Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 918-928.doi: 10.3864/j.issn.0578-1752.2025.05.008

• PLANT PROTECTION • Previous Articles     Next Articles

The Roles of Heat Shock Protein Genes CfHsp70-1 and CfHsp70-2 in Enhancing the High-Temperature Tolerance after Heat Acclimation in Cryptolestes ferrugineus

CHEN ErHu(), TANG JingJie, HU ShunJie, TANG PeiAn()   

  1. College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province/Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing 210023
  • Received:2024-10-31 Accepted:2024-12-05 Online:2025-03-07 Published:2025-03-07
  • Contact: TANG PeiAn

Abstract:

【Objective】Heat shock proteins (Hsps) are essential molecular chaperones in organisms and play the crucial roles in resisting adverse environmental stresses. Cryptolestes ferrugineus is a cosmopolitan pest of stored grains with strong environmental adaptability. This study aims to elucidate the crucial roles of heat shock protein genes CfHsp70-1 and CfHsp70-2 in the development of high-temperature tolerance in this pest.【Method】C. ferrugineus was acclimated to sub-lethal temperatures (37 and 42 ℃) for 2 h to examine the tolerance changes to lethal high temperature (50 ℃). Two key heat shock protein genes (CfHsp70-1 and CfHsp70-2) were identified based on the transcriptome data of C. ferrugineus, and the amino acid sequences and phylogenetic analysis of Hsp70 proteins were further conducted. The quantitative real-time PCR method was employed to analyze the expression patterns of CfHsp70-1 and CfHsp70-2 in response to sub-lethal heat stress. The RNA interference (RNAi) technology was used to silence CfHsp70-1 and CfHsp70-2, and then the changes in high-temperature tolerance of C. ferrugineus under different conditions were analyzed.【Result】The median lethal time (LT50) of different C. ferrugineus populations was significantly increased under lethal heat temperature conditions (50 ℃) after acclimation of insects to sub-lethal temperatures (37 and 42 ℃) for 2 h, indicating a substantial enhancement of the high-temperature tolerance. The further sequence and phylogenetic analysis revealed that the amino acid sequences of CfHsp70-1 and CfHsp70-2 contained three conserved Hsp70 family signature motifs, and they clustered together with Hsp70 proteins of other Coleoptera insects. The results of quantitative real-time PCR analysis suggested that the expression levels of heat shock protein genes CfHsp70-1 and CfHsp70-2 were significantly up-regulated after acclimation to 37 and 42 ℃ for 2 h in C. ferrugineus. The gene functional analysis revealed that the high-temperature tolerance of C. ferrugineus was significantly reduced after the effective silencing of CfHsp70-1 and CfHsp70-2 via RNAi, that is, the mortality of the test insects at 50 ℃ increased significantly.【Conclusion】The heat shock protein genes CfHsp70-1 and CfHsp70-2 are involved in enhancing the high-temperature tolerance after heat acclimation of C. ferrugineus.

Key words: Cryptolestes ferrugineus, heat acclimation, heat shock protein (Hsp), high-temperature tolerance, RNA interference (RNAi)

Table 1

Primer sequences used in this study"

引物类型Primer type 引物名称Primer name 引物序列Primer sequence (5′ to 3′)
RT-qPCR引物
Primers for RT-qPCR
CfHsp70-1-F CACCGTGCCCGCATACTTT
CfHsp70-1-R CCGCCGCTGTTGGTTCGTT
CfHsp70-2-F TGTGCTATTGGTGGATGTA
CfHsp70-2-R GGTGACTGCTGGTTGA
CfRPS13-F ATCCGTAAGCATTTGGAACG
CfRPS13-R AGCCACTAAGGCTGAAGCTG
dsRNA引物
Primers for dsRNA
dsCfHsp70-1-F ggatcctaatacgactcactataggATGTCCTCTTGGTTGATGT
dsCfHsp70-1-R ggatcctaatacgactcactataggGTCGTTCTTGATGGTGATG
dsCfHsp70-2-F ggatcctaatacgactcactataggGGCTCTGGCTTATGGT
dsCfHsp70-2-R ggatcctaatacgactcactataggCTGGCTCTGCTGACTT
dsGFP-F ggatcctaatacgactcactataggATGGTGAGCAAGGGCGAGA
dsGFP-R ggatcctaatacgactcactataggTTACTTGTACAGCTCGTCCA

Table 2

The effect of acclimation under sublethal high temperatures on heat adaptation in C. ferrugineus"

种群
Population
热驯化
Heat acclimation (℃)
驯化时间
Acclimation time (h)
LT50 after exposure for 50 ℃
(95%置信区间) (min)
回归方程
Regression equation (y=)
卡方值
χ2
江苏
Jiangsu (JS)
30 (control) 2 5.45 (4.99-5.84) 0.13x-0.22 0.92
37 2 6.50 (6.14-6.81) 0.13x-0.35 0.95
42 2 13.25 (12.83-13.86) 0.13x-1.25 0.90
湖南
Hunan (HN)
30 (control)
(control)
2 17.51 (16.39-18.79) 0.071x-0.75 0.92
37 2 22.78 (22.02-23.67) 0.06x-0.09 0.91
42 2 29.36 (28.32-30.93) 0.063x-1.36 0.92

Fig. 1

Multiple amino acid sequence alignments of Hsp70 from C. ferrugineus and other insects Red and blue boxes represent the conserved signature sequences and C-terminal cytoplasmic marker motifs (EEVD), respectively"

Fig. 2

Phylogenetic tree based on amino acid sequence of Hsp70 from C. ferrugineus and other insects"

Fig. 3

The expression levels of CfHsp70-1 (A) and CfHsp70-2 (B) after 2 h sublethal high-temperature acclimation (37 and 42 ℃)"

Fig. 4

The expression levels of CfHsp70 at different times and mortality of C. ferrugineus treated under 50 ℃ after feeding dsCfHsp70"

Fig. 5

The expression levels of CfHsp70 and mortality of C. ferrugineus that treated under 50 ℃ after feeding dsCfHsp70 and acclimating at 42 ℃"

[1]
LOSEY S M, DAGLISH G J, PHILLIPS T W. Orientation of rusty grain beetles, Cryptolestes ferrugineus (Coleoptera: Laemophloeidae), to semiochemicals in field and laboratory experiments. Journal of Stored Products Research, 2019, 84: 101513.
[2]
AULICKY R, STEJSKAL V, FRYDOVA B. Field validation of phosphine efficacy on the first recorded resistant strains of Sitophilus granarius and Tribolium castaneum from the Czech Republic. Journal of Stored Products Research, 2019, 81: 107-113.
[3]
NAYAK M K, HOLLOWAY J C, EMERY R N, PAVIC H, BARTLET J, COLLINS P J. Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): Its characterisation, a rapid assay for diagnosis and its distribution in Australia. Pest Management Science, 2013, 69(1): 48-53.
[4]
KIM H G, MARGOLIES D, PARK Y. The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle, Tribolium castaneum. Journal of Insect Physiology, 2015, 76: 47-55.

doi: 10.1016/j.jinsphys.2015.03.008 pmid: 25813190
[5]
J, HUO M, KANG Y. Transcript-level analysis in combination with real-time PCR elucidates heat adaptation mechanism of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) larvae. Journal of Economic Entomology, 2019, 112(6): 2984-2992.
[6]
WANG D X, COLLINS P J, GAO X W. Optimising indoor phosphine fumigation of paddy rice bag-stacks under sheeting for control of resistant insects. Journal of Stored Products Research, 2006, 42(2): 207-217.
[7]
CHEN E H, DUAN J Y, SONG W, WANG D X, TANG P A. RNA-seq analysis reveals mitochondrial and cuticular protein genes are associated with phosphine resistance in the rusty grain beetle (Coleoptera: Laemophloeidae). Journal of Economic Entomology, 2021, 114(1): 440-453.
[8]
ANGILLETTA M J. Looking for answers to questions about heat stress: Researchers are getting warmer. Functional Ecology, 2009, 23(2): 231-232.
[9]
HARIPRIYA K, KENNEDY J, GEETHALAKSHMI V, RAJABASKAR D. Influence of elevated temperature on the fitness of diamondback moth, Plutella xylostella (L.) in cauliflower. Journal of Environmental Biology, 2021, 42: 1106-1113.
[10]
BAUERFEIND S S, FISCHER K. Simulating climate change: Temperature extremes but not means diminish performance in a widespread butterfly. Population Ecology, 2014, 56: 239-250.
[11]
DAHL J E, MARTI S L, COLINET H, WIEGAND C, HOLMSTRUP M, RENAULT D. Thermal plasticity and sensitivity to insecticides in populations of an invasive beetle: Cyfluthrin increases vulnerability to extreme temperature. Chemosphere, 2021, 274: 129905.
[12]
LEI G, HUANG J, ZHOU H, CHEN Y, SONG J, XIE X, VASSEUR L, YOU M, YOU S. Polygenic adaptation of a cosmopolitan pest to a novel thermal environment. Insect Molecular Biology, 2024, 33(4): 387-404.
[13]
ZHOU H, LEI G, CHEN Y, YOU M, YOU S. PxTret1-like affects the temperature adaptability of a cosmopolitan pest by altering trehalose tissue distribution. International Journal of Molecular Sciences, 2022, 23(16): 9019.
[14]
GARRAD R, BOOTH D T, FURLONG M J. The effect of rearing temperature on development, body size, energetics and fecundity of the diamondback moth. Bulletin of Entomological Research, 2016, 106(2): 175-181.

doi: 10.1017/S000748531500098X pmid: 26696587
[15]
LIU Y, SU H, LI R, LI X, XU Y, DAI X, ZHOU Y, WANG H. Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. BMC Genomics, 2017, 18(1): 974.
[16]
WOLFE G R, HENDRIX D L, SALVUCCI M E. A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1998, 44(7/8): 597-603.
[17]
QUAN Y, WANG Z, WEI H, HE K. Transcription dynamics of heat shock proteins in response to thermal acclimation in Ostrinia furnacalis. Frontiers in Physiology, 2022, 13: 992293.
[18]
LI M, LI X J, J H, HUO M. The effect of acclimation on heat tolerance of Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Journal of Thermal Biology, 2018, 71: 153-157.
[19]
KHURSHID A, INAYAT R, TAMKEEN A, HAQ I U, LI C, BOAMAH S, ZHOU J, LIU C. Antioxidant enzymes and heat-shock protein genes of green peach aphid (Myzus persicae) under short-time heat stress. Frontiers in Physiology, 2021, 12: 805509.
[20]
KING A M, MACRAE T H. Insect heat shock proteins during stress and diapause. Annual Review of Entomology, 2015, 60: 59-75.

doi: 10.1146/annurev-ento-011613-162107 pmid: 25341107
[21]
XU Y, SHI F, LI Y, ZONG S, TAO J. Genome-wide identification and expression analysis of the Hsp gene superfamily in Asian long-horned beetle (Anoplophora glabripennis). International Journal of Biological Macromolecules, 2022, 200: 583-592.

doi: 10.1016/j.ijbiomac.2022.01.014 pmid: 35016971
[22]
KANG L, CHEN B, WEI J N, LIU T X. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annual Review of Entomology, 2009, 54: 127-145.
[23]
YANG W J, XU K K, CAO Y, MENG Y L, LIU Y, LI C. Identification and expression analysis of four small heat shock protein genes in cigarette beetle, Lasioderma serricorne (Fabricius). Insects, 2019, 10(5): 139.
[24]
CHU J, JIANG D L, YAN M W, LI Y J, WANG J, WU F A, SHENG S. Identifications, characteristics, and expression patterns of small heat shock protein genes in a major mulberry pest, Glyphodes pyloalis (Lepidoptera: Pyralidae). Journal of Insect Science, 2020, 20(3): 2.
[25]
XIE J, PENG G, HU X, GU S S, BI J X, WEI L T, TANG J, SONG X W, FENG F, LI B. Functional analysis of a novel orthologous small heat shock protein (shsp) hsp21.8a and seven species-specific shsps in Tribolium castaneum. Genomics, 2020, 112(6): 4474-4485.
[26]
TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.

doi: 10.1093/molbev/mst197 pmid: 24132122
[27]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
[28]
HUANG Y, LIAO M, YANG Q, SHI S, XIAO J J, CAO H Q. Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. Pesticide Biochemistry and Physiology, 2020, 162: 15-22.
[29]
OPIT G P, ARTHUR F H, BONJOUR E L, JONES C L, PHILLIPS T W. Efficacy of heat treatment for disinfestation of concrete grain silos. Journal of Economic Entomology, 2011, 104(4): 1415-1422.

pmid: 21882711
[30]
J, HUO M. Transcriptome analysis reveals heat tolerance of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) adults. Journal of Stored Products Research, 2018, 78: 59-66.
[31]
MAHROOF R, ZHU K Y, NEVEN L, SUBRAMANYAM B, BAI J F. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2005, 141(2): 247-256.
[32]
TILLEY D R, CASADA M E, ARTHUR F H. Heat treatment for disinfestation of empty grain storage bins. Journal of Stored Products Research, 2007, 43(3): 221-228.
[33]
YU C, SUBRAMANYAM B, FLINN P W, GWIRTZ J A. Susceptibility of Lasioderma serricorne (Coleoptera: Anobiidae) life stages to elevated temperatures used during structural heat treatments. Journal of Economic Entomology, 2011, 104(1): 317-324.
[34]
J, LIU S. Influence of acclimation to sublethal temperature on heat tolerance of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed to 50 ℃. PLoS ONE, 2017, 12(8): e0182269.
[35]
LACHENICHT M W, CLUSELLA-TRULLAS S, BOARDMAN L, LE ROUX C, TERBLANCHE J S. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Journal of Insect Physiology, 2010, 56(7): 822-830.
[36]
J, ZHANG H. The effect of acclimation to sublethal temperature on subsequent susceptibility of Sitophilus zeamais Mostchulsky (Coleoptera: Curculionidae) to high temperatures. PLoS ONE, 2016, 11(7): e0159400.
[37]
WANG X R, WANG C, BAN F X, ZHU D T, LIU S S, WANG X W. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress. Insect Science, 2019, 26(1): 44-57.
[38]
BETTENCOURT B R, HOGAN C C, NIMALI M, DROHAN B W. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biology, 2008, 6(1): 5.
[39]
RAO J L, REDDY P S, MISHRA R N, GUPTA D, SAHAL D, TUTEJA N, SOPORY S K, REDDY M K. Thermo and pH stable ATP-independent chaperone activity of heat-inducible Hsp70 from Pennisetum glaucum. Plant Signaling & Behavior, 2010, 5(2): 110-121.
[40]
JIANG F, CHANG G F, LI Z Z, ABOUZAID M, DU X Y, HULL J J, MA W H, LIN Y J. The HSP/co-chaperone network in environmental cold adaptation of Chilo suppressalis. International Journal of Biological Macromolecules, 2021, 187: 780-788.
[41]
ZHAO L, JONES W A. Expression of heat shock protein genes in insect stress responses. Invertebrate Survival Journal, 2012, 9(1): 93-101.
[42]
GUO H Z, HUANG C L, JIANG L, CHENG T C, FENG T S, XIA Q Y. Transcriptome analysis of the response of silkworm to drastic changes in ambient temperature. Applied Microbiology and Biotechnology, 2018, 102(23): 10161-10170.

doi: 10.1007/s00253-018-9387-5 pmid: 30276714
[43]
CHEN N, TAN J Y, WANG Y, QI M H, PENG J N, CHEN D X, LIU S, LI M Y. A heat shock protein 70 protects the green peach aphid (Myzus persicae) against high-temperature stress. Journal of Asia-Pacific Entomology, 2022, 25(4): 101992.
[44]
KIM M, LEE S, CHUN Y S, NA J, KWON H, KIM W, KIM Y. Heat tolerance induction of the Indian meal moth (Lepidoptera: Pyralidae) is accompanied by upregulation of heat shock proteins and polyols. Environmental Entomology, 2017, 46(4): 1005-1011.

doi: 10.1093/ee/nvx112 pmid: 28881949
[45]
QUAN P Q, LI M Z, WANG G R, GU L L, LIU X D. Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. BMC Genomics, 2020, 21: 450.
[46]
DUMAS P, MORIN M D, BOQUEL S, MOFFAT C E, MORIN P. Expression status of heat shock proteins in response to cold, heat, or insecticide exposure in the Colorado potato beetle Leptinotarsa decemlineata. Cell Stress and Chaperones, 2019, 24(3): 539-547.
[47]
杨晴, 陆宴辉. RNA干涉P-Hsp70基因表达对不同温度下方斑瓢虫成虫寿命及繁殖力的影响. 应用昆虫学报, 2024, 61(1): 9-15.
YANG Q, LU Y H. RNAi-mediated P-Hsp70 gene expression affects Propylaea quatuordecimpunctata longevity and fecundity under different temperatures. Chinese Journal of Applied Entomology, 2024, 61(1): 9-15. (in Chinese)
[48]
陈民轩. 赤拟谷盗Ⅰ类组蛋白去乙酰化酶调控Hsp70基因表达及其抑制剂杀虫活性研究[D]. 扬州: 扬州大学, 2019.
CHEN M X. The role of Class Ⅰ histone deacetylases (HDAC) in the transcriptional regulation of Hsp70 genes in the red flour beetle, Tribolium castaneum, and the insecticidal activity of HDAC inhibitors[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[49]
CHEN B, FEDER M E, KANG L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Molecular Ecology, 2018, 27(15): 3040-3054.

doi: 10.1111/mec.14769 pmid: 29920826
[1] CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733.
[2] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[3] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[4] YUAN GuoQing, CHEN ErHu, TANG PeiAn. The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(22): 4483-4494.
[5] LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482.
[6] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[7] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[8] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[9] CHEH ErHu, YUAN GuoQing, SUN ShengYuan, TANG PeiAn. The Effect of Environmental Stress on Respiratory Rate and Expression Level of Mitochondrial Protein-Coding Genes in Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(24): 4866-4879.
[10] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[11] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[12] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[13] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[14] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[15] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!