.
ZHANG M W, GUO B J, CHI J W, WEI Z C, XU Z H, ZHANG Y, ZHANG R F. Antioxidations and their correlations with total flavonid and anthocyanin contents in different black rice varieties. Scientia Agricultura Sinica, 2005, 38(7): 1324-1331. (in Chinese)
[5]
王彩霞. 有色米的品质特性与种皮颜色性状的分子遗传学研究[D]. 杭州: 浙江大学, 2007.
WANG C X. Molecular genetic study on quality characteristics and seed coat color characteristics of colored rice[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
[6]
SANGHAMITRA P, SAH R P, BAGCHI T B, SHARMA S G, KUMAR A, MUNDA S, SAHU R K. Evaluation of variability and environmental stability of grain quality and agronomic parameters of pigmented rice (O. sativa L.). Journal of Food Science and Technology, 2018, 55(3): 879-890.
[7]
柳敏, 王忠, 顾蕴洁. 有色稻颖果的发育和色素沉积. 中国水稻科学, 2011, 25(4): 392-398.

doi: 10.3969/j.issn.1001-7216.2011.04.008
LIU M, WANG Z, GU Y J. Caryopsis development and anthocyanidin accumulation of colored rice. Chinese Journal of Rice Science, 2011, 25(4): 392-398. (in Chinese)

doi: 10.3969/j.issn.1001-7216.2011.04.008
[8]
贺浩华, 余秋英, 潘晓云, 贺晓鹏, 刘宜柏. 不同环境条件对特种稻产量性状和色素含量的影响. 耕作与栽培, 1997(S1): 57-60.
HE H H, YU Q Y, PAN X Y, HE X P, LIU Y B. Effects of different environmental conditions on yield traits and pigment content of special rice. Tillage and Cultivation, 1997(S1): 57-60. (in Chinese)
[9]
张名位, 周俊. 不同播期对黑稻品种产量性状和色素含量的影响. 湖北农业科学, 1994, 33(1): 1-4.
ZHANG M W, ZHOU J. Effects of different sowing dates on yield and pigment content of black rice. Hubei Agricultural Sciences, 1994, 33(1): 1-4. (in Chinese)
[10]
孙明茂, 韩龙植, 李圭星, 洪夏铁, 于元杰. 水稻花色苷含量的遗传研究进展. 植物遗传资源学报, 2006, 7(2): 239-245.
SUN M M, HAN L Z, LI G X, HONG X T, YU Y J. Advances in genetic research of grain anthocyanins content in rice. Journal of Plant Genetic Resources, 2006, 7(2): 239-245. (in Chinese)
[11]
LACK S, MARANI N M, MOMBENI M. The effects of planting date on grain yield and yield components of rice cultivars. Advances in Environmental Biology, 2012, 6(1): 406-413.
[12]
XU P B, ZAWORA C, LI Y, WU J, LIU L C, LIU Z C, CAI R, LIAN H L. Transcriptome sequencing reveals role of light in promoting anthocyanin accumulation of strawberry fruit. Plant Growth Regulation, 2018, 86(1): 121-132.
[13]
MACKON E, JEAZET DONGHO EPSE MACKON G C, MA Y F, HANEEF KASHIF M, ALI N, USMAN B, LIU P Q. Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis. Biomolecules, 2021, 11(3): 394.
[14]
师江, 李倩, 李维峰, 陈云兰, 黄艳丽, 刘兴勇. 不同产地紫米营养成分比较及其相关性分析. 热带作物学报, 2022, 43(11): 2324-2333.

doi: 10.3969/j.issn.1000-2561.2022.11.017
SHI J, LI Q, LI W F, CHEN Y L, HUANG Y L, LIU X Y. Comparison of nutritional components and correlation analysis in different purple rice varieties. Chinese Journal of Tropical Crops, 2022, 43(11): 2324-2333. (in Chinese)

doi: 10.3969/j.issn.1000-2561.2022.11.017
[15]
杨泽南, 张庆路, 李凯凯, 陈浩. 液质联用法测定不同地域种植的“华墨香5号”黑米中花青苷和酚酸类化合物含量. 华中农业大学学报, 2022, 41(5): 266-272.
YANG Z N, ZHANG Q L, LI K K, CHEN H. Determing contents of anthocyanin and phenolic acid compounds in black rice variety ‘Huamoxiang 5’ grown in different locations with HPLC-MS. Journal of Huazhong Agricultural University, 2022, 41(5): 266-272. (in Chinese)
[16]
王诗文. 稻米花色苷优异种质资源及其杂种优势的研究[D]. 福州: 福建农林大学, 2016.
WANG S W. Study on excellent germplasm resources of rice anthocyanins and their heterosis[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
[17]
蔡光泽. 环境因素对有色米糙米着色程度的影响. 中国农学通报, 2003, 19(4): 71-74.
CAI G Z. Influece of applying color the degree of the environment factor to the color rice brown rice. Chinese Agricultural Science Bulletin, 2003, 19(4): 71-74. (in Chinese)
[18]
孙建霞, 张燕, 胡小松, 吴继红, 廖小军. 花色苷的结构稳定性与降解机制研究进展. 中国农业科学, 2009, 42(3): 996-1008. doi: 10.3864/j.issn.0578-1752.2009.03.031.
SUN J X, ZHANG Y, HU X S, WU J H, LIAO X J. Structural stability and degradation mechanisms of anthocyanins. Scientia Agricultura Sinica, 2009, 42(3): 996-1008. doi: 10.3864/j.issn.0578-1752.2009.03.031. (in Chinese)
[19]
庄维兵, 刘天宇, 束晓春, 渠慎春, 翟恒华, 王涛, 张凤娇, 王忠. 植物体内花青素苷生物合成及呈色的分子调控机制. 植物生理学报, 2018, 54(11): 1630-1644.
ZHUANG W B, LIU T Y, SHU X C, QU S C, ZHAI H H, WANG T, ZHANG F J, WANG Z. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants. China Industrial Economics, 2018, 54(11): 1630-1644. (in Chinese)
[20]
蔡光泽. 不同温度处理对有色米糙米着色程度的影响. 四川农业大学学报, 2001, 19(4): 366-368.
CAI G Z. Effects of different temperature treatments on the coloring of unpolished colorific rice varieties. Journal of Sichuan Agricultural University, 2001, 19(4): 366-368. (in Chinese)
[21]
宋少坤. 不同生育阶段遮光和不同遮光强度对有色稻产量、花色苷含量及其抗氧化能力的影响[D]. 海口: 海南大学, 2023.
SONG S K. Effects of shading at different growth stages with various shading intensities on the grain yield, anthocyanin content andantioxidant capacity of colored rice (Oryza sativa L.)[D]. Haikou: Hainan University, 2023. (in Chinese)
[22]
赵霞, 刘然方. 黑米灌浆特性对花青素积累的影响. 西北农林科技大学学报(自然科学版), 2021, 49(8): 51-58, 69.
ZHAO X, LIU R F. Effect of grain filling characteristics on anthocyanin accumulation in black rice. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(8): 51-58, 69. (in Chinese)
[23]
孙影影. 施氮量对有色稻颖果色素积累及其叶片光合特性的影响[D]. 雅安: 四川农业大学, 2019.
SUN Y Y. Effects of nitrogen application on caryopsis pigment accumulation and photosynthetic characteristics in leaves of colored rice[D]. Ya'an: Sichuan Agricultural University, 2019. (in Chinese)
[24]
陈凌华, 程祖锌, 许明. 灌浆期黑米花色苷含量研究. 农业开发与装备, 2017(10): 83-84.
CHEN L H, CHENG Z X, XU M. Study on anthocyanin content of black rice at filling stage. Agricultural Development & Equipments, 2017(10): 83-84. (in Chinese)
[25]
韩磊, 吴先军, 张红宇, 姜华, 李云, 汪旭东. 黑米果皮花色素沉积过程的研究. 中国水稻科学, 2006, 20(4): 384-388.
HAN L, WU X J, ZHANG H Y, JIANG H, LI Y, WANG X D. Study on the pigmentation of anthocyanidin in pericarp of black rice. Chinese Journal of Rice Science, 2006, 20(4): 384-388. (in Chinese)
[26]
闫浩亮, 王松, 王雪艳, 党程成, 周梦, 郝蓉蓉, 田小海. 不同水稻品种在高温逼熟下的表现及其与气象因子的关系. 中国水稻科学, 2021, 35(6): 617-628.

doi: 10.16819/j.1001-7216.2021.210509
YAN H L, WANG S, WANG X Y, DANG C C, ZHOU M, HAO R R, TIAN X H. Performance of different rice varieties under high temperature and its relationship with field meteorological factors. Chinese Journal of Rice Science, 2021, 35(6): 617-628. (in Chinese)

doi: 10.16819/j.1001-7216.2021.210509
[27]
张恒栋, 黄敏, 邹应斌, 陈佳娜, 单双吕. 米粉稻籽粒直链淀粉积累特性. 中国农业科学, 2021, 54(7): 1354-1364. doi: 10.3864/j.issn.0578-1752.2021.07.004.
ZHANG H D, HUANG M, ZOU Y B, CHEN J N, SHAN S L. Amylose accumulation properties in the grains of noodle rice. Scientia Agricultura Sinica, 2021, 54(7): 1354-1364. doi: 10.3864/j.issn.0578-1752.2021.07.004. (in Chinese)
[28]
韦海龙, 程乙, 宋碧, 邹军, 左晋, 李蕾, 张军, 刘代铃, 曾涛, 付敬锋, 魏盛. 不同播期下鲜食糯玉米籽粒灌浆特性及其与气象因子的关系. 中国农业科技导报, 2023, 25(4): 45-55.

doi: 10.13304/j.nykjdb.2022.0735
WEI H L, CHENG Y, SONG B, ZOU J, ZUO J, LI L, ZHANG J, LIU D L, ZENG T, FU J F, WEI S. Grain filling characteristics of fresh waxy maize at different sowing dates and its relationship with meteorological factors. Journal of Agricultural Science and Technology, 2023, 25(4): 45-55. (in Chinese)

doi: 10.13304/j.nykjdb.2022.0735
[29]
杨沈斌, 江晓东, 王应平, 申双和, 石春林, 王萌萌, 陈斐. 基于Richards扩展方程提取水稻灌浆结实光温特性参数. 作物学报, 2014, 40(10): 1776-1786.

doi: 10.3724/SP.J.1006.2014.01776
YANG S B, JIANG X D, WANG Y P, SHEN S H, SHI C L, WANG M M, CHEN F. Charactering light and temperature effects on rice grain filling using extended richards' equation. Acta Agronomica Sinica, 2014, 40(10): 1776-1786. (in Chinese)
[30]
黄惠芳, 沈建勋, 赵捷, 苘娜娜, 褚思洁. 播期对籼粳杂交稻生育期、产量及其构成因子的影响. 上海农业学报, 2020, 36(1): 19-24.
HUANG H F, SHEN J X, ZHAO J, QING N N, CHU S J. Effects of seeding date on growth period, yield and its components of Indica/ Japonica hybrid rice. Acta Agriculturae Shanghai, 2020, 36(1): 19-24. (in Chinese)
[31]
张玮, 严玲玲, 傅志强, 徐莹, 郭慧娟, 周梦瑶, 龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响. 中国农业科学, 2023, 56(1): 31-45. doi: 10.3864/j.issn.0578-1752.2023.01.003.
ZHANG W, YAN L L, FU Z Q, XU Y, GUO H J, ZHOU M Y, LONG P. Effects of sowing date on yield of double cropping rice and utilization efficiency of light and heat energy in Hunan Province. Scientia Agricultura Sinica, 2023, 56(1): 31-45. doi: 10.3864/j.issn.0578-1752.2023.01.003. (in Chinese)
[32]
孙建军, 张洪程, 尹海庆, 陈波, 郭保卫, 魏海燕, 戴其根, 王生轩, 陈献功, 姜元华, 姜明波, 杜元中, 夏彦. 不同生态区播期对机插水稻产量、生育期及温光利用的影响. 农业工程学报, 2015, 31(6): 113-121.
SUN J J, ZHANG H C, YIN H Q, CHEN B, GUO B W, WEI H Y, DAI Q G, WANG S X, CHEN X G, JIANG Y H, JIANG M B, DU Y Z, XIA Y. Effects of seeding date on yield, growth period and utilization of temperature and sunshine of mechanical transplanting rice in different ecological regions. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 113-121. (in Chinese)
[33]
文浩. 播栽期与密度对紫米稻产量形成与米质的影响[D]. 长沙: 湖南农业大学, 2017.
WEN H. Effects of sowing date and density on yield formation and rice quality of purple rice[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[34]
SHAO Y F, XU F F, SUN X, BAO J S, BETA T. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chemistry, 2014, 143: 90-96.
[35]
胡可, 韩科厅, 戴思兰. 环境因子调控植物花青素苷合成及呈色的机理. 植物学报, 2010, 45(3): 307-317.
HU K, HAN K T, DAI S L. Regulation of plant anthocyanin synthesis and pigmentation by environmental factors. Chinese Bulletin of Botany, 2010, 45(3): 307-317. (in Chinese)
[1] ZHAO HuaRong, ZHOU GuangSheng, QI Yue, GENG JinJian, TIAN XiaoLi. Effects of Sowing Date Adjustment on Yield and Quality of Winter Wheat and Summer Maize in Northern Area of North China [J]. Scientia Agricultura Sinica, 2024, 57(15): 2964-2985.
[2] FENG XiangQian, YIN Min, WANG MengJia, MA HengYu, CHU Guang, LIU YuanHui, XU ChunMei, ZHANG XiuFu, ZHANG YunBo, WANG DanYing, CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[3] ZHANG Wei, YAN LingLing, FU ZhiQiang, XU Ying, GUO HuiJuan, ZHOU MengYao, LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] YU WeiBao, LI Nan, KOU YiHong, CAO XinYou, SI JiSheng, HAN ShouWei, LI HaoSheng, ZHANG Bin, WANG FaHong, ZHANG HaiLin, ZHAO Xin, LI HuaWei. Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(22): 4383-4397.
[5] LI HongYan,XUE Jun,WANG YongHong,WANG KeRu,ZHAO RuLang,MING Bo,ZHANG ZhenTao,ZHANG WenJie,LI ShaoKun. Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia [J]. Scientia Agricultura Sinica, 2022, 55(12): 2324-2337.
[6] LI Bo,YANG Fan,QIN Qin,ZHONG XiaoYuan,LI QiuPing,ZENG YuLing,LU Hui,CHEN Yong,WANG Li,TAO YouFeng,LI Juan,FENG BingLiang,REN WanJun,DENG Fei. Effects of Sowing Dates on Eating Quality of Different Indica Hybrid Rice in the Sub-Suitable Region of Ratoon Rice [J]. Scientia Agricultura Sinica, 2022, 55(1): 36-50.
[7] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[8] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
[9] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[10] CHEN Jing,REN BaiZhao,ZHAO Bin,LIU Peng,YANG JinSheng,ZHANG JiWang. Determination on Suitable Sowing Date of Summer Maize Hybrids Based on Effective Accumulated Temperature in Growth Period [J]. Scientia Agricultura Sinica, 2021, 54(17): 3632-3646.
[11] LUO Yan, QU Yang, YANG QingHua, ZHANG WeiLi, GONG XiangWei, LI Jing, GAO XiaoLi, GAO JinFeng, YANG Pu, WANG PengKe, FENG BaiLi. Effect of Sowing Date on Agronomic Traits and Starch Physicochemical Properties of Proso Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4154-4165.
[12] QU Yang,ZHANG Fei,WANG KeZhen,HAN Fang,LIU Yang,LUO Yan,GAO XiaoLi,LU Feng, . Response of Sorghum (Sorghum bicolor (L.) Moench) Yield and Quality to Climatic and Ecological Conditions on the West Yellow-Huaihe-Haihe Rivers Plain [J]. Scientia Agricultura Sinica, 2019, 52(18): 3242-3257.
[13] LongLong SUI,JingShan TIAN,HeSheng YAO,PengPeng ZHANG,FuBin LIANG,Jin WANG,WangFeng ZHANG. Effects of Different Sowing Dates on Emergence Rates and Seedling Growth of Cotton Under Mulched Drip Irrigation in Xinjiang [J]. Scientia Agricultura Sinica, 2018, 51(21): 4040-4051.
[14] ZHANG ZhenTao, YANG XiaoGuang, GAO JiQing, WANG XiaoYu, BAI Fan, SUN Shuang, LIU ZhiJuan, MING Bo, XIE RuiZhi, WANG KeRu, LI ShaoKun. Analysis of Suitable Sowing Date for Summer Maize in North China Plain Under Climate Change [J]. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274.
[15] LI GuoYu, CONG XinJun, QIN Ling, ZOU RenFeng, YANG YanBing, YAN LiMei, CHEN ErYing, LI Ni, GUAN YanAn. Effects of Sowing Dates on Panicle Differentiation and Leaf Number Index of Summer-Sowing Foxtail Millet [Setaria italica (L.) Beauv.] [J]. Scientia Agricultura Sinica, 2017, 50(4): 612-624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!