Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4365-4375.doi: 10.3864/j.issn.0578-1752.2020.21.006

• SPECIAL FOCUS: HIGH EFFICIENCY UTILIZATION OF WATER AND FERTILIZER OF WHEAT-MAIZE CROPPING SYSTEM • Previous Articles     Next Articles

Effects of Nitrogen Application Rate on Assimilate Accumulation, Transportation and Grain Yield in Wheat Under High Temperature Stress After Anthesis

GAO ChunHua1,2(),FENG Bo1(),CAO Fang1,LI ShengDong1,WANG ZongShuai1,ZHANG Bin1,WANG Zheng1,KONG LingAn1,WANG FaHong1   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100
    2Cotton Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100
  • Received:2020-05-11 Accepted:2020-07-29 Online:2020-11-01 Published:2020-11-11
  • Contact: Bo FENG E-mail:chunhuaaa009@163.com;fengbo109@126.com

Abstract:

【Objective】This study was aimed to identify the effects of nitrogen application rates on grain yield, assimilate accumulation and translocation, physiological basis of winter wheat under the condition of high temperature stress, so as to provide technical and theoretical support for stress-resistance and stable yield cultivation.【Method】 Field experiments were conducted at Ji’nan experiment station and Jiyang experiment station of Crop Research Institute, Shandong Academy of Agricultural Sciences in 2018 and 2019, designed with two temperature treatments (CK: Control, H: High temperature stress) and three nitrogen levels (N1:Low nitrogen with 180 kg·hm-2, N2: Regular nitrogen with 240 kg·hm-2, and N3: High nitrogen with 300 kg·hm-2) . By analyzing assimilate accumulation, allocation, sucrose synthetase activity in leaf and grain, and grain yield with winter wheat cultivar JM44, the regulation of nitrogen application rates on grain yield of wheat under high temperature stress circumstances was studied. 【Result】 The results showed that grain yield decreased significantly under high temperature stress conditions, and grain yield reduction at N1, N2, and N3 were 54.78%, 24.05%, 54.49% and 50.19%, 25.29%, 44.13% in Ji’nan and Jiyang, respectively. Significant increases were noticed in assimilate accumulation amount, pre-anthesis assimilate translocation amount and rate to grain yield, post-anthesis assimilate accumulation amount and rate, ratio of grain to other organs udner N2 treatment, compared with N1 and N3 treatment, same as in SPAD value, sucrose synthetase-I activity (direction of synthetic) in flag leaf, and sucrose synthetase-Ⅱ activity (direction of decomposition) in grain. 【Conclusion】Higher grain yield could be achieved after high temperature stress during grain-filling stages with nitrogen application rate of 240 kg·hm-2, which could postpone flag leaf senescence, maintain high sucrose synthetase-I activity in flag leaf and sucrose synthetase-Ⅱ activity in grain, and keep high ability cof assimilate accumulate and transport to grain.

Key words: winter wheat, nitrogen application rate, high temperature stress, assimilate accumulation, assimilate transportation, grain yield

Fig. 1

The wheat canopy temperature of control and heat stress"

Fig. 2

Effects of high temperature stress and nitrogen application rate on grain yield and yield reduction rate Different small letters indicate significant difference among treatments at 0.05 level on grain yield, and different capital letters indicate significant difference among treatments at 0.05 level on yield reduction rate"

Table 1

Effects of high temperature stress and nitrogen application rate on yield components and assimilate accumulation"

处理
Treatment
单穗重
WPP (g)
穗粒数
GWPP
千粒重
TKW (g)
成熟期同化物积累量
AAAM (kg·hm-2)
花后同化物积累速率AARAA (kg·hm-2·d-1) 收获指数
HI (%)
济南JN
CKN1 1.29±0.03b 34.50±0.5c 47.30±0.30a 15785.52±114.40b 157.16±1.03b 50.92±0.63a
CKN2 1.46±0.008a 35.50±0.1b 45.03±0.66b 16967.30±283.20a 182.83±1.35a 47.96±1.65a
CKN3 1.56±0.02a 36.80±0.1a 43.83±0.04c 17716.02±607.11a 180.31±12.75a 48.24±1.53a
HN1 0.87±0.06c 29.75±0.25e 19.56±0.24d 13697.32±155.75c 93.07±2.73c 26.53±0.39c
HN2 1.24±0.05b 32.05±0.35d 37.14±0.27c 15671.66±173.46b 138.45±1.64b 39.41±0.09b
HN3 0.94±0.02c 30.45±0.05e 17.12±0.54e 14399.02±143.37c 107.02±5.20c 27.57±0.79c
济阳JY
CKN1 1.30±0.003c 34.00±0.8b 49.15±0.23a 16190.53±79.64c 153.17±0.002c 45.00±0.50ab
CKN2 1.40±0.003b 36.60±0.2a 45.32±0.03a 16883.76±50.68b 166.55±3.67b 46.48±0.01a
CKN3 1.66±0.004a 37.75±0.05a 44.05±0.36a 18902.49±8.95a 203.00±1.30a 43.99±0.40b
HN1 1.00±0.004e 30.50±0.50c 21.41±3.53b 14331.65±52.49f 103.47±1.36e 25.33±0.69e
HN2 1.13±0.14d 32.95±0.15b 38.71±1.25c 15392.29±69.81d 116.66±2.48d 37.94±1.13c
HN3 1.01±0.01e 30.80±0.9c 24.54±0.29c 14565.30±94.87e 88.96±0.56f 31.89±0.41d
FH 691.42** 369.32** 885.17** 368.11** 691.45** 1028.87**
FN 47.68** 27.25** 73.18** 49.49** 34.07** 58.12**
FH×N 48.21** 14.68** 90.81** 34.47** 31.95** 64.22**

Fig. 3

Assimilate accumulation in different organs at maturity Different small letters indicate significant difference among treatments at 0.05 level on the same organs. The same as below"

Fig. 4

Assimilate allocation ratio in different organs at maturity"

Table 2

Response of assimilate translocation amount pre-anthesis to grain and assimilate accumulation post-anthesis to high temperature stress and nitrogen application rate"

处理
Treatment
花前同化物AABA 花后同化物AAAA
转运量 TA (kg·hm-2) 转运率 TR (%) 籽粒贡献率 CR (%) 积累量 AA (kg·hm-2) 籽粒贡献率 CR (%)
济南JN
CKN1 2213.18±143.97b 21.18±1.08a 27.55±0.07b 5343.56±35.02b 72.45±0.07cd
CKN2 2144.03±116.87b 19.93±0.65a 26.39±0.10b 6216.09±45.84a 73.61±0.10c
CKN3 2655.26±128.60a 22.91±0.77a 31.10±1.43a 6130.58±433.58a 68.90±1.43d
HN1 746.73±106.73d 7.07±0.85c 20.49±0.40c 3164.33±92.76c 79.51±1.40b
HN2 1224.37±113.86c 11.15±0.81b 19.30±1.08c 4707.26±55.68b 80.20±1.58b
HN3 635.84±133.17d 5.88±1.06c 15.90±0.74d 3638.70±176.82c 84.10±0.74a
济阳JY
CKN1 2020.81±16.37b 18.93±0.14a 27.74±0.40a 5514.26±0.08c 72.26±0.40b
CKN2 2145.54±48.82a 19.26±0.64a 27.34±0.71a 5995.88±132.08b 72.66±0.71b
CKN3 2255.84±37.18a 19.43±0.39a 27.14±0.68a 7308.18±46.95a 72.86±0.68b
HN1 653.49±28.92e 6.16±0.27d 18.00±0.37d 3724.92±48.83e 82.00±0.37a
HN2 1696.53±3.97c 15.17±0.11b 29.07±0.80a 4199.76±89.11d 70.93±0.80b
HN3 1320.79±35.39d 11.63±0.35c 28.44±0.94a 3202.57±20.10f 71.56±0.94b
FH 516.60** 765.81** 193.99** 726.97** 128.53**
FN 20.79** 20.43** 11.00** 34.93** 7.92**
FH×N 23.5794** 31.54** 15.83** 34.37** 11.83**

Fig. 5

Effects of high temperature stress and nitrogen application rate on SPAD value of leaves at different positions"

Fig. 6

Sucrose synthase activity under different treatments in wheat grain (JN) SS-Ⅰ: Sucrose synthetase-I activity points to synthetic, SS-Ⅱ: Sucrose synthetase-Ⅱactivity points to decomposition. Different small letters indicate significant difference among treatments at 0.05 level. The same as below"

Fig. 7

Sucrose synthase activity under different treatments in flag of wheat (JN)"

[1] BARLOW K M, CHRISTY B P, O’LEARY G J, RIFFKIN P A, NUTTALL J G. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 2015,171:109-119.
[2] ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, WHITE J W. Rising temperatures reduce global wheat production. Nature Climate Change, 2014,5(2):143-147.
[3] RAHMSTORF S, COUMOU D. Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(44) : 17905-17909.
[4] XIAO Y G, QIAN Z G, WU K, LIU J J, XIA X C, JI W Q, HE Z H. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Science, 2012,52(1) : 44-56.
[5] FAROOQ M, BRAMLEY H, PALTA J A. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 2011,30(6) : 479-492.
[6] 冯波, 李升东, 李华伟, 王宗帅, 张宾, 王法宏, 孔令安. 灌浆初期高温胁迫对不同耐热性小麦品种形态和产量的影响. 中国生态农业学报, 2019,27(3):451-461.
FENG B, LI S D, LI H W, WANG Z S, ZHANG B, WANG F H, KONG L A. Effect of high temperature stress on plant morphology and grain yield of different heat resistance varieties in wheat during early grain-filling stage. Chinese Journal of Eco-Agriculture, 2019,27(3):451-461. (in Chinese)
[7] 王晨阳, 张艳菲, 卢红芳, 赵君霞, 马耕, 马冬云, 朱云集, 郭天财, 马英, 姜玉梅. 花后渍水、高温及其复合胁迫对小麦籽粒淀粉组成与糊化特性的影响. 中国农业科学, 2015,48(4):813-820.
WANG C Y, ZHANG Y F, LU H F, ZHAO J X, MA G, MA D Y, ZHU Y J, GUO T C, MA Y, JIANG Y M. Effect of post-anthesis waterlogging, high temperature and their combination on strarch compositions and pasting properties in wheat grains. Scientia Agricultura Sinica, 2015,48(4):813-820. (in Chinese)
[8] 邓志英, 田纪春, 胡瑞波, 赵亮, 盛峰, 王延训, 张永祥, 孙国兴, 孙彩玲. 适度高温对不同筋力冬小麦蛋白组分、面粉品质和面条加工品质的影响. 中国粮油学报, 2006,21(4):25-31.
DENG Z Y, TIAN J C, HU R B, ZHAO L, SHENG F, WANG Y X, ZHANG Y X, SUN G X, SUN C L. Effects of moderate high temperature on protein components, flour quality and noodle making quality from winter wheat cultivars with different gluten strength. Journal of the Chinese Cereals and Oils Association, 2006,21(4):25-31. (in Chinese)
[9] NIWAS R, KHICHAR M L. Managing impact of climatic vagaries on the productivity of wheat and mustard in India. Mausam, 2016,67(1):205-222.
[10] 郑飞, 何钟佩. 高温胁迫对冬小麦灌浆期物质运输与分配的影响. 中国农业大学学报, 1999,4(1):73-76.
ZHENG F, HE Z P. Effect of high temperature stress on transportation and distribution of 14C-assimilaes in grain filling period of winter wheat. Journal of China Agricultural University, 1999,4(1):73-76. (in Chinese)
[11] KIM J, SHON J, LEE C K, YANG W, YOON Y, YANG W H, LEE B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Research, 2011,122(3):207-213.
[12] 郭文善, 施劲松, 彭永欣, 封超年, 葛才林, 朱新开. 灌浆期高温对小麦光合产物运转的影响. 核农学报, 1998,12(1):21-27.
GUO W S, SHI J S, PENG Y X, FENG C N, GE C L, ZHU X K. Effect of high temperature on transportation of assimilate from wheat flag leaf during grain filling stage. Acta Agricultural Nucleates Sinica, 1998,12(1):21-27. (in Chinese)
[13] DUPONT F M, HURKMAN W J, VENSEL W H, TANAKA C, KOTHARI K M, CHUNG O K, ALTENBACH S B. Protein accumulation and composition in wheat grains: Effects of mineral nutrients and high temperature. European Journal of Agronomy, 2006,25(2):96-107.
[14] ZAHEDI M, MCDONALD G, JENNER C F. Nitrogen supply to the grain modifies the effects of temperature on starch and protein accumulation during grain filling in wheat. Australian Journal of Agricultural Research, 2004,55:551-564.
[15] ORDOÑEZ R A, SAVIN R, COSSANI C M, SLAFER G A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research, 2015,183:184-203.
[16] ELÍA M, SLAFER G A, SAVIN R. Yield and grain weight responses to post-anthesis increases in maximum temperature under field grown wheat as modified by nitrogen supply. Field Crops Research, 2018,221:228-237.
[17] ALTENBACH S B, DUPONT F M, KOTHARI K, CHAN R, JOHNSON E L, LIEU D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science, 2003,37(1):9-20.
[18] 姜丽娜, 李冬芬, 李春喜, 邵云. 小麦蔗糖合成酶和腺苷二磷酸葡萄糖焦磷酸化酶的研究进展. 作物杂志, 2008(6):11-15.
JIANG L N, LI D F, LI C X, SHAO Y. Recent advances on wheat sucrose synthase and ADP-glucose pyrophosphorylase. Crops, 2008(6):11-15. (in Chinese)
[19] 刘霞, 尹燕枰, 姜春明, 贺明荣, 王振林. 花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响. 应用生态学报, 2005,16(11):2117-2121.
LIU X, YIN Y P, JIANG C M, HE M R, WANG Z L. Effects of weak light and high temperature stress after anthesis on flag leaf chlorophyll fluorescence and grain fill of wheat. Chinese Journal of Applied Ecology, 2005,16(11):2117-2121. (in Chinese)
[20] 陆伟婷. 冬小麦产量和品质对花前夜间增温及不同施氮量的响应特征[D]. 南京: 南京农业大学, 2017.
LU W T. Response characteristics on different nitrogen rates under night warming of grain yield and quality of winter wheat[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[21] 陈洋, 赵宏伟. 氮素用量对春玉米穗位叶蔗糖合成关键酶活性的影响. 玉米科学, 2008,16(1):115-118.
CHEN Y, ZHAO H W. Effect of nitrogen application on activities of key enzymes of sucrose synthesis in the leaf located near the ear of spring maize. Journal of Maize Sciences, 2008,16(1):115-118. (in Chinese)
[22] 赵宏伟, 邹德堂, 马凤鸣. 施氮量对不同品种春玉米穗位叶蔗糖合成的影响. 中国农学通报, 2005,21(10):196-199.
ZHAO H W, ZOU D T, MA F M. Effect of different nitrogen utilization on sucrose synthesizing in spike leaf of different spring maize. Chinese Agricultural Science Bulletin, 2005,21(10):196-199. (in Chinese)
[23] RACHANA D, HIMANSHU P, SHIVDHAR S, BIDISHA C, AMOD K T, RAM K F. Impact of sowing dates on terminal heat tolerance of different wheat (Triticum aestivum L. ) cultivars. National Academy Science Letters, 2019,42(7):445-449.
[24] 邵宇航, 石祖梁, 张姗, 贾涛, 王飞, 戴廷波. 高温胁迫下镁对小麦旗叶光合特性及产量的影响. 麦类作物学报, 2018,38(7):802-808.
SHAO Y H, SHI Z L, ZHANG S, JIA T, WANG F, DAI T B. Effect of magnesium rates on photosynthetyic characteristics of flag leaf and grain yield in winter wheat under heat stress. Journal of Triticeae Crops, 2018,38(7):802-808. (in Chinese)
[25] 王东, 徐学欣, 张洪波, 林祥, 赵阳. 微喷带灌溉对小麦灌浆期冠层温湿度变化和粒重的影响. 作物学报, 2015,41(10):1564-1574.
WANG D, XU X X, ZHANG H B, LIN X, ZHAO Y. Effects of irrigation with micro-sprinkling hoses on canopy temperature and humidity at filling stage and grain weight of wheat. Acta Agronomic Sinica, 2015,41(10):1564-1574. (in Chinese)
[26] 曹云英. 高温对水稻产量与品质的影响及其生理机制[D]. 扬州: 扬州大学, 2009.
CAO Y Y. Effect of high temperature on the quality and quantity of rice yield and its physiological mechanism[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
[27] 姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇. 花后干旱和渍水对冬小麦光合特性和物质运转的影响. 作物学报, 2004,30(2) : 175-182.
JIANG D, XIE Z J, CAO W X, DAI T B, JING Q. Effects of post- anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat. Acta Agronomic Sinica, 2004,30:175-182. (in Chinese)
[28] RUFTY T W, KERR P S, HUBER S C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiology, 1983,73(2) : 428-433.
pmid: 16663233
[29] SEBKOVA V, UNGER C, HARDEGGER M, STURM A. Biochemical, physiological, and molecular characterization of sucrose synthase from daucus carota. Plant Physiology, 1995,108(1) : 75-83.
doi: 10.1104/pp.108.1.75 pmid: 7784526
[30] LIU L T, HU C S, OLESEN J E, JU Z Q, YANG P P, ZHANG Y M. Warming and nitrogen fertilization effects on winter wheat yields in northern China varied between four years. Field Crops Research, 2013,151:56-64.
doi: 10.1016/j.fcr.2013.07.006
[31] 赵晶晶. 花后高温胁迫下不同施氮量对春小麦产量形成的影响机理[D]. 银川: 宁夏大学, 2015.
ZHAO J J. Effect of different nitrogen application on spring wheat yield formation under high temperature stress after flowering[D]. Yinchuan: Ningxia University, 2015. (in Chinese)
[32] 牟会荣, 姜东, 戴廷波, 荆奇, 曹卫星. 遮荫对小麦旗叶光合及叶绿素荧光特性的影响. 中国农业科学, 2008,41(2):599-606.
MU H R, JIANG D, DAI T B, JING Q, CAO W X. Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves. Scientia Agricultura Sinica, 2008,41(2):599-606. (in Chinese)
[33] TALUKDER A S M H M, MCDONALD G K, GILL G S. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Research, 2014,160:54-63.
doi: 10.1016/j.fcr.2014.01.013
[34] WANG X, CAI J, JIANG D, LIU F, DAI T, CAO W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 2011,168:585-593.
doi: 10.1016/j.jplph.2010.09.016 pmid: 21247658
[35] 刘霞. 小麦淀粉品质形成机制及其对温光因子的响应[D]. 泰安: 山东农业大学, 2005.
LIU X. Mechanism and response to temperature and light of starch quality formation in wheat[D]. Taian: Shandong Agricultural University, 2005. (in Chinese)
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[4] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[5] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[6] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[7] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[8] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[11] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[12] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[13] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[14] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[15] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!