Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 907-917.doi: 10.3864/j.issn.0578-1752.2025.05.007

• PLANT PROTECTION • Previous Articles     Next Articles

PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps

XU YuanYuan(), JIA DongSheng, BIN Yu, WEI TaiYun()   

  1. College of Plant Protection/Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University/Fujian Province Key Laboratory of Plant Virology, Fuzhou 350002
  • Received:2024-10-29 Accepted:2024-12-05 Online:2025-03-07 Published:2025-03-07
  • Contact: WEI TaiYun

Abstract:

【Objective】Rice dwarf virus (RDV) causes rice dwarf disease, which is a significant threat to rice production in southern China. This study builds on prior research and employs molecular biology techniques to investigate the role of PGRP6 in regulating the vertical transmission of RDV from symbiotic bacteria within the vector insect Nephotettix cincticeps, thereby establishing a foundation for biological control strategies against rice viral diseases.【Method】Yeast two-hybrid technology was used to screen peptidoglycan recognition proteins (PGRPs) that interact with three proteins (prp, Nasuia porin, and P8) related to transovarial transmission, and the interaction was further confirmed by GST pull-down assay. Real-time fluorescence quantitative PCR technology was employed to assess the differential expression of related genes in nonviruliferous and viruliferous insects, as well as the changes in transcription levels of symbiotic bacteria following interference with PGRP6 and prp. Western blot experiments further confirmed the impact of RNAi treatment on symbiotic bacterial membrane proteins in insects. Following the reduction of PGRP6 expression by RNAi, variations were observed in the survival rate of N. cincticeps, the virus infection rate of the offspring, and the viral nucleic acid level of the infected offspring. Fluorescence in situ hybridization (FISH) and fluorescent immunolabeling techniques were employed to visualize the distribution of prp, PGRP6, Nasuia, and RDV. The functionality of the PGRP6 protein was assessed through inhibition zone assays and experiments on peptidoglycan degradation.【Result】PGRP6 interacted with prp, Nasuia porin, and P8. The expression levels of PGRP6 and prp were significantly elevated in RDV-infected N. cincticeps. Suppression of PGRP6 expression could facilitate the proliferation of symbiotic bacteria Nasuia and Sulcia, while inhibition of prp reduced the proliferation of symbiotic bacteria, acting oppositely to PGRP6. When both were interfered simultaneously, there was no significant effect on the proliferation of symbiotic bacteria. Treatment with dsPGRP6 significantly decreased the survival rate of N. cincticeps and enhanced the transmission of RDV to their offspring, resulting in a substantially higher viral load in the progeny compared to the control group. Immunofluorescence analysis revealed that PGRP6 co-localized with prp, Nasuia, and RDV within ovarian tissue, where prp and Nasuia exhibited a wrapping relationship. Ultimately, PGPR6 was identified as possessing antibacterial properties that inhibited the proliferation of symbiotic bacteria.【Conclusion】PGRP6 maintains the homeostasis of ovarian tissue in N. cincticeps by inhibiting the proliferation of symbiotic bacteria, which functionally antagonizes prp. This mechanism not only ensures the vitality of N. cincticeps but also regulates the transovarial transmission of RDV associated with bacterial symbionts.

Key words: rice dwarf virus (RDV), Nephotettix cincticeps, peptidoglycan recognition protein (PGRP), proline-rich protein (prp), symbiotic bacterium, ovary, transovarial transmission, antibacterial

Table 1

Primer sequences used in this study"

引物名称Primer name 序列Sequence (5′-3′)
AD-PGRP3 F ccagattacgctcatATGGGTTTAGGTATTGATGAAAATATAAATACCTATTACAAAGT
AD-PGRP3 R agctcgagctcgatgTTACGCAGCTTGTCTAAGATTCGGGT
AD-PGRP4 F ccagattacgctcatATGGGGTTGATGGATAAACCACC
AD-PGRP4 R agctcgagctcgatgCTAGTAATCACCATATTTCCTTCGGTATTCTTCT
AD-PGRP6 F ccagattacgctcatATGGGATTGTGGTCTTCAAAAGAGG
AD-PGRP6 R agctcgagctcgatgCTACTCATGCCCTAGAATGTCGC
AD-PGRP7 F ccagattacgctcatATGTCCGCACCAGAACCAG
AD-PGRP7 R agctcgagctcgatgTTAAAATAATTTTGTCTCCCCACGGAAAGACTTAACTG
AD-PGRP11 F ccagattacgctcatATGGCAAGCCCCGTAGTG
AD-PGRP11 R agctcgagctcgatgTTAAAACAAGTCGACTCTTTCAAAGTTCTGT
AD-PGRP-12 F ccagattacgctcatATGGGGGACATACCAGATGCT
AD-PGRP-12 R agctcgagctcgatgTTATTGTTTAGGCGTGATCTGTTGATTTGTTCG
AD-PGRP14 F ccagattacgctcatATGGGGAAAGATAAGTACAACCCATTTAGG
AD-PGRP14 R agctcgagctcgatgTTATGAATAGTAAGGGTGGCGAGTGG
AD-PGRP18 F ccagattacgctcatATGAAACCTATGCATAAACCAATACAAATAGCAATGTTTCT
AD-PGRP18 R agctcgagctcgatgTCAGTCCCACGGAGGCTCGG
BD-prp F agaggaggacctgcatatggATGCGTTATCATAAGGACTT
BD-prp R ttatgcggccgctgcTAGTTATGCGGCCGCTGCTTAAAAGTCTTCAAGCATTG
BD-Nasuia_porin F gaggacctgcatatgATGTCAAATTCAATTTATTTTTTTTTTATAG
BD-Nasuia_porin R ttatgcggccgctgcTTAATCTAATAATTTTAAAAATTTTTTATAATAAG
BD-RDV P8 F gaggacctgcatatgATGTCACGCCAGATGTGGT
BD-RDV P8 R ttatgcggccgctgcCTAATTTGGTCTATAGTATCTTCCAAATACGGCG
Q-EF1 F CAGTGAGAGCCGTTTTGAG
Q-EF1 R AGGGCATCTTGTCAGAGGGC
Q-prp F ATGTAACCACTCGTGCACCC
Q-prp R CAACATTTCCGTGTCGCACT
Q-PGRP6 F AGCGACATTCTAGGGCATGA
Q-PGRP6 R ACAGCAGTCAACGTAAAGGC
Q-Nasuia 16S F GGGGAAAACCTCGCGTTATA
Q-Nasuia 16S R CCACTGCTGCCTCTCGTAAG
Q-Sulcia 16S F GGGGACTCTAATAAGACTGC
Q-Sulcia 16S R CTGAGATCGGCTTTCTGGAT
PGEX-RDV-P8 F aaatcggatctggttATGTCACGCCAGATGTGGTTAG
PGEX-RDV-P8 R gtcagtcacgatgcgCTAATTTGGTCTATAGTATCTTCCA
PGEX-Nasuia_porin F aaatcggatctggCGTGGATCCCCGATGTCAAATTCAATTTATTT TTTTTTTATAG
PGEX-Nasuia_porin R gtcagtcacgatgcgGATGAATTCCGGTTAATCTAATAATTTTAAAAATTT TTTATAATAAG
PGEX-PGRP6 F aaatcggatctggttATGGGATTGTGGTCTTCAAAAGAGG
PGEX-PGRP6 R gtcagtcacgatgcgCTCATGCCCTAGAATGTCGC
PET-prp F gatataccatgggcgATGGTGAAAGTTGGAACCTCTTACG
PET-prp R gagcggccgcaagctGAAAAGCTTTGGTTTGGGAGCG
PET-PGRP6 F ggtggacagcaaatgATGGGATTGTGGTCTTCAAAAGAGG
PET-PGRP6 R gtgctcgagtgcggcCTACTCATGCCCTAGAATGTCGCT
T7-GFP-F attctctagaagcttaatacgactcactatagggATGAGTAAAGGAGAAGAACTT
T7-GFP-R attctctagaagcttaatacgactcactatagggTTATTTGTATAGTTCATCCATG
T7-PGRP6 F attctctagaagcttaatacgactcactatagggTCTTTTCTGAGCGACGGTGT
T7-PGRP6 R attctctagaagcttaatacgactcactatagggACTGTTCCTGGCTGTATTGC
T7-prp F attctctagaagcttaatacgactcactatagggACCTCTTACGTGCCGATCAA
T7-prp R attctctagaagcttaatacgactcactatagggTTTGGTTTGGGAGCGCTTTT

Fig. 1

The interaction between PGRP6 and prp, Nasuia porin, RDV P8"

Fig. 2

The impact of RNAi-induced downregulation of PGRP6 on the proliferation of symbiotic bacteria and transovarial transmission of RDV"

Fig. 3

Location of PGRP6, Nasuia, RDV, and prp in the ovaries of N. cincticeps"

Fig. 4

The bacteriostatic effect of PGRP6 protein"

[1]
LIAO Z, MAO Q, LI J, LU C, WU W, CHEN H, CHEN Q, JIA D, WEI T. Virus-induced tubules: A vehicle for spread of virions into ovary oocyte cells of an insect vector. Frontiers in Microbiology, 2017, 8: 475.

doi: 10.3389/fmicb.2017.00475 pmid: 28382031
[2]
JIA D S, MAO Q Z, CHEN Y, LIU Y Y, CHEN Q, WU W, ZHANG X F, CHEN H Y, LI Y, WEI T Y. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission. Nature Microbiology, 2017, 2: 17025.

doi: 10.1038/nmicrobiol.2017.25 pmid: 28263320
[3]
WAN J, LIANG Q, ZHANG R, CHENG Y, WANG X, WANG H, ZHANG J, JIA D, DU Y, ZHENG W, et al. Arboviruses and symbiotic viruses cooperatively hijack insect sperm-specific proteins for paternal transmission. Nature Communications, 2023, 14(1): 1289.

doi: 10.1038/s41467-023-36993-0 pmid: 36894574
[4]
SUN X, DU Y, CHENG Y, GUAN W, LI Y, CHEN H, JIA D, WEI T. Insect ribosome-rescuer Pelo-Hbs1 complex on sperm surface mediates paternal arbovirus transmission. Nature Communications, 2024, 15(1): 6817.

doi: 10.1038/s41467-024-51020-6 pmid: 39122673
[5]
WU W, HUANG L, MAO Q, WEI J, LI J, ZHAO Y, ZHANG Q, JIA D, WEI T. Interaction of viral pathogen with porin channels on the outer membrane of insect bacterial symbionts mediates their joint transovarial transmission. Philosophical Transactions of the Royal Society B, Biological Sciences, 2019, 374(1767): 20180320.
[6]
MAO Q Z, WU W, HUANG L Z, YI G, JIA D S, CHEN Q, CHEN H Y, WEI T Y. Insect bacterial symbiont-mediated vitellogenin uptake into oocytes to support egg development. mBio, 2020, 11(6): e01142-20.
[7]
HUO Y, LIU W, ZHANG F, CHEN X, LI L, LIU Q, ZHOU Y, WEI T, FANG R, WANG X. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathogens, 2014, 10(3): e1003949.
[8]
HUO Y, YU Y L, CHEN L Y, LI Q, ZHANG M T, SONG Z Y, CHEN X Y, FANG R X, ZHANG L L. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLoS Pathogens, 2018, 14(2): e1006909.
[9]
TOMIZAWA M, NAKAMURA Y, SUETSUGU Y, NODA H. Numerous peptidoglycan recognition protein genes expressed in the bacteriome of the green rice leafhopper Nephotettix cincticeps (Hemiptera, Cicadellidae). Applied Entomology and Zoology, 2020, 55(2): 259-269.
[10]
任菲菲, 曹方, 杨婉莹. 昆虫先天免疫中的肽聚糖识别蛋白(PGRP). 广东蚕业, 2014, 48(2): 34-38.
REN F F, CAO F, YANG W Y. Peptidoglycan recognition proteins (PGRP) in innate immunity of insects. Guangdong Sericulture, 2014, 48(2): 34-38. (in Chinese)
[11]
单安山, 马得莹, 冯兴军, 马清泉, 董娜, 王良, 吕银凤, 朱鑫. 抗菌肽的功能、研发与应用. 中国农业科学, 2012, 45(11): 2249-2259. doi: 10.3864/j.issn.0578-1752.2012.11.014.
SHAN A S, MA D Y, FENG X J, MA Q Q, DONG N, WANG L, Y F, ZHU X. Function, research, and application of antimicrobial peptides. Scientia Agricultura Sinica, 2012, 45(11): 2249-2259. doi: 10.3864/j.issn.0578-1752.2012.11.014. (in Chinese)
[12]
MAILLET F, BISCHOFF V, VIGNAL C, HOFFMANN J, ROYET J. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host and Microbe, 2008, 3(5): 293-303.
[13]
IATSENKO I, KONDO S, MENGIN-LECREULX D, LEMAITRE B. PGRP-SD, an extracellular pattern-recognition receptor, enhances peptidoglycan-mediated activation of the Drosophila Imd pathway. Immunity, 2016, 45(5): 1013-1023.
[14]
CHEN K, LIU C, HE Y, JIANG H, LU Z. A short-type peptidoglycan recognition protein from the silkworm: Expression, characterization and involvement in the prophenoloxidase activation pathway. Developmental & Comparative Immunology, 2014, 45(1): 1-9.
[15]
王涛, 陈奕君, 史楚, 刘吉升. 家蚕肽聚糖识别蛋白的研究进展. 广东蚕业, 2019, 53(11): 16-18.
WANG T, CHEN Y J, SHI C, LIU J S. Research progress on peptidoglycan recognition proteins of Bombyx mori. Guangdong Sericulture, 2019, 53(11): 16-18. (in Chinese)
[16]
ZAIDMAN-REMY A, HERVE M, POIDEVIN M, PILI-FLOURY S, KIM M S, BLANOT D, OH B H, UEDA R, MENGIN-LECREULX D, LEMAITRE B. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity, 2006, 24(4): 463-473.
[17]
BING X, ATTARDO G M, VIGNERON A, AKSOY E, SCOLARI F, MALACRIDA A, WEISS B L, AKSOY S. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: Transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings B, Biological Sciences, 2017, 284(1857): 20170360.
[18]
WANG J W, AKSOY S. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse’s offspring. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10552-10557.
[19]
WANG J W, WU Y N, YANG G X, AKSOY S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(29): 12133-12138.
[20]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408.
[21]
MAO Q, WU W, LIAO Z, LI J, JIA D, ZHANG X, CHEN Q, CHEN H, WEI J, WEI T. Viral pathogens hitchhike with insect sperm for paternal transmission. Nature Communications, 2019, 10(1): 955.

doi: 10.1038/s41467-019-08860-4 pmid: 30814506
[22]
WU W, SHAN H W, LI J M, ZHANG C X, CHEN J P, MAO Q. Roles of bacterial symbionts in transmission of plant virus by Hemipteran vectors. Frontiers in Microbiology, 2022, 13: 805352.
[23]
SHEEHAN G, GARVEY A, CROKE M, KAVANAGH K. Innate humoral immune defences in mammals and insects: The same, with differences? Virulence, 2018, 9(1): 1625-1639.
[24]
曹川, 王之莹, 石旺鹏. 昆虫与弹状病毒互作的研究进展. 植物保护学报, 2020, 47(1): 1-10.
CAO C, WANG Z Y, SHI W P. Research advances in the interactions between insect hosts and rhabdoviruses. Journal of Plant Protection, 2020, 47(1): 1-10. (in Chinese)
[25]
黄天宇, 方琦, 王桂荣, 林克剑, 叶恭银. 黑尾叶蝉NcPGRP基因克隆及表达模式分析. 中国生物防治学报, 2017, 33(3): 304-312.
HUANG T Y, FANG Q, WANG G R, LIN K J, YE G Y. Molecular cloning and expression pattern analysis of peptidoglycan recognition protein gene in the green leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). Chinese Journal of Biological Control, 2017, 33(3): 304-312. (in Chinese)
[26]
ZHANG R N, LI C T, REN F F, YE M Q, DENG X J, YI H Y, CAO Y, YANG W Y. Functional characterization of short-type peptidoglycan recognition proteins (PGRPs) from silkworm Bombyx mori in innate immunity. Developmental and Comparative Immunology, 2019, 95: 59-67.
[27]
TOMIZAWA M. Genes specifically expressed in the bacteriome of Nephotettix cincticeps[D]. Tokyo: University of Tokyo, 2014.
[28]
SZKLARZEWICZ T, GRZYWACZ B, SZWEDO J, MICHALIK A. Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae). Protoplasma, 2016, 253: 379-391.
[29]
NODA H, WATANABE K, KAWAI S, YUKUHIRO F, MIYOSHI T, TOMIZAWA M, KOIZUMI Y, NIKOH N, FUKATSU T. Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Applied Entomology and Zoology, 2012, 47(3): 217-225.
[1] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[2] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[3] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[4] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[5] LI WenYang,LIU Yuan,WU XianFeng,GAO ChengFang,HUANG QinLou. Transcriptome Analysis of Differentially Gene Expression Associated with Ovary Tissue During the Follicular Stage in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(12): 2171-2182.
[6] ZHAO Jing, TAO Rong, HAO DeJun, XIAO LiuBin, TAN YongAn. RNA Interference of Vitellogenin Receptor Gene in Beet Armyworm (Spodoptera exigua) [J]. Scientia Agricultura Sinica, 2019, 52(1): 56-64.
[7] SHI Xian, XIONG XianRong, LAN DaoLiang, CHEN WeiMing, HU JiaJia, CAI WenYi, LI Jian. Cloning and Expression Analysis of CCND2 Gene in Yak Ovaries During Different Periods of Estrus [J]. Scientia Agricultura Sinica, 2017, 50(13): 2604-2613.
[8] ZHU Zhi-ming, CHEN Hong-ping, LIN Ru-long, MIAO Zhong-wei, XIN Qing-wu, LI Li, ZHANG Dan-qing, ZHENG Nen-zhu. Transcriptome Analysis of Ovary Tissue in Early Laying Period and Egg Laying Peak Period of Shanma Ducks [J]. Scientia Agricultura Sinica, 2016, 49(5): 998-1007.
[9] HAN Xiao-yan, BAO Yu-ming, XIN Feng-jiao, KONG Zhi-qiang, Christophe Blecker, DAI Xiao-feng. Preparation and Antimicrobial Activity of Cottonseed Protein Hydrolysate [J]. Scientia Agricultura Sinica, 2016, 49(15): 3019-3029.
[10] LIN Jian, YANG Zhi-yuan, HE Ping-you, DUAN Hui-juan, ZOU Li-hong, YANG Bao-shou, ZHAO Ji-cheng, PAN Jie, WANG Xiao-lei, LIU Li-xin, LIU Yue-huan. Criterion of Ovarian Lesions of Duck Tembusu Virus Disease [J]. Scientia Agricultura Sinica, 2016, 49(14): 2830-2836.
[11] QI Yun-xia, LIU Xiao-fang, ZHANG Ping, HE Xiao-long, XING Yu-mei, Dalai, Terigele, LIU Yong-bin, RONG Wei-heng. Differentially Expressed microRNAs Screening Between Ovaries of Sheep Producing Single Lamb and Twins [J]. Scientia Agricultura Sinica, 2015, 48(10): 2039-2048.
[12] JIA Zhen-Wei. Recent Advances in Research of the Expression and Role of C-Type Natriuretic Peptide as a Regulator in Control of Animal Ovary Performance [J]. Scientia Agricultura Sinica, 2014, 47(2): 403-410.
[13] WANG Wei-Min, HU Ting-Xi, LI Fa-Di, MA You-Ji, FAN Hong-Ying, PAN Xiang-Yu. Study on Differential Expression of Ovine RARG in Ovary at Different Estrous Cycles [J]. Scientia Agricultura Sinica, 2014, 47(15): 3069-3076.
[14] NA Ri-Su-12, LIU Guang-1, XIANG Yang-1, ZHAO Hai-Lin-1, WU Ting-1, ZHAO Jin-Hong-2, LI Fan-1, HUANG Xuan-Yang-1, SUN Xiao-Wei-1, ZHENG Jiao-1, ZHANG Jia-Hua-1. Characterization and Expression Analysis of Goat Ovarian chi-miR-100f-5p [J]. Scientia Agricultura Sinica, 2013, 46(22): 4784-4790.
[15] ZHOU Hua-Fei, LUO Chu-Ping, WANG Xiao-Yu, ZHANG Rong-Sheng, CHEN Zhi-Yi. Construction of Bacillus subtilis Bs916 Mutant Libraries by Transposon Tagging and Cloning the Genes to the Organism’s Anti-Bacterial Activities [J]. Scientia Agricultura Sinica, 2013, 46(11): 2232-2239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!