Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 929-942.doi: 10.3864/j.issn.0578-1752.2025.05.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Water-Nitrogen Coupling on the Mineralization of Organic Carbon and Nitrogen for Mulched Farmland Soils in the Arid Regions of Northwest China

ZHAO TongTong(), GU XiaoBo(), TAN ChuanDong, YAN TingLin, LI XiaoYan, CHANG Tian, DU YaDan   

  1. College of Water Resources and Architectural Engineering, Northwest A&F University/Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Area of Ministry of Education, Yangling 712100, Shaanxi
  • Received:2024-04-30 Accepted:2024-07-31 Online:2025-03-07 Published:2025-03-07
  • Contact: GU XiaoBo

Abstract:

【Objective】This study aimed to clarify the effects of irrigation and nitrogen application on soil fertility, to explore the characteristics of organic carbon and nitrogen mineralization and their influencing factors in mulched farmland soils under different water and nitrogen conditions, so as to provide the theoretical basis for water and nitrogen control measures for mulched farmland crops in the Northwest of China.【Method】In this study, on the basis of five consecutive years of field trials of winter wheat-summer maize with nitrogen application in mulching, the soil samples were collected under three nitrogen application levels of 0 (N0), 180 kg·hm-2 (N1) and 360 kg·hm-2 (N2), and three soil moisture gradients, namely, 40% of the field holding capacity (W0), 60% of the field holding capacity (W1), and 100% of the field holding capacity (W2), were set up for indoor organic carbon and nitrogen mineralization. Then, the effect of water-nitrogen coupling on soil organic carbon and nitrogen mineralisation in mulched farmland were analyzed.【Result】Increasing water content significantly increased the cumulative soil carbon mineralization (Cmin), carbon mineralization rate, cumulative net soil nitrogen mineralization (Nmin), nitrogen mineralization rate, and potential mineralized nitrogen (Np). Cmin, Nmin and Np all showed a tendency to increase and then decrease with increasing nitrogen application. At the end of incubation, Cmin was the highest under N1W1 treatment (1 781.00 mg·kg-1), which was significantly higher than that under other treatments(N0W0, N0W1, N0W2, N1W0, N1W2, N2W0, N2W1, N2W2) by 8.8% to 51.8%, respectively, and its Nmin was also maintained at a relatively high level (29.52 mg·kg-1), while the potential mineralized carbon (5 883.79 mg·kg-1) and Np (30.74 mg·kg-1) were also maintained at a relatively high level. The random forest algorithm indicated that soil microbial carbon (MBC), soil microbial nitrogen, dissolved organic carbon, organic carbon, and total dissolved nitrogen were the important factors affecting Cmin and Nmin. MBC showed a tendency of increasing and then decreasing with the increase of soil moisture, and the MBC content under W1 significantly increased by 60.1%-340.0% and 3.1%-6.7%, respectively. The structural equations showed that soil moisture had a direct positive effect (0.70) and an indirect positive effect (0.55) on soil carbon mineralization, while the nitrogen application had a direct positive effect (0.90) and an indirect negative effect (0.24) on soil nitrogen mineralization.【Conclusion】From the perspective of soil carbon and nitrogen mineralization, this study recommended 60% field capacity and 180 kg N·hm-2 as suitable water and nitrogen regulation strategies for mulched farmland in the dryland of Northwest China.

Key words: nitrogen application rate, soil moisture, carbon mineralization, net nitrogen mineralization, mineralization kinetics, arid regions of Northwest China

Table 1

Trial design for incubation"

处理
Treatment
施氮量
N-fertilization rate (kg·hm-2)
土壤含水量
Soil moisture content
N0W0 0 40%FC
N0W1 0 60%FC
N0W2 0 100%FC
N1W0 180 40%FC
N1W1 180 60%FC
N1W2 180 100%FC
N2W0 360 40%FC
N2W1 360 60%FC
N2W2 360 100%FC

Table 2

Effects of nitrogen application on SOC, TN, C/N, pH and Ec"

处理
Treatment
土壤有机碳SOC
(mg·kg-1)
全氮TN
(mg·kg-1)
碳氮比
C/N
pH 电导率Ec
(μs·cm-1)
N0 7743.49 b 475.12 b 16.29 a 8.3 a 184.4 b
N1 8456.06 a 482.12 b 17.54 a 8.27 a 188.7 b
N2 8542.16 a 528.87 a 16.18 a 7.98 b 248.5 a

Table 3

Effects of water-nitrogen coupling on MBC, MBN, DOC, and TDN"

处理
Treatment
微生物量碳MBC
(mg·kg-1)
微生物量氮MBN
(mg·kg-1)
溶解性有机碳DOC
(mg·kg-1)
总溶解氮TDN
(mg·kg-1)
N0 W0 85.99 d 15.66 e 257.67 de 50.51 c
W1 138.53 c 21.68 d 256.20 de 60.19 c
W2 134.34 c 53.23 a 235.08 e 53.76 c
N1 W0 88.45 d 45.03 b 314.29 c 51.87 c
W1 208.57 ab 21.82 d 296.15 cd 95.76 b
W2 195.41 b 57.42 a 309.14 c 103.52 b
N2 W0 54.93 d 30.54 c 425.35 a 146.93 a
W1 241.70 a 15.12 e 369.06 b 153.91 a
W2 231.34 a 47.14 b 335.34 bc 163.85 a
施氮量Nitrogen application rate, N *** *** *** ***
土壤含水量Soil water content, W *** *** * **
施氮量×土壤含水量 N×W *** *** ns *

Fig. 1

Effects of different nitrogen application rates and soil moisture on cumulative carbon mineralization"

Table 4

Kinetic constants of carbon mineralization under different nitrogen application rates and soil moisture"

处理
Treatment
C0
(mg·kg-1)
kc
(d-1)
R2 C0kc
(mg·kg-1·d-1)
MBC/SOC Cmin/C0
N0W0 3519.53 0.0094 0.99 33.22 0.0103 0.37
N0W1 10804.81 0.0030 0.99 32.41 0.0190 0.14
N0W2 6104.14 0.0058 0.99 35.16 0.0179 0.25
N1W0 5271.02 0.0063 0.99 33.21 0.0099 0.27
N1W1 5883.79 0.0073 0.99 42.89 0.0264 0.30
N1W2 3125.63 0.0147 0.99 46.04 0.0231 0.52
N2W0 1616.85 0.0251 0.99 40.55 0.0062 0.73
N2W1 2581.66 0.0163 0.99 41.98 0.0305 0.55
N2W2 4084.71 0.0097 0.99 39.62 0.0264 0.38

Fig. 2

Effects of different nitrogen application rates and soil moisture on cumulative nitrogen mineralization"

Table 5

Kinetic constants of nitrogen mineralization under different nitrogen application rates and soil moisture"

处理
Treatment
Np
(mg·kg-1)
kN
(d-1)
R2 NpkN
(mg·kg-1·d-1)
MBN/TN Nmin/Np
N0W0 15.66 0.0392 0.96 0.61 0.0328 0.985
N0W1 21.06 0.0318 0.96 0.67 0.0459 0.881
N0W2 22.31 0.0332 0.94 0.74 0.1112 0.956
N1W0 30.52 0.0273 0.98 0.83 0.0936 0.885
N1W1 30.74 0.0403 0.97 1.24 0.0457 0.96
N1W2 36.31 0.0640 0.97 2.32 0.1215 0.993
N2W0 24.66 0.0256 0.96 0.63 0.0558 0.886
N2W1 25.38 0.0297 0.90 0.75 0.0300 0.956
N2W2 30.63 0.0415 0.97 1.27 0.0880 0.953

Fig. 3

Relationship between potentially mineralized nitrogen (Np) and nitrogen mineralization rate under different nitrogen application rates and soil moisture"

Fig. 4

Effect of nitrogen application and soil moisture on potential drivers of accumulated carbon (a) and net soil nitrogen (b) mineralization *:P<0.05,**:P<0.01"

Fig. 5

Structural equation modeling of the effects of nitrogen application and soil moisture on soil Cmin and Nmin Numbers on the arrows indicate path coefficients (correlation coefficients). Solid purple arrows and solid gray-blue arrows indicate significant positive and significant negative correlations (P<0.05), respectively, and dashed arrows indicate marginal significant correlations (P<0.1). The width of the arrows indicates the strength of the relationship. Percentage near each variable indicates variance explained by the model (R2). *, **and *** denote P<0.05, P<0.01 and P<0.001, respectively"

[1]
LI W L, GU X B, DU Y D, ZHENG X B, LU S Y, CHENG Z K, CAI W J, CHANG T. Optimizing nitrogen, phosphorus, and potassium fertilization regimes to improve maize productivity under double ridge-furrow planting with full film mulching. Agricultural Water Management, 2023, 287: 108439.
[2]
P, SUN S S, LI Y Q, ZHAO S L, ZHANG J, HU Y, YUE P, ZUO X A. Plant composition change mediates climate drought, nitrogen addition, and grazing effects on soil net nitrogen mineralization in a semi-arid grassland in North China. Science of the Total Environment, 2024, 908: 168282.
[3]
ABERA G, WOLDE-MESKEL E, BAKKEN L R. Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biology and Fertility of Soils, 2012, 48(1): 51-66.
[4]
WANG X Y, HELGASON B, WESTBROOK C, BEDARD-HAUGHN A. Effect of mineral sediments on carbon mineralization, organic matter composition and microbial community dynamics in a mountain peatland. Soil Biology and Biochemistry, 2016, 103: 16-27.
[5]
SONG L, WANG J S, PAN J X, YAN Y J, NIU S L. Chronic nitrogen enrichment decreases soil gross nitrogen mineralization by acidification in topsoil but by carbon limitation in subsoil. Geoderma, 2022, 428: 116159.
[6]
DU Y D, NIU W Q, GU X B, ZHANG Q, CUI B J. Water- and nitrogen-saving potentials in tomato production: A meta-analysis. Agricultural Water Management, 2018, 210: 296-303.
[7]
SUN L, LI B, YAO M Z, NIU D S, GAO M M, MAO L Z, XU Z Y, WANG T L, WANG J K. Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM-TOPSIS- AISM model. Agricultural Water Management, 2023, 290: 108579.
[8]
魏丽云. 土壤水分动态对氮素净矿化的影响[D]. 杨凌: 西北农林科技大学, 2019.
WEI L Y. Effect of soil moisture dynamics on net nitrogen mineralization[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[9]
GUNTIÑAS M E, LEIRÓS M C, TRASAR-CEPEDA C, GIL-SOTRES F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology, 2012, 48: 73-80.
[10]
李晶晶. 氮添加对人工油松林土壤碳氮矿化过程及其微生物调控机制的影响[D]. 杨凌: 西北农林科技大学, 2020.
LI J J. Effects of nitrogen addition on soil carbon and nitrogen mineralization and its microbial regulation mechanism in artificial Pinus tabulaeformis forest[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[11]
GU X B, CAI H J, FANG H, CHEN P P, LI Y P, LI Y N. Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China. Agricultural Water Management, 2021, 245: 106560.
[12]
中华人民共和国农业农村部. 农业部关于印发《西北旱区农牧业可持续发展规划(2016—2020年)》的通知. 2016.
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Notice of the Ministry of Agriculture on printing and distributing 《the Sustainable Development Plan for Agriculture and Animal Husbandry in Northwest Arid Areas (2016-2020) . 2016. (in Chinese)
[13]
GAO B, JU X T, SU F, MENG Q F, OENEMA O, CHRISTIE P, CHEN X P, ZHANG F S. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. The Science of the Total Environment, 2014, 472: 112-124.

doi: 10.1016/j.scitotenv.2013.11.003 pmid: 24291136
[14]
曹寒冰, 谢钧宇, 刘菲, 高健永, 王楚涵, 王仁杰, 谢英荷, 李廷亮. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性. 中国农业科学, 2021, 54(21): 4611-4622. doi: 10.3864/j.issn.0578-1752.2021.21.011.
CAO H B, XIE J Y, LIU F, GAO J Y, WANG C H, WANG R J, XIE Y H, LI T L. Mineralization characteristics of soil organic carbon and its temperature sensitivity in wheat field under film mulching. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622. doi: 10.3864/j.issn.0578-1752.2021.21.011. (in Chinese)
[15]
CABRERA M L, BEARE M H. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal, 1993, 57(4): 1007-1012.
[16]
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[17]
JOERGENSEN R G, MUELLER T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the KEN value. Soil Biology and Biochemistry, 1996, 28(1): 33-37.
[18]
SUH S, LEE E, LEE J. Temperature and moisture sensitivities of CO2 efflux from lowland and alpine meadow soils. Journal of Plant Ecology, 2009, 2(4): 225-231.
[19]
MI J, LI J J, CHEN D M, XIE Y C, BAI Y F. Predominant control of moisture on soil organic carbon mineralization across a broad range of arid and semiarid ecosystems on the Mongolia Plateau. Landscape Ecology, 2015, 30(9): 1683-1699.
[20]
YIN S, BAI J H, WANG W, ZHANG G L, JIA J, CUI B S, LIU X H. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies. Journal of Hydrology, 2019, 574: 1074-1084.
[21]
LAL R. Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123(1/2): 1-22.
[22]
LIU W X, ZHANG Z, WAN S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15(1): 184-195.
[23]
PERALTA A L, LUDMER S, MATTHEWS J W, KENT A D. Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands. Ecological Engineering, 2014, 73: 246-253.
[24]
王嫒华, 苏以荣, 李杨, 胡乐宁, 吴金水. 水田和旱地土壤有机碳周转对水分的响应. 中国农业科学, 2012, 45(2): 266-274. doi: 10.3864/j.issn.0578-1752.2012.02.008.
WANG A H, SU Y R, LI Y, HU L N, WU J S. Response of the turnover of soil organic carbon to the soil moisture in paddy and upland soil. Scientia Agricultura Sinica, 2012, 45(2): 266-274. doi: 10.3864/j.issn.0578-1752.2012.02.008. (in Chinese)
[25]
袁晓波. 氮沉降对黄土高原典型草原植物群落稳定性及土壤微生物养分利用过程的影响[D]. 兰州: 兰州大学, 2020.
YUAN X B. Effects of nitrogen deposition on plant community stability and soil microbial nutrient utilization in typical grassland of Loess Plateau[D]. Lanzhou: Lanzhou University, 2020. (in Chinese)
[26]
MOCALI S, PAFFETTI D, EMILIANI G, BENEDETTI A, FANI R. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients. Biology and Fertility of Soils, 2008, 44(4): 557-569.
[27]
焦宏哲, 李欢, 陈惠, 鲍勇, 孙颖, 杨玉盛, 司友涛. 增温、施氮对中亚热带杉木林土壤可溶性有机质的影响. 土壤学报, 2020, 57(5): 1249-1258.
JIAO H Z, LI H, CHEN H, BAO Y, SUN Y, YANG Y S, SI Y T. Effects of soil warming and nitrogen addition on soil dissolved organic matter of Cunninghamia lanceolata plantations in subtropical China. Acta Pedologica Sinica, 2020, 57(5): 1249-1258. (in Chinese)
[28]
王慧. 旱地土壤有机碳氮及其矿化对长期施用氮磷肥的响应[D]. 杨凌: 西北农林科技大学, 2016.
WANG H. Response of organic carbon and nitrogen and its mineralization in dryland soil to long-term application of nitrogen and phosphorus fertilizer[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[29]
RIGGS C E, HOBBIE S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 2016, 99: 54-65.
[30]
DONG W Y, ZHANG X Y, LIU X Y, FU X L, CHEN F S, WANG H M, SUN X M, WEN X F. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences, 2015, 12(18): 5537-5546.
[31]
ZHANG J, QIN J, YAO W, BI L, LAI T, YU X. Effect of long-term application of manure and mineral fertilizers on nitrogen mineralization and microbial biomass in paddy soil during rice growth stages. Plant, Soil and Environment, 2009, 55(3): 101-109.
[32]
廖畅. 外源碳氮输入对不同纬度森林土壤有机碳矿化和固持的影响[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2020.
LIAO C. Effects of exogenous carbon and nitrogen input on mineralization and fixation of organic carbon in forest soils at different latitudes[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2020. (in Chinese)
[33]
聂二旗, 张心昱, 郑国砥, 杨洋, 王辉民, 陈伏生, 孙晓敏. 氮磷添加对杉木林土壤碳氮矿化速率及酶动力学特征的影响. 生态学报, 2018, 38(2): 615-623.
NIE E Q, ZHANG X Y, ZHENG G D, YANG Y, WANG H M, CHEN F S, SUN X M. Effects of nitrogen and phosphorus additions on soil organic carbon and nitrogen mineralization and hydrolase kinetics in Chinese fir plantations. Acta Ecologica Sinica, 2018, 38(2): 615-623. (in Chinese)
[34]
于淑华, 张丽霞, 谢雪迎, 韩晓阳. 不同水分模式对山东茶园土壤氮素动态的影响. 水土保持学报, 2021, 35(4): 289-298.
YU S H, ZHANG L X, XIE X Y, HAN X Y. Effects of water regimes on soil nitrogen dynamics in tea garden in Shandong province. Journal of Soil and Water Conservation, 2021, 35(4): 289-298. (in Chinese)
[35]
DAVIDSON E A. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Science Society of America Journal, 1992, 56(1): 95-102.
[36]
MORILLAS L, DURÁN J, RODRÍGUEZ A, ROALES J, GALLARDO A, LOVETT G M, GROFFMAN P M. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange. Global Change Biology, 2015, 21(10): 3854-3863.

doi: 10.1111/gcb.12956 pmid: 25916277
[37]
李生秀, 艾绍英, 何华. 连续淹水培养条件下土壤氮素的矿化过程. 西北农业大学学报, 1999, 27(1): 1-5.
LI S X, AI S Y, HE H. Soil’s nitrogen mineralization processes under continuously waterlogged incubation conditions. Journal of Northwest A&F University (Natural Science Edition), 1999, 27(1): 1-5. (in Chinese)
[38]
沈月, 依艳丽. 不同因素交互作用对棕壤硝态氮累积及pH值的影响. 植物营养与肥料学报, 2013, 19(5): 1174-1182.
SHEN Y, YI Y L. Effects of interaction of different factors on nitrate nitrogen accumulation and pH of brown soil. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1174-1182. (in Chinese)
[39]
SEUSS I, SCHEIBE A, SPOHN M. N2 fixation is less sensitive to changes in soil water content than carbon and net nitrogen mineralization. Geoderma, 2022, 424: 115973.
[40]
CHENG Y, WANG J, CHANG S X, CAI Z C, MÜLLER C, ZHANG J B. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review. Environmental Pollution, 2019, 244: 608-616.

doi: S0269-7491(18)30982-5 pmid: 30384066
[41]
REN B J, WANG W Q, SHEN L D, YANG W T, YANG Y L, JIN J H, GENG C Y. Nitrogen fertilization rate affects communities of ammonia-oxidizing archaea and bacteria in paddy soils across different climatic zones of China. Science of the Total Environment, 2023, 902: 166089.
[42]
邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响. 中国农业科学, 2022, 55(3): 529-542. doi: 10.3864/j.issn.0578-1752.2022.03.009.
ZOU W X, SU W H, CHEN Y X, CHEN X P, LANG M. Effects of long-term nitrogen application on ammonia oxidizer communities for nitrification in acid purple soil. Scientia Agricultura Sinica, 2022, 55(3): 529-542. doi: 10.3864/j.issn.0578-1752.2022.03.009. (in Chinese)
[43]
WU Q C, ZHANG C Z, LIANG X Q, ZHU C W, WANG T Y, ZHANG J B. Elevated CO2 improved soil nitrogen mineralization capacity of rice paddy. Science of the Total Environment, 2020, 710: 136438.
[44]
ANDERSON T H, DOMSCH K H. Soil microbial biomass: The eco-physiological approach. Soil Biology and Biochemistry, 2010, 42(12): 2039-2043.
[45]
葛志强, 赵姗宇, 林贵刚, 孙学凯, 胡亚林. 降水变化对科尔沁沙地樟子松人工林土壤氮矿化和淋溶的影响. 生态学报, 2020, 40(18): 6564-6572.
GE Z Q, ZHAO S Y, LIN G G, SUN X K, HU Y L. Effects of precipitation change on soil nitrogen mineralization and leaching under Mongolian pine plantation in the Horqin Sandy Lands. Acta Ecologica Sinica, 2020, 40(18): 6564-6572. (in Chinese)
[46]
孙誉育, 唐波, 尹春英, 贺合亮, 刘庆. 水氮耦合效应对红桦幼苗生长的影响及其生理机制. 应用与环境生物学报, 2015, 21(4): 710-716.
SUN Y Y, TANG B, YIN C Y, HE H L, LIU Q. Effects of water and nitrogen coupling on growth of Betualalbo-sinensis seedlings and its physiological mechanism. Chinese Journal of Applied and Environmental Biology, 2015, 21(4): 710-716. (in Chinese)
[1] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[2] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[3] LIU Meng, ZHANG Yao, GE JunZhu, YANG YongAn, WU XiDong, HOU HaiPeng. Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years [J]. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995.
[4] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[5] LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750.
[6] YU Ru, SONG JiaShen, ZHANG HongYuan, CHANG FangDi, WANG YongQing, WANG XiQuan, WANG Jing, WANG WeiNi, LI YuYi. Effects of Straw Interlayer Combined with Spring Irrigation on Saline- Alkali Soil Respiration and Its Temperature Sensitivity in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2023, 56(12): 2341-2353.
[7] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[8] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[9] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[10] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
[11] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
[12] GAO ChunHua,FENG Bo,CAO Fang,LI ShengDong,WANG ZongShuai,ZHANG Bin,WANG Zheng,KONG LingAn,WANG FaHong. Effects of Nitrogen Application Rate on Assimilate Accumulation, Transportation and Grain Yield in Wheat Under High Temperature Stress After Anthesis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4365-4375.
[13] DONG ZhiQiang,LI ManHua,LI Nan,XUE XiaoPing,CHEN Chen,ZHANG JiBo,ZHAO Hong,HOU YingYu,PAN ZhiHua. The Thresholds of Soil Drought and Its Impacts on Summer Maize in Shandong Province [J]. Scientia Agricultura Sinica, 2020, 53(21): 4376-4387.
[14] JIAO YaPeng,QI Peng,WANG XiaoJiao,WU Jun,YAO YiMing,CAI LiQun,ZHANG RenZhi. Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland [J]. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434.
[15] REN KeYu,DUAN YingHua,XU MingGang,ZHANG XuBo. Effect of Manure Application on Nitrogen Use Efficiency of Crops in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2983-2996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!