Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 820-830.doi: 10.3864/j.issn.0578-1752.2024.04.015

• RESEARCH NOTES • Previous Articles    

Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River

ZHU TianCi1(), MA TianFeng1, KE Jian1, ZHU TieZhong1, HE HaiBing1, YOU CuiCui1, WU ChenYang2, WANG GuanJun3(), WU LiQuan1()   

  1. 1 College of Agronomy, Anhui Agriculture University, Hefei 230036
    2 Lujiang County Agricultural Technology Extension Center, Lujiang 231500, Anhui
    3 Yingshang Agricultural Green Development Promotion Center, Fuyang 236200, Anhui
  • Received:2023-09-12 Accepted:2023-11-10 Online:2024-02-16 Published:2024-02-20
  • Contact: WANG GuanJun, WU LiQuan

Abstract:

【Objective】In order to explore the common agronomic and physiological characteristics of good taste and high yield type japonica rice in the lower reaches of the Yangtze River, the study could provide theoretical basis and technical support for realizing synergistic improvement of rice yield and quality in this region. 【Method】The cultivar screening tests were conducted in 2018 and 2022 using 14 and 13 conventional japonica rice cultivars, respectively, to systematically compare the yield and composition, taste quality and textural characteristics, as well as agronomic and physiological indicators such as biomass, stem non-structural carbohydrates (NSC), and leaf area duration (LAD) among the different cultivars.【Result】The taste value and yield varied across the different cultivars, so through clustering by taste value and yield, they can be further divided into three types: medium taste and low yield (ML), medium taste and high yield (MH), good taste and high yield (GH). The average taste value and yield of GH in two years were 68.5 and 10.2 t·hm-2, respectively, which were 6.8% higher in taste value and 14.6% higher in yield than MH and ML. In terms of performance for yield and quality traits, GH showed the highest grain filling percentage and taste scores compared to MH and ML. In terms of the dry matter accumulation, GH increased the proportion of dry matter accumulation at the early stage of grain filling stage, and showed the highest dry matter accumulation from heading stage to 15 days after heading stage. Further analysis of the causes of dry matter accumulation at this stage revealed that GH significantly increased the NSC remobilization rate while steadily increasing LAD. Correlation analyses showed highly significant positive correlations between grain filling percentage and taste, dry matter accumulation and LAD from heading stage to 15 days after heading stage, and NSC remobilization rate.【Conclusion】 While maintaining a high LAD from heading stage to 15 days after heading stage (100.4 m2·m-2·d), further increasing NSC remobilization rate during grain filling stage (79.9%) to promote the initiation of grain filling, increasing the dry matter accumulation from heading stage to 15 days after heading stage (3.6 t·hm-2), then improving the grain filling percentage (95.4%), and taste (9.6), which are the common characteristics of good taste and high yield type japonica rice in this region. In addition, the development of water and fertilizer management techniques targeting the enhancement of NSC remobilization at the grain filling stage and NSC accumulation at heading stage is expected to further exploit the yield and taste quality potential of the above good taste and high yield type japonica rice.

Key words: lower reaches of the Yangtze River, japonica rice, good taste and high yield, grain filling percentage, stem non-structural carbohydrates

Fig. 1

The meteorological data during the rice growing seasons in 2018 and 2022"

Table 1

Information of used rice in this study"

年份
Year
品种
Cultivar
播始历期
SS-HS (d)
生育天数
Growth duration (d)
年份
Year
品种
Cultivar
播始历期
SS-HS (d)
生育天数
Growth duration (d)
2018 苏香粳3号 SXJ3 87 147 2022 南粳3908 NJ3908 105 150
2018 南粳0212 NJ0212 86 149 2022 嘉119 J119 103 145
2018 武育粳3号 WYJ3 89 145 2022 鄂香2号 EX2 112 152
2018 南粳9108 NJ9108 85 149 2022 皖粳1608 WJ1608 117 164
2018 宁粳3号 NJ3 91 145 2022 德康粳1号 DKJ1 107 144
2018 武运粳31 WYJ31 91 146 2022 镇稻668 ZD668 106 144
2018 南粳52 NJ52 87 145 2022 镇稻28 ZD28 108 150
2018 宁粳8号 NJ8 89 151 2022 镇稻6080 ZD6080 109 149
2018 宁粳7号 NJ7 88 149 2022 泗稻301 SD301 103 140
2018 南粳5055 NJ5055 91 151 2022 镇稻18 ZD18 117 149
2018 武运粳23 WYJ23 91 149 2022 隆8351 L8351 105 152
2018 武粳14 WJ14 91 146 2022 镇稻9049 ZD9049 100 155
2018 宁粳1号 NJ1 91 145 2022 武育粳39 WYJ39 107 155
2018 淮稻5号 HD5 86 147

Table 2

Yield and taste value of different rice cultivars"

年份
Year
指标
Index
变幅大小
Variable amplitude
均值
Mean
标准差
Standard deviation
变异系数
CV (%)
2018 食味值 Taste value 62.8-68.9 65.5 2.1 3.2
产量 Yield (t·hm-2) 7.1-11.3 9.2 1.4 15.1
2022 食味值 Taste value 60.2-70.1 66.4 3.0 4.5
产量 Yield (t·hm-2) 7.3-11.4 9.8 1.4 14.4

Fig. 2

Clustering diagram of yield and taste value of different rice cultivars"

Fig. 3

Yield and taste value of different types of rice cultivars Different lowercase letters on the columns indicate significant differences at P<0.05 probability level in yield or taste value in the same year. ** means significant difference at P<0.01 level, * means significant difference at P<0.05 level, ns means no significant difference. The same as below"

Table 3

Yield components of different types of rice cultivars"

品种类型
Type
有效穗数
Panicles (m-2)
每穗粒数
Spikelets per panicle
总颖花量
Spikelets (×103·m-2)
结实率
Grain filling percentage (%)
千粒重
1000-grain weight (g)
味中低产 ML 364.0±15.1a 89.2±7.1b 32.4±1.6b 88.2±2.9c 26.5±2.1a
味中高产 MH 344.3±16.9a 119.2±0.5a 41.0±2.2a 91.8±0.6b 26.5±0.8a
味优高产 GH 365.9±14.2a 111.9±10.3a 41.0±4.3a 95.4±1.1a 27.1±1.3a

Table 4

Eating quality and texture characteristics of different types of rice cultivars"

品种类型
Type
食味品质Eating quality 质构特性Texture characteristics
外观 Appearance 口感 Taste 硬度 Hardness 黏度 Viscosity 平衡度 Balance degree 弹性 Springing
味中低产 ML 8.91±0.08b 8.78±0.13c 6.36±0.91a 0.51±0.11a 0.08±0.02a 0.76±0.01a
味中高产 MH 9.33±0.09a 9.22±0.16b 6.03±1.34a 0.56±0.03a 0.10±0.03a 0.78±0.01a
味优高产 GH 9.58±0.21a 9.60±0.22a 5.93±0.59a 0.58±0.01a 0.10±0.01a 0.78±0.01a

Fig. 4

The relationship between grain filling percentage and taste"

Table 5

Dry matter accumulation of different types of rice cultivars"

品种类型
Type
移栽-抽穗期
TP-HS (t·hm-2)
抽穗-抽穗后15 d
HS-15DAH (t·hm-2)
抽穗后15 d-成熟期
15DAH-MS (t·hm-2)
移栽-成熟期
TP-MS (t·hm-2)
味中低产 ML 10.0±0.2a 1.8±0.2b 2.8±0.6b 14.5±0.3b
味中高产 MH 9.0±0.3b 2.5±0.4b 4.6±0.3a 16.0±0.2a
味优高产 GH 8.7±0.3b 3.6±0.5a 3.1±0.6b 15.4±0.5a

Fig. 5

The relationship between grain filling percentage and dry matter accumulation from heading stage to 15 days after heading stage"

Fig. 6

The dry matter production characteristics from heading stage to 15 days after heading stage of different types of rice cultivars"

Fig. 7

Relationships between grain filling percentage and LAD, NSC remobilization rate from heading stage to 15 days after heading stage"

[1]
PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12(1): 3-8.

doi: 10.1626/pps.12.3
[2]
JIANG L L, WU L, WANG Y, XU Q, XU Z J, CHEN W F. Research progress on the divergence and genetic basis of agronomic traits in xian and geng rice. The Crop Journal, 2022, 10: 924-931.

doi: 10.1016/j.cj.2022.02.006
[3]
张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013, 46(4): 686-704. doi:10.3864/j.issn.0578-1752.2013.04.004.
ZHANG H C, ZHANG J, GONG J L, CHANG Y, LI M, GAO H, DAI Q G, HUO Z Y, XU K, WEI H Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”. Scientia Agricultura Sinica, 2013, 46(4): 686-704. doi:10.3864/j.issn.0578- 1752.2013.04.004. (in Chinese)
[4]
赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52(5): 909-920. doi: 10.3864/j.issn.0578-1752.2019.05.012.
ZHAO C F, YUE H L, HUANG S J, ZHOU L H, ZHAO L, ZHANG Y D, CHEN T, ZHU Z, ZHAO Q Y, YAO S, LIANG W H, LU K, WANG C L. Eating quality and physicochemical properties in Nanjing rice varieties. Scientia Agricultura Sinica, 2019, 52(5): 909-920. doi: 10.3864/j.issn.0578-1752.2019.05.012. (in Chinese)
[5]
ZHU Y, XU D, CHEN X Y, MA Z T, MA H Z, ZHANG M Y, LIU G D, WEI H Y, ZHANG H C. Quality characteristics of semi-glutinous japonica rice cultivated in the middle and lower reaches of the Yangtze River in China. Journal of the Science of Food and Agriculture, 2022, 102(9): 3712-3723.

doi: 10.1002/jsfa.v102.9
[6]
WEI H H, MENG T Y, LI C, XU K, HUO Z Y, WEI H Y, GUO B W, ZHANG H C, DAI Q G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Research, 2017, 204: 101-109.

doi: 10.1016/j.fcr.2017.01.001
[7]
徐正进, 韩勇, 邵国军, 张学军, 全成哲, 潘国君, 闫平, 陈温福. 东北三省水稻品质性状比较研究. 中国水稻科学, 2010, 24(5): 531-534.

doi: 10.3969/j.issn.1001-7216.2010.05.015
XU Z J, HAN Y, SHAO G J, ZHANG X J, QUAN C Z, PAN G J, YAN P, CHEN W F. Comparison of rice quality characters in northeast region of China. Chinese Journal of Rice Science, 2010, 24(5): 531-534. (in Chinese)
[8]
陈培峰, 董明辉, 谢裕林, 朱勇良, 黄萌, 乔中英. 氮肥运筹对机插优质食味粳稻苏香粳100产量和品质的影响. 安徽农业科学, 2018, 46(35): 131-134, 179.
CHEN P F, DONG M H, XIE Y L, ZHU Y L, HUANG M, QIAO Z Y. Effects of nitrogen management on yield and quality of high quality japonica rice Suxiangjing 100. Journal of Anhui Agricultural Sciences, 2018, 46(35): 131-134, 179. (in Chinese)
[9]
张卫星, 马晨怡, 袁玉伟, 张伟贵, 胡贤巧, 陈铭学, 朱智伟. 我国水稻三大优势产区稻米品质现状及区域差异. 中国稻米, 2021, 27(5): 12-18.

doi: 10.3969/j.issn.1006-8082.2021.05.003
ZHANG W X, MA C Y, YUAN Y W, ZHANG W G, HU X Q, CHEN M X, ZHU Z W. Current situation and regional difference of rice grain quality in three rice-production superiority areas of China. China Rice, 2021, 27(5): 12-18. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2021.05.003
[10]
张庆, 胡雅杰, 郭保卫, 张洪程, 徐玉峰, 徐晓杰, 朱邦辉, 徐洁芬, 钮中一, 凃荣文. 氮素穗肥施用时期对软米粳稻产量和品质的影响. 扬州大学学报(农业与生命科学版), 2021, 42(5): 72-77.
ZHANG Q, HU Y J, GUO B W, ZHANG H C, XU Y F, XU X J, ZHU B H, XU J F, NIU Z Y, TU R W. Effect of ear nitrogen fertilizer application periods on yield and quality of soft japonica rice. Journal of Yangzhou University (Agricultural and Life Science Edition), 2021, 42(5): 72-77. (in Chinese)
[11]
朱大伟, 王力, 郭保卫, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 氮肥运筹对钵苗机插水稻干物质积累和产量及各器官氮素积累的影响. 江苏农业科学, 2015, 43(3): 46-49.
ZHU D W, WANG L, GUO B W, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y. Effects of nitrogen application on dry matter accumulation, yield and nitrogen accumulation in various organs of rice transplanted by pot seedling machine. Jiangsu Agricultural Sciences, 2015, 43(3): 46-49. (in Chinese)
[12]
马会珍, 陈心怡, 王志杰, 朱盈, 蒋伟勤, 任高磊, 马中涛, 魏海燕, 张洪程, 刘国栋. 中国部分优质粳稻外观及蒸煮食味品质特征比较. 中国农业科学, 2021, 54(7): 1338-1353. doi: 10.3864/j.issn. 0578-1752.2021.07.003.
MA H Z, CHEN X Y, WANG Z J, ZHU Y, JIANG W Q, REN G L, MA Z T, WEI H Y, ZHANG H C, LIU G D. Analysis on appearance and cooking taste quality characteristics of some high quality japonica rice in China. Scientia Agricultura Sinica, 2021, 54(7): 1338-1353. doi: 10.3864/j.issn.0578-1752.2021.07.003. (in Chinese)
[13]
CHEN H, CHEN D, HE L H, WANG T, LU H, YANG F, DENG F, CHEN Y, TAO Y F, LI M, LI G Y, REN W J.Correlation of taste values with chemical compositions and Rapid Visco Analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chemistry, 2021, 349: 129176.
[14]
朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征. 中国农业科学, 2022, 55(7): 1271-1283. doi: 10.3864/j.issn.0578-1752.2022.07.002.
ZHU D W, ZHANG L P, CHEN M X, FANG C Y, YU Y H, ZHENG X L, SHAO Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. doi: 10.3864/j.issn.0578-1752.2022.07.002. (in Chinese)
[15]
朱盈, 徐栋, 胡蕾, 花辰, 陈志峰, 张振振, 周年兵, 刘国栋, 张洪程, 魏海燕. 江淮优良食味高产中熟常规粳稻品种的特征. 作物学报, 2019, 45(4): 578-588.

doi: 10.3724/SP.J.1006.2019.82040
ZHU Y, XU D, HU L, HUA C, CHEN Z F, ZHANG Z Z, ZHOU N B, LIU G D, ZHANG H C, WEI H Y. Characteristics of medium- maturity conventional japonica rice with good taste and high yield in Jianghuai area. Acta Agronomica Sinica, 2019, 45(4): 578-588. (in Chinese)

doi: 10.3724/SP.J.1006.2019.82040
[16]
JIANG Q, DU Y L, TIAN X Y, WANG Q S, XIONG R H, XU G C, YAN C A, DING Y F. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. European Journal of Agronomy, 2016, 74: 185-192.

doi: 10.1016/j.eja.2015.11.006
[17]
YOSHIDA S, FORNO D, COCK J. Laboratory Manual for Physiological Studies of Rice. Manila Philippines: The International Rice Research Institute, 1976.
[18]
YANG S, ZHU Y, ZHANG R, LIU G D, WEI H Y, ZHANG H C, ZHANG H P. Mid-stage nitrogen application timing regulates yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis of fragrant rice. Field Crops Research, 2022, 287: 108667.

doi: 10.1016/j.fcr.2022.108667
[19]
SHI S J, WANG E T, LI C X, CAI M L, CHENG B, CAO C G, JIANG Y. Use of protein content, amylose content, and RVA parameters to evaluate the taste quality of rice. Frontiers in Nutrition, 2022, 8: 758547.

doi: 10.3389/fnut.2021.758547
[20]
卫平洋, 裘实, 唐健, 肖丹丹, 朱盈, 刘国栋, 邢志鹏, 胡雅杰, 郭保卫, 高尚勤, 魏海燕, 张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性. 作物学报, 2020, 46(4): 571-585.

doi: 10.3724/SP.J.1006.2020.92044
WEI P Y, QIU S, TANG J, XIAO D D, ZHU Y, LIU G D, XING Z P, HU Y J, GUO B W, GAO S Q, WEI H Y, ZHANG H C. Screening and characterization of high-quality and high-yield japonica rice varieties in Yanhuai region of Anhui Province. Acta Agronomica Sinica, 2020, 46(4): 571-585. (in Chinese)

doi: 10.3724/SP.J.1006.2020.92044
[21]
GE J L, CHEN X, ZHANG X B, DAI Q G, WEI H H. Comparisons of rice taste and starch physicochemical properties in superior and inferior grains of rice with different taste value. Food Research International, 2023, 169: 112886.

doi: 10.1016/j.foodres.2023.112886
[22]
唐益平, 李向峰, 王辉, 胡王琴, 任楚婷, 黄亚茹, 徐鹏, 尤翠翠, 柯健, 何海兵, 武立权. 茎鞘非结构性碳水化合物对大穗型粳稻强、弱势粒灌浆与品质的影响. 华北农学报, 2021, 36(5): 107-117.

doi: 10.7668/hbnxb.20192227
TANG Y P, LI X F, WANG H, HU W Q, REN C T, HUANG Y R, XU P, YOU C C, KE J, HE H B, WU L Q. Effect of non-structural carbohydrate in stem and sheath on grain filling and quality of superior and inferior spikelets in large-panicle japonica rice. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 107-117. (in Chinese)
[23]
蒋晶晶, 周天阳, 韦陈华, 邬佳宁, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响. 中国农业科学, 2022, 55(5): 874-889. doi: 10.3864/j.issn.0578-1752.2022.05. 004.
JIANG J J, ZHOU T Y, WEI C H, WU J N, ZHANG H, LIU L J, WANG Z Q, GU J F, YANG J C. Effects of crop management practices on grain quality of superior and inferior spikelets of super rice. Scientia Agricultura Sinica, 2022, 55(5): 874-889. doi:10. 3864/j.issn.0578-1752.2022.05.004. (in Chinese)
[24]
DONG M H, SANG D Z, WANG P, WANG X M, YANG J C. Changes in cooking and nutrition qualities of grains at different positions in a rice panicle under different nitrogen levels. Rice Science, 2007, 14(2): 141-148.

doi: 10.1016/S1672-6308(07)60020-1
[25]
HU Y X, LIN Y, XIA Y Q, XU X M, WANG Z T, CUI X R, HAN L, LI J Y, ZHANG R T, DING Y F, CHEN L. Overexpression of OsSnRK1a through a green tissue-specific promoter improves rice yield by accelerating sheath-to-panicle transport of nonstructural carbohydrates and increasing leaf photosynthesis. Plant Physiology and Biochemistry, 2023, 203: 108048.

doi: 10.1016/j.plaphy.2023.108048
[26]
谢光辉, 杨建昌, 王志琴, 朱庆森. 水稻籽粒灌浆特性及其与籽粒生理活性的关系. 作物学报, 2001, 27(5): 557-565.
XIE G H, YANG J C, WANG Z Q, ZHU Q S. Grain filling characteristics of rice and their relationships to physiological activities of grains. Acta Agronomica Sinica, 2001, 27(5): 557-565. (in Chinese)
[27]
杨建昌. 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010, 36(12): 2011-2019.

doi: 10.3724/SP.J.1006.2010.02011
YANG J C. Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agronomica Sinica, 2010, 36(12): 2011-2019. (in Chinese)
[28]
YOU C C, CHEN L, HE H B, WU L Q, WANG S H, DING Y F, MA C X. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice. BMC Plant Biology, 2017, 17(1): 100.

doi: 10.1186/s12870-017-1050-2
[29]
DENG F, WANG L, MEI X F, LI S X, PU S L, REN W J. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice. Crop Science, 2016, 56(6): 3272-3285.

doi: 10.2135/cropsci2016.02.0130
[30]
张国, 崔克辉. 水稻茎鞘非结构性碳水化合物积累与转运研究进展. 植物生理学报, 2020, 56(6): 1127-1136.
ZHANG G, CUI K H. Research advances on accumulation and translocation of stem non-structural carbohydrates in rice. Plant Physiology Journal, 2020, 56(6): 1127-1136. (in Chinese)
[31]
JIANG Z R, CHEN Q L, CHEN L, LIU D, YANG H Y, XU C S, HONG J Z, LI J Q, DING Y F, SAKR S, LIU Z H, JIANG Y, LI G H. Sink strength promoting remobilization of non-structural carbohydrates by activating sugar signaling in rice stem during grain filling. International Journal of Molecular Sciences, 2022, 23(9): 4864.

doi: 10.3390/ijms23094864
[32]
YOSHINAGA S, TAKAI T, ARAI-SANOH Y, ISHIMARU T, KONDO M. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crops Research, 2013, 150: 74-82.

doi: 10.1016/j.fcr.2013.06.004
[33]
PAN J F, CUI K H, WEI D, HUANG J L, XIANG J, NIE L X. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiologia Plantarum, 2011, 141(4): 321-331.

doi: 10.1111/ppl.2011.141.issue-4
[34]
ZHENG Y M, DING Y F, LIU Z H, WANG S H. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in indica rice. Agricultural Sciences in China, 2010, 9(11): 1630-1640.

doi: 10.1016/S1671-2927(09)60260-1
[35]
CHU G A, CHEN S, XU C M, WANG D Y, ZHANG X F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Research, 2019, 243: 107625.

doi: 10.1016/j.fcr.2019.107625
[36]
ZHANG H, LI H W, YUAN L M, WANG Z Q, YANG J C, ZHANG J H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012, 63(1): 215-227.

doi: 10.1093/jxb/err263 pmid: 21926094
[37]
XU H F, WANG Z X, XIAO F, YANG L, LI G H, DING Y F, PAUL M J, LI W W, LIU Z H. Dynamics of dry matter accumulation in internodes indicates source and sink relations during grain-filling stage of japonica rice. Field Crops Research, 2021, 263: 108009.

doi: 10.1016/j.fcr.2020.108009
[38]
FU J, HUANG Z H, WANG Z Q, YANG J C, ZHANG J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Research, 2011, 123(2): 170-182.

doi: 10.1016/j.fcr.2011.05.015
[39]
LI G H, HU Q Q, SHI Y G, CUI K H, NIE L X, HUANG J L, PENG S B. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non- structural carbohydrates in rice stems. Frontiers in Plant Science, 2018, 9: 1128.

doi: 10.3389/fpls.2018.01128
[1] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[2] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[3] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[4] TaoTao YANG,JiaXin XIE,Shan HUANG,XueMing TAN,XiaoHua PAN,YongJun ZENG,QingHua SHI,Jun ZHANG,YanHua ZENG. The Impacts of Post-Anthesis Warming on Grain Yield and Quality of Late Japonica Rice in a Double Rice Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347.
[5] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[6] JIANG QianHong,LU ZhiFeng,ZHAO HaiYan,GUO JunJie,LIU WenBo,LING Ning,GUO ShiWei. Potential Analysis of Reducing Chemical Nitrogen Inputs While Increasing Efficiency by Organic-Inorganic Fertilization in Winter Rapeseed Producing Areas of the Middle and Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2020, 53(14): 2907-2918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!