Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 692-703.doi: 10.3864/j.issn.0578-1752.2025.04.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang

WANG ShaoHua1(), SHEN NianQiao2(), CHU TianRan1, WU YongHan3, LI KangNing2, SHI YanXia1, XIE XueWen1, LI Lei1, FAN TengFei1, LI BaoJu1(), CHAI ALi1()   

  1. 1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/State Key Laboratory of Vegetable Biobreeding, Beijing 100081
    2 Cangnan County Agricultural Technology Extension Station, Wenzhou 325800, Zhejiang
    3 Wenzhou Vocational College of Science & Technology, Wenzhou 325006, Zhejiang
  • Received:2024-10-21 Accepted:2024-12-04 Online:2025-02-16 Published:2025-02-24
  • Contact: LI BaoJu, CHAI ALi

Abstract:

【Objective】Long-term continuous cropping of tomato in Cangnan, Zhejiang Province leads to a series of soil continuous cropping obstacles, such as soil acidification, secondary salinization, soil compaction and serious soil-borne diseases. In this paper, the effects of tomato-rice rotation on soil physicochemical properties, enzyme activity, microbial biomass and microbial community structure under long-term continuous cropping were analyzed, aiming to provide a method to alleviate soil continuous cropping obstacles and improve soil environment.【Method】Three treatments were set up and soil samples were collected. T1 was tomato continuous monoculture for 18 years, T2 was tomato continuous monoculture for 17 years followed by one year of tomato-rice rotation, and T3 was tomato continuous monoculture for 15 years followed by three years of tomato-rice rotation. Soil pH and EC values were measured by pH meter and conductivity meter. Soil physicochemical properties such as total carbon, total nitrogen and ammonium nitrogen were determined by high temperature combustion method, Kjeldahl nitrogen fixation method and potassium chloride solution leaching method. Soil enzyme activities were determined using enzyme activity kits. Total and harmful microorganism concentrations were detected using qPCR, and soil culturable microorganisms were counted using selective medium plate smear counting method. The MiSeq PE3000 high-throughput sequencing platform was used for sequencing, splicing and assembly, sequence comparison and functional annotation of the soil microgenome.【Result】There were significant differences in soil physicochemical properties among different treatments. One and three years of tomato-rice rotation treatments increased soil pH from 5.20 to 6.04 and 6.73, and reduced EC from 558 μS·cm-1 to 417 and 445 μS·cm-1, and increased C﹕N ratios from 9.16 to 10.45 and 10.74. Soil enzyme activities were increased in the rotations, with catalase, urease, polyphenol oxidase activities increased from 11.72 μmol·d-1·g-1, 10.76 μg·d-1·g-1, and 22.67 mg·d-1·g-1 to 58.58 μmol·d-1·g-1, 142.48 μg·d-1·g-1, and 37.10 mg·d-1·g-1. After crop rotation, the microbial population and community structure changed, harmful microorganisms decreased. The content of soil culturable actinomycetes increased, the fungi/bacteria ratio decreased. Chloroflexi, Acidobacteria, and Proteobacteria increased significantly, and Actinobacteria decreased significantly. The contents of Ralstonia solanacearum, Pectobacterium carotovorum subsp. carotovorum, P. c. subsp. brasiliensis and Fusarium sp. decreased to 1.76×103, 7.28×102, 3.94×103 and 3.07×103 copies/g in the three years of crop rotation. The potential functions of soil microorganisms changed after crop rotation, with an increase in the abundance of genes related to carbohydrate metabolism, energy metabolism, and other related pathways. Specifically, genes associated with carbohydrate metabolism in metabolism were up-regulated.【Conclusion】Tomato-rice rotation can improve soil acidification, salinization and soil element imbalance caused by long-term monoculture, increase soil C﹕N ratio and enzyme activity, reduce the occurrence of soil-borne diseases, transform the soil from fungal type to bacterial type, change the structure of soil microbial community, and promote soil microbial carbohydrate metabolism, which is important for improving soil continuous cropping obstacles.

Key words: tomato-rice rotation, soil, physicochemical property, harmful microorganism, microbial community

Table 1

Primers information used for detecting harmful soil microorganisms"

病原菌
Pathogen
引物
Primer
序列
Sequence (5′-3′)
片段长度
Fragment size (bp)
参考文献
Reference
茄科雷尔氏菌
Ralstonia solanacearum
RSF
RSR
GTGCCTGCCTCCAAAACGACT GACGCCACCCGCATCCCTC 159 [12]
密执安棍状杆菌密执安亚种
Clavibacter michiganensis subsp. michiganensis
Fan1
Fan2
GCATGTGCACCTCTCCTCTGTA
CCCCACAAGGAGGCGTACTA
146 [13]
胡萝卜软腐果胶杆菌胡萝卜亚种
Pectobacterium carotovorum subsp. carotovorum
INPCCF
INPCCR
TTCGATCACGCAACCTGCATTACT
GGCCAAGCAGTGCCTGTATATCC
400 [14]
胡萝卜软腐果胶杆菌巴西亚种
Pectobacterium carotovorum subsp. brasiliensis
PMA1-F
PMA1-R
GTGCCGGGTTTATGAC
TGATAATG TCTTTCAC
142 [15]
瓜果腐霉
Pythium aphanidermatum
PA-4F
PA-4R
CAATGGTCTGGGCAAAT
TAAGTTCAGCGGGTAATC
166 [16]
辣椒疫霉
Phytophthora capsici
YM2F
YM2R
ATTCCTCCTGATAGATAG
CCCTCATCACAGAATGC
245 [17]
镰孢菌属
Fusarium sp.
F8-1
F8-2
GCTTCTCCCGAGTCCCA
GCTCAGCGGCTTCCTAT
189 [18]
大丽轮枝菌
Verticillium dahliae
VertBt-F
VertBt-R
AACAACAGTCCGATGGATAATTC
GTACCGGGCTCGAGATCG
115 [19]

Table 2

Physicochemical properties of soil for tomato cultivation in different treatments"

处理
Treatment
总碳
TC
(g·kg-1)
总氮
TN
(g·kg-1)
碳氮比
C/N
氨态氮
NH4+-N
(mg·kg-1)
硝态氮
NO3--N
(mg·kg-1)
速效磷
AP
(mg·kg-1)
速效钾
AK
(mg·kg-1)
有机质
SOM
(g·kg-1)
电导率
EC
(μS·cm-1)
pH
T1 19.13±0.11a 2.08±0.05a 9.16c 5.03±0.04a 385.20±0.04a 59.50±1.98a 190.96±2.99c 31.35±1.30a 558±2a 5.21±0.08c
T2 16.53±0.28c 1.59±0.35b 10.45b 3.52±0.30c 246.69±0.30b 24.33±1.34b 332.85±4.41a 23.95±0.08c 417±3c 6.04±0.04b
T3 18.16±0.15b 1.69±0.03b 10.74a 4.32±0.12b 46.94±0.12c 22.31±1.32b 215.51±2.72b 27.78±0.68b 445±7b 6.73±0.11a

Table 3

Heavy metal content of soil for tomato cultivation in different treatments (mg·kg-1)"

处理Treatment 铬Cr 铜Cu 锌Zn 砷As 镉Cd 铅Pb 汞Hg
T1 46.97±0.07b 56.68±1.55a 152.86±4.57a 5.95±0.02c 0.15±0.002a 29.65±0.08c 0.12±0.01a
T2 47.94±0.04a 26.73±0.17c 110.38±1.31c 8.50±0.06a 0.12±0.003c 31.51±0.17b 0.09±0.01c
T3 45.81±0.14c 29.69±0.12b 121.53±0.98b 6.83±0.09b 0.13±0.003b 33.50±0.10a 0.10±0.01b

Table 4

Enzyme activities of soil for tomato cultivation in different treatments"

处理
Treatment
过氧化氢酶
Catalase (μmol·d-1·g-1)
脲酶
Urease (μg·d-1·g-1)
多酚氧化酶
Polyphenol oxidase (mg·d-1·g-1)
酸性磷酸酶
Acid phosphatase (μmol·d-1·g-1)
T1 11.72±0.86c 10.76±0.06c 22.67±0.09c 20.49±0.85a
T2 58.58±0.11a 133.30±0.12b 37.10±0.26a 20.09±0.71a
T3 57.10±0.13b 142.48±0.10a 33.78±0.72b 10.63±0.10b

Table 5

Total amount of soil microorganisms in different treatments"

处理Treatment 细菌Bacterium 真菌Fungus 放线菌Actinomycete 真菌/细菌比值
Fungus/
bacterium ratio
总量
Total concentration (pg·g-1)
可培养细菌总量Concentration of culturable bacteria (cfu/g) 总量
Total concentration (pg·g-1)
可培养真菌总量Concentration of culturable fungi (cfu/g) 可培养放线菌总量
Concentration of culturable actinomycetes (cfu/g)
T1 (2.24±0.07)×105c (1.10±0.06)×107a (5.39±0.11)×103c (2.50±0.06)×104b (4.40±0.08)×105c 2.41×10-2/1a
T2 (1.36±0.04)×106a (1.03±0.07)×107a (2.55±0.10)×104a (4.30±0.24)×104a (8.00±0.08)×105b 1.88×10-2/1b
T3 (7.82±0.03)×105b (4.10±0.12)×106b (1.21±0.39)×104b (2.80±0.07)×104b (2.04±0.06)×106a 1.55×10-2/1c

Table 6

Content of soil pathogenic microorganisms in different treatments (copies/g)"

处理Treatment 茄科雷尔氏菌
Rs
密执安棍状杆
菌密执安亚种
Cmm
胡萝卜软腐果胶
杆菌胡萝卜亚种
Pcc
胡萝卜软腐果胶
杆菌巴西亚种
Pcb
瓜果腐霉
P. aphanidermatum
辣椒疫霉
P. capsici
镰孢菌属
F. sp.
大丽轮枝菌
V. dahliae
T1 (2.14±0.04)×103b - (1.80±0.04)×103a (6.18±0.33)×104a - - (4.04±0.08)×104a -
T2 (2.37±0.04)×103a - (1.24±0.06)×103b (1.59±0.11)×104b - - (3.39±0.08)×104b -
T3 (1.76±0.06)×103c - (7.28±0.03)×102c (3.94±0.32)×103c - - (3.07±0.05)×103c -

Fig. 1

Soil microbial species abundance histogram of different treatments"

Fig. 2

Heat map of clustering analysis of fungi (A) and bacteria (B) at phylum levels of different treatments"

Fig. 3

Soil microbial gene abundance map of different treatments"

[1]
BONANOMI G, LORITO M, VINALE F, WOO S L. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annual Review of Phytopathology, 2018, 56: 1-20.

doi: 10.1146/annurev-phyto-080615-100046 pmid: 29768137
[2]
VAN AGTMAAL M, STRAATHOF A, TERMORSHUIZEN A, TEURLINCX S, HUNDSCHEID M, RUYTERS S, BUSSCHAERT P, LIEVENS B, DE BOER W. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Applied Soil Ecology, 2017, 121: 152-160.
[3]
CHENG H Y, ZHANG D Q, HUANG B, SONG Z X, REN L R, HAO B Q, LIU J, ZHU J H, FANG W S, YAN D D, LI Y, WANG Q X, CAO A C. Organic fertilizer improves soil fertility and restores the bacterial community after 1,3-dichloropropene fumigation. Science of the Total Environment, 2020, 738: 140345.
[4]
FIERER N, LEFF J W, ADAMS B J, NIELSEN U N, BATES S T, LAUBER C L, OWENS S, GILBERT J A, WALL D H, CAPORASO J G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21390-21395.
[5]
BAHRAM M, HILDEBRAND F, FORSLUND S K, ANDERSON J L, SOUDZILOVSKAIA N A, BODEGOM P M, BENGTSSON-PALME J, ANSLAN S, COELHO L P, HAREND H, et al. Structure and function of the global topsoil microbiome. Nature, 2018, 560(7717): 233-237.
[6]
BALLHAUSEN M B, DE BOER W. The sapro-rhizosphere: Carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biology and Biochemistry, 2016, 102: 14-17.
[7]
KUZYAKOV Y, DOMANSKI G. Carbon input by plants into the soil. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431.
[8]
HERRMANN M, SAUNDERS A, SCHRAMM A. Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Applied and Environmental Microbiology, 2008, 74(10): 3279-3283.
[9]
DALIAKOPOULOS I N, TSANIS I K, KOUTROULIS A, KOURGIALAS N N, VAROUCHAKIS A E, KARATZAS G P, RITSEMA C J. The threat of soil salinity: A European scale review. Science of the Total Environment, 2016, 573: 727-739.
[10]
BROCKETT B F T, PRESCOTT C E, GRAYSTON S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 2012, 44(1): 9-20.
[11]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Soil Agrochemical Analysis Method. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[12]
CHEN Y, ZHANG W Z, LIU X, MA Z H, LI B, ALLEN C, GUO J H. A real-time PCR assay for the quantitative detection of Ralstonia solanacearum in the horticultural soil and plant tissues. Journal of Microbiology and Biotechnology, 2010, 20(1): 193-201.
[13]
吴兴海, 邵秀玲, 邓明俊, 陈长法, 厉艳, 梁成珠. 番茄溃疡病菌实时荧光PCR快速检测方法研究. 江西农业学报, 2007, 19(3): 34-36.
WU X H, SHAO X L, DENG M J, CHEN C F, LI Y, LIANG C Z. Study on rapid detection of Clavibacterm ichiganensis subsp. michiganensis by real-time fluorescent PCR. Acta Agriculturae Jiangxi, 2007, 19(3): 34-36. (in Chinese)
[14]
KANG H W, KWON S W, GO S J. PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathology, 2003, 52(2): 127-133.
[15]
QU Y K, TANG J, LI Z Y, ZHOU Z H, WANG J J, WANG S N, CAO Y D. Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of Northeast China. Sustainability, 2020, 12(23): 10095.
[16]
HUANG Y, XIAO X, HUANG H Y, JING J Q, ZHAO H J, WANG L, LONG X E. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. Applied Microbiology and Biotechnology, 2018, 102: 5717-5729.

doi: 10.1007/s00253-018-9013-6 pmid: 29704041
[17]
程颖超, 康华军, 石延霞, 柴阿丽, 张红杰, 谢学文, 李宝聚. 辣椒疫霉菌RT-PCR检测技术的建立及应用. 园艺学报, 2018, 45(5): 997-1006.

doi: 10.16420/j.issn.0513-353x.2017-0862
CHENG Y C, KANG H J, SHI Y X, CHAI A L, ZHANG H J, XIE X W, LI B J. Development and application of real-time fluorescent quantitative PCR for detection of Phytophthora capsica. Acta Horticulturae Sinica, 2018, 45(5): 997-1006. (in Chinese)
[18]
CHEN L D, LI L, XIE X W, CHAI A L, SHI Y X, FAN T F, XIE J M, LI B J. An improved method for quantification of viable Fusarium cells in infected soil products by propidium monoazide coupled with real-time PCR. Microorganisms, 2022, 10(5): 1037.
[19]
ATALLAH Z K, BAE J, JANSKY S H, ROUSE D I, STEVENSON W R. Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology, 2007, 97(7): 865-872.
[20]
MACDONALD C A, THOMAS N, ROBINSON L, TATE K R, ROSS D J, DANDO J, SINGH B K. Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biology and Biochemistry, 2009, 41(8): 1642-1651.
[21]
BABIN D, DEUBEL A, JACQUIOD S, SØRENSEN S J, GEISTLINGER J, GROSCH R, SMALLA K. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biology and Biochemistry, 2019, 129: 17-28.
[22]
VON LÜTZOW M, LEIFELD J, KAINZ M, KÖGEL-KNABNER I, MUNCH J C. Indications for soil organic matter quality in soils under different management. Geoderma, 2002, 105(3): 243-258.
[23]
ALLARD S M, WALSH C S, WALLIS A E, OTTESEN A R, BROWN E W, MICALLEF S A. Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Science of the Total Environment, 2016, 573: 555-563.
[24]
XIE X M, LIAO M, YANG J, CHAI J J, FANG S, WANG R H. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere, 2012, 88(10): 1190-1195.
[25]
LIU Y X, LI X, CAI K, CAI L T, LU N, SHI J X. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Applied Soil Ecology, 2015, 93: 78-87.
[26]
KUNITO T, AKAGI Y, PARK H D, TODA H. Influences of nitrogen and phosphorus addition on polyphenol oxidase activity in a forested andisol. European Journal of Forest Research, 2009, 128(4): 361-366.
[27]
DE BOER W, FOLMAN L B, SUMMERBELL R C, BODDY L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 2005, 29(4): 795-811.

pmid: 16102603
[28]
DE BOER W, HUNDSCHEID M P J, GUNNEWIEK P J A, DE RIDDER-DUINE A S, THION C, VEEN J A, WAL A. Antifungal rhizosphere bacteria can increase as response to the presence of saprotrophic fungi. PLoS ONE, 2015, 10(9): e0137988.
[29]
EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, LURIE E, PODISHETTY N K, BHATNAGAR S, EISEN J A, SUNDARESAN V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911-E920.
[30]
IBEKWE A M, POSS J A, GRATTAN S R, GRIEVE C M, SUAREZ D. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biology and Biochemistry, 2010, 42(4): 567-575.
[31]
LING N, ZHU C, XUE C, CHEN H, DUAN Y H, PENG C, GUO S W, SHEN Q R. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology and Biochemistry, 2016, 99: 137-149.
[32]
MAHERALI H, KLIRONOMOS J N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 2007, 316(5832): 1746-1748.

doi: 10.1126/science.1143082 pmid: 17588930
[33]
LAUBER C L, HAMADY M, KNIGHT R, FIERER N. Pyrosequencing- based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120.
[1] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[2] WANG XiaoTing, SHEN Qi, PAN JuXiu, MA Lei, HE WeiZhong, WANG Cheng. Regression Analysis of the Differences in the Bioaccessibility of Six Nutrients in the Flesh of Melons from Different Production Areas and Their Relationship with Soil Element Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 779-791.
[3] WANG Zhao, ZHANG Bing, DONG SiQi, HU YuXi, QI ShuYu, FENG GuoZhong, GAO Qiang, ZHOU Xue. Effects of Long-Term Nitrogen Fertilizer Application on the Rhizosphere Microbial Community Structure and Function in Black Soil and Sandy Soil [J]. Scientia Agricultura Sinica, 2025, 58(3): 520-536.
[4] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[5] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[6] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[7] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
[8] YUAN HuiLin, LI YaYing, GU WenJie, XU PeiZhi, LU YuSheng, SUN LiLi, ZHOU ChangMin, LI WanLing, QIU RongLiang. Characterization and Correlation Analysis of Soil Dissolved Organic Matter and Microbial Communities Under Long-Term Application of Fresh and Composted Manure [J]. Scientia Agricultura Sinica, 2025, 58(2): 307-325.
[9] DU JiaQi, ZHANG ZiWei, WANG RuoFei, LI Xing, GUO HongYan, YANG Shuo, FENG Cheng, HE TangQing, Giri Bhoopander, ZHANG XueLin. The Interactive Effects of Organic Fertilizer Substituting Chemical Fertilizers and Arbuscular Mycorrhizal Fungi on Soil Nitrous Oxide Emission in Shajiang Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2025, 58(1): 101-116.
[10] QIAO ZhengYan, YU Miao, TANG YuJie, SHI GuiShan, LIU XinYu, LIU XiaoHan, WANG XinDing, LI Yang, WANG Nai, CHEN BingRu. Comprehensive Evaluation for Soda Salinity and Alkalinity in Sorghum Seedling Stage and Selection of Indicators [J]. Scientia Agricultura Sinica, 2025, 58(1): 30-42.
[11] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[12] FENG XiaoLin, ZHANG ChuTian, XU ChenYang, GENG ZengChao, HU FeiNan, DU Wei. Spatiotemporal Distribution Characteristics and Influencing Factors of Soil Inorganic Carbon in Shaanxi Province [J]. Scientia Agricultura Sinica, 2024, 57(8): 1517-1532.
[13] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[14] ZHONG JinPing, ZHENG ZiCheng, LI TingXuan, HE XiaoLing. Effect of Phosphorus Fertilizer Application Rates on the Loss of Colloidal Phosphorus on Purple Soil Slopes [J]. Scientia Agricultura Sinica, 2024, 57(8): 1547-1559.
[15] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!