Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1043-1051.doi: 10.3864/j.issn.0578-1752.2025.06.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast

JIN YiDan1,2(), HE NiQing1(), CHENG ZhaoPing1, LIN ShaoJun1, HUANG FengHuang1, BAI KangCheng1,2, ZHANG Tao1,2, WANG WenXiao1,2, YU MinXiang1, YANG DeWei1()   

  1. 1 Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018
    2 College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2024-12-26 Accepted:2025-01-20 Online:2025-03-25 Published:2025-03-25
  • Contact: YANG DeWei

Abstract:

【Objective】 Rice blast is one of the most devastating diseases of rice production. A broad-spectrum disease resistance gene Pigm-1 was identified but its functional pathway and interactors are unknown. The screening and identification of key proteins in the Pigm-1 signaling pathway will provide an important theoretical basis for rice disease resistance breeding. 【Method】 In this study, the decoy protein pGBKT7-Pigm-1-CC1-576 vector was constructed to detect the decoy protein self-activation, and the toxicity of the decoy protein was detected by separately transforming the plasmid pGBKT7 and pGBKT7-Pigm-1-CC1-576 into Y2H Gold yeast. The rice disease resistance R protein Pigm-1 was screened by cDNA expression yeast library induced by rice blast fungus. The sequencing results were compared and annotated by Rice Information GateWay (RIGW). The interaction of OsbHLH148 protein was verified by Luc, Co-IP and yeast two-hybrid assays, and the tissue expression of the corresponding gene of the interaction protein OsbHLH148 was analyzed by qRT-PCR. 【Result】 The self-activation test showed that the decoy protein pGBKT7-Pigm-1-CC1-576 did not self-activate when cotransformed with the AD plasmid, and the toxicity analysis showed that the decoy protein had little or no toxicity to yeast cells. A total of 124 proteins that may interact with Pigm-1 were obtained by screening the yeast library, and among these proteins, there are ethylene synthesis related, gibberellin synthesis related, active oxygen species clearly related, enzyme metabolism related, and some function unknown. The interaction between Pigm-1-CC1-576 and OsbHLH148 was verified by Luc, Co-IP and yeast two-hybrid methods. Further analysis showed that OsbHLH148 can be induced by blast fungus infection, and the tissue expression analysis showed that OsbHLH148 expression level was the highest in rice leaves at 6 weeks. 【Conclusion】 In this study, 124 proteins that may interact with Pigm-1 were obtained. One of these proteins, OsbHLH148, was selected and verified to interact with Pigm-1-CC1-576. Suggesting that OsbHLH148 may be involved in Pigm-1 mediated resistance of rice blast.

Key words: rice, rice blast, Pigm-1, interacting protein, OsbHLH148

Fig. 1

Auto-activativity detection and toxicity detection of decoy proteins pGBKT7-Pigm-1-CC1-576 a: Auto-activativity detection of the bait protein; b: Toxicity detection of the bait protein"

Fig. 2

Detection of quality detection and insert fragment size a: Library quality detection; b: Insert fragment size detection. M: Marker; 1-24: Colony PCR product"

Fig. 3

Screening of Y2H library and Verification of partial Y2H clones a: Screening of Y2H library; b: Validation of partially positive clones. M: Marker; 1-17: Colony PCR product"

Fig. 4

Verification of interaction between OsbHLH148 and Pigm-1 a: Yeast two-hybrid assay; b: Luc assay; c: Co-IP assay"

Fig. 5

The spatiotemporal expression pattern of OsbHLH148"

Fig. 6

The expression analysis of OsbHLH148 after M. oryzae infection"

[1]
ELERT E. Rice by the numbers: A good grain. Nature, 2014, 514(7524): S50-S51.
[2]
KAMARUDIN S A A, AHMAD F, HASAN N, HISHAM S N, YUSOF S N, ABU HASSAN A, HUSSEIN S, HARUN A R, WAN CHIK W D, MD SAAD M, FAIZAL AZIZI M M, ABD AZIZ SHAMSUDIN N. Whole genome resequencing data and grain quality traits of the rice cultivar Mahsuri and its blast disease resistant mutant line, Mahsuri Mutant. Data in Brief, 2024, 52: 109974.
[3]
周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析. 作物学报, 2023, 49(5): 1170-1183.

doi: 10.3724/SP.J.1006.2023.22024
ZHOU H P, ZHANG F, CHEN K, SHEN C C, ZHU S B, QIU X J, XU J L. Identification of rice blast resistance in Xian and Geng germplasms by genomewide association study. Acta Agronomica Sinica, 2023, 49(5): 1170-1183. (in Chinese)
[4]
杨德卫, 王莫, 韩利波, 唐定中, 李生平. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展. 植物学报, 2019, 54(2): 265-276.

doi: 10.11983/CBB18194
YANG D W, WANG M, HAN L B, TANG D Z, LI S P. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi. Chinese Bulletin of Botany, 2019, 54(2): 265-276. (in Chinese)
[5]
HU K M, QIU D Y, SHEN X L, LI X H, WANG S P. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Molecular Plant, 2008, 1(5): 786-793.
[6]
MIAH G, RAFII M Y, ISMAIL M R, PUTEH A B, RAHIM H A, ASFALIZA R, LATIF M A. Blast resistance in rice: A review of conventional breeding to molecular approaches. Molecular Biology Reports, 2013, 40(3): 2369-2388.

doi: 10.1007/s11033-012-2318-0 pmid: 23184051
[7]
安正帅, 刘国兰, 梅捍卫, 黎良通, 王加红, 罗利军. 标记辅助改良节水抗旱杂交稻亲本材料的稻瘟病抗性. 分子植物育种, 2010, 8(6): 1172-1176.
AN Z S, LIU G L, MEI H W, LI L T, WANG J H, LUO L J. Improving blast resistance of parental lines of drought resistant hybrid rice by marker-assisted selection. Molecular Plant Breeding, 2010, 8(6): 1172-1176. (in Chinese)
[8]
ELLUR R K, KHANNA A, YADAV A, PATHANIA S, RAJASHEKARA H, SINGH V K, GOPALA KRISHNAN S, BHOWMICK P K, NAGARAJAN M, VINOD K K, PRAKASH G, MONDAL K K, SINGH N K, VINOD PRABHU K, SINGH A K. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Science, 2016, 242: 330-341.

doi: S0168-9452(15)30052-2 pmid: 26566849
[9]
刁志娟, 陈立喆, 王勋, 鲁玲, 刘燕, 张静, 夏娜, 唐定中, 李生平. 胱硫醚-β-合成酶OsCBSX4调控水稻稻瘟病抗性的机理. 中国农业科学, 2024, 57(23): 4593-4606. doi:10.3864/j.issn.0578-1752.2024.23.002.
DIAO Z J, CHEN L Z, WANG X, LU L, LIU Y, ZHANG J, XIA N, TANG D Z, LI S P. The mechanism of cystathionine-β-synthase OsCBSX4 in rice blast resistance. Scientia Agricultura Sinica, 2024, 57(23): 4593-4606. doi:10.3864/j.issn.0578-1752.2024.23.002. (in Chinese)
[10]
KOU Y J, SHI H B, QIU J H, TAO Z, WANG W M. Effectors and environment modulating rice blast disease: from understanding to effective control. Trends in Microbiology, 2024, 32(10): 1007-1020.
[11]
XIAO N, WU Y Y, LI A H. Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Science, 2020, 27(4): 263-277.

doi: 10.1016/j.rsci.2020.05.003
[12]
SU J, WANG W J, HAN J L, CHEN S, WANG C Y, ZENG L X, FENG A Q, YANG J Y, ZHOU B, ZHU X Y. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theoretical and Applied Genetics, 2015, 128(11): 2213-2225.
[13]
DENG Y W, ZHAI K R, XIE Z, YANG D Y, ZHU X D, LIU J Z, WANG X, QIN P, YANG Y Z, ZHANG G M, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355(6328): 962-965.

doi: 10.1126/science.aai8898 pmid: 28154240
[14]
ZHAI K R, DENG Y W, LIANG D, TANG J, LIU J, YAN B X, YIN X, LIN H, CHEN F D, YANG D Y, XIE Z, LIU J Y, LI Q, ZHANG L, HE Z H. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice. Molecular Cell, 2019, 74(5): 996-1009.

doi: S1097-2765(19)30187-X pmid: 30975460
[15]
YANG D, LI S, LU L, FANG J, WANG W, CUI H, TANG D. Identification and application of the Pigm-1 gene in rice disease resistance breeding. Plant Biology, 2020, 22(6): 1022-1029.
[16]
杨德卫, 何旎清, 黄凤凰. 利用分子标记辅助选择聚合水稻抗病基因Pigm-1Xa23. 西北农林科技大学学报(自然科学版), 2023, 51(11): 37-45.
YANG D W, HE N Q, HUANG F H. Pyramiding Pigm-1 and Xa23 genes in rice (Oryza sativa L.) by marker-assisted selection. Journal of Northwest A & F University (Natural Science Edition), 2023, 51(11): 37-45. (in Chinese)
[17]
何旎清, 杨德卫, 郑向华, 黄凤凰, 程朝平, 叶宁. 利用分子标记辅助选择Pigm-1基因改良恢复系R20的稻瘟病抗性. 核农学报, 2022, 36(2): 245-250.

doi: 10.11869/j.issn.100-8551.2022.02.0245
HE N Q, YANG D W, ZHENG X H, HUANG F H, CHENG C P, YE N. Improving blast resistance of R20 by molecular marker-assisted selection of Pigm-1 gene. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 245-250. (in Chinese)
[18]
TAMELING W I L, TAKKEN F L W. Resistance proteins: Scouts of the plant innate immune system. European Journal of Plant Pathology, 2008, 121(3): 243-255.
[19]
SLOOTWEG E, ROOSIEN J, SPIRIDON L N, PETRESCU A J, TAMELING W, JOOSTEN M, POMP R, VAN SCHAIK C, DEES R, BORST J W, SMANT G, SCHOTS A, BAKKER J, GOVERSE A. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. The Plant Cell, 2010, 22(12): 4195-4215.

doi: 10.1105/tpc.110.077537 pmid: 21177483
[20]
QI D, INNES R W. Recent advances in plant NLR structure, function, localization, and signaling. Frontiers in Immunology, 2013, 4: 348.

doi: 10.3389/fimmu.2013.00348 pmid: 24155748
[21]
ZHAO Y L, CAO X, ZHONG W H, ZHOU S K, LI Z B, AN H, LIU X H, WU R F, BOHORA S, WU Y, LIANG Z Y, CHEN J H, YANG X, ZHOU G H, ZHANG T. A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission. Molecular Plant, 2022, 15(4): 689-705.
[22]
DE VLEESSCHAUWER D, SEIFI H S, FILIPE O, HAECK A, HUU S N, DEMEESTERE K, HÖFTE M. The DELLA protein SLR1 integrates and amplifies salicylic acid- and jasmonic acid-dependent innate immunity in rice. Plant Physiology, 2016, 170(3): 1831-1847.

doi: 10.1104/pp.15.01515 pmid: 26829979
[23]
HOU H N, FANG J B, LIANG J H, DIAO Z J, WANG W, YANG D W, LI S P, TANG D Z. OsExo70B1 positively regulates disease resistance to Magnaporthe oryzae in rice. International Journal of Molecular Sciences, 2020, 21(19): 7049.
[24]
SEO J S, JOO J, KIM M J, KIM Y K, NAHM B H, SONG S I, CHEONG J J, LEE J S, KIM J K, CHOI Y D. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. The Plant Journal, 2011, 65(6): 907-921.
[25]
HAN J L, WANG X Y, WANG F P, ZHAO Z, LI G S, ZHU X Y, SU J, CHEN L T. The fungal effector avr-pita suppresses innate immunity by increasing COX activity in rice mitochondria. Rice, 2021, 14(1): 12.
[26]
WANG R Y, YOU X M, ZHANG C Y, FANG H, WANG M, ZHANG F, KANG H X, XU X, LIU Z, WANG J Y, et al. An ORFeome of rice E 3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biology, 2022, 23(1): 154.
[27]
XU R R, SONG F M, ZHENG Z. OsBISAMT1, a gene encoding S-adenosyl-L-methionine: Salicylic acid carboxyl methyltransferase, is differentially expressed in rice defense responses. Molecular Biology Reports, 2006, 33(3): 223-231.

pmid: 16850192
[28]
LIU H F, LU C C, LI Y, WU T, ZHANG B G, LIU B Y, FENG W J, XU Q, DONG H S, HE S Y, CHU Z H, DING X H. The bacterial effector AvrRxo1 inhibits vitamin B6 biosynthesis to promote infection in rice. Plant Communications, 2022, 3(3): 100324.
[29]
ZOU X, LIU L, HU Z B, WANG X K, ZHU Y C, ZHANG J L, LI X F, KANG Z Y, LIN Y J, YIN C X. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-jasmonate interaction. Journal of Experimental Botany, 2021, 72(15): 5656-5672.
[30]
YANG D W, WANG X, ZHENG X X, XIANG X Q, CUI H T, LI S P, TANG D Z. Functional studies of rice blast resistance related gene OsSAMS1. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[31]
ZHANG M X, ZHAO R R, HUANG K, HUANG S Z, WANG H T, WEI Z Q, LI Z, BIAN M D, JIANG W Z, WU T, DU X L. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. The Plant Journal, 2022, 112(2): 383-398.
[32]
YOKOTANI N, SATO Y, TANABE S, CHUJO T, SHIMIZU T, OKADA K, YAMANE H, SHIMONO M, SUGANO S, TAKATSUJI H, KAKU H, MINAMI E, NISHIZAWA Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 2013, 64(16): 5085-5097.

doi: 10.1093/jxb/ert298 pmid: 24043853
[33]
SEO Y S, CHERN M, BARTLEY L E, HAN M, JUNG K H, LEE I, WALIA H, RICHTER T, XU X, CAO P J, et al. Towards establishment of a rice stress response interactome. PLoS Genetics, 2011, 7(4): e1002020.
[1] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[2] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[3] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[4] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[5] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[6] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[7] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[8] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[9] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[10] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[11] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[12] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[13] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[14] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[15] LIAO Ping, WENG WenAn, GAO Hui, ZHANG HongCheng. Application Status and Development Suggestion of Direct-Seeding Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2024, 57(24): 4854-4870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!