Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4342-4355.doi: 10.3864/j.issn.0578-1752.2024.21.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Multidimensional Characterization of Astringency Quality in Dry Red Wine and Its Effects

TAN FangDai1(), HE YingXia1,2(), LIU JiaYue1, LI AiHua3, TAO YongSheng1,2()   

  1. 1 College of Enology, Northwest A&F University, Yangling 712100, Shaanxi
    2 Shaanxi Key Laboratory of Viticulture & Enology, Yangling 712100, Shaanxi
    3 College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2024-05-09 Accepted:2024-09-09 Online:2024-11-10 Published:2024-11-10
  • Contact: HE YingXia, TAO YongSheng

Abstract:

【Objective】The astringency analysis method for dry red wine was designed by considering the time dependence of astringency, the sub-quality attributes of oral sensation and the instant facial expressions of panelists, so as to provide the methodological support for the multidimensional characterization of astringency quality. 【Method】 Astringency time dependence of dry red wine was characterized by the time intensity method, and the related parameters were measured, such as maximum astringency intensity (Imax), rate of intensity increase before Imax (Vi), rate of intensity decrease after Imax (Vd), area under the curve (AUC), and perception duration (Ttot). Astringency sub-qualities, such as drying, rough, and pucker, were evaluated using CATA and TDS methods. Likability of the wine was analyzed through immediate facial expressions. Twenty-seven Cabernet Sauvignon dry red wine samples from Gansu, Ningxia and Xinjiang were used to characterize the astringency intensity, sub-quality characteristics and perceived differences in liking. 【Result】 Significant variations in astringency were observed among the three regions, particularly in Imax, Vd, and AUC. Wine samples from Ningxia exhibited the highest values for Imax, AUC, and Vd compared to those from Gansu and Xinjiang. The sub-qualities of astringency, such as drying, numbing, rough, pucker, green, and grainy, were frequently identified, with a frequency exceeding 50%. These sub-qualities constituted the main attributes of astringency in the analyzed wines. Correlation analysis of multiple astringency indexes revealed that the astringency sub-qualities in dry red wines from the three regions primarily consisted of rough, pucker, and drying. Excessive roughness and numbing diminished positive emotions among panelists, while the graininess often elicited happy and surprised expressions. Principal component analysis (PCA) of the multivariate data on astringency in the sampled wines demonstrated that the multidimensional characterization technology method designed in this study had a strong ability to distinguish astringency of sampled wines. Wine samples from Ningxia had higher Imax, AUC, Vi, and Vd, while the rough, pucker, drying and numbing were more obvious. Xinjiang wine samples had stronger grainy sense, and the Imax, AUC, green and numbing were weaker, but the drinking comfort was better. The wine samples from Gansu had the strongest green astringency and the weakest rough dominance rate. 【Conclusion】The multidimensional characterization method for dry red wine developed in this study effectively captured the diversity of astringency in a concrete and detailed manner, which provided a more scientific evaluation of astringency differences, making it valuable for broader application and promotion.

Key words: wine, astringency, time-intensity analysis, temporal dominance of sensation analysis, instant facial expression analysis

Fig. 1

TI / TDS experimental procedure"

Table 1

Astringency sub-quality definitions and references"

涩感亚品质
Sub-qualities
定义
Definition
参考标准
Standard
干燥
Drying
口腔表面缺少润滑[23]
Lack of lubrication between oral surfaces
5.0 g∙L-1单宁酸
5.0 g∙L-1 tannin acid
颗粒
Grainy
酒液在口腔移动时,沉淀在口腔表面摩擦的感觉[24]
Sensation of particles brushing against the surfaces of the mouth as the wine moves
3.0%葡萄皮籽溶液
3.0% grape skin seed solution
粗糙
Rough
类似于砂纸的感觉[25]
The tissue’s physical roughness resembles that of coarse sandpaper
600目砂纸
600-grade emery paper
褶皱
Pucker
在脸颊和面部肌肉中可以感受到的收紧或收缩的感觉[23]
The sensation of tightening or drawing that can be experienced in the cheek and facial muscles
1.0 g∙L-1明矾-2.0 g∙L-1酒石酸混合溶液
1.0 g∙L-1 alum and 2.0 g∙L-1 tartaric acid
丝绸
Silk
丝绸的质感
The texture/feel of silk
丝绸
Silk
天鹅绒
Velvet
天鹅绒的质感
The texture/feel of velvet
天鹅绒
Velvet
粗布
Burlap
粗布的质感
The texture/feel of burlap
粗布
Burlap
缎子
Satin
柔顺和平滑的质感[24]
The texture/feel of satin
缎子
Satin
强烈
Assertive
强劲的涩味与适量的水果酸度相平衡的感觉[26]
Robust astringency that is balanced with the right amount of fruit and acidity
葡萄果梗
Grape stem
麻木
Numbing
因舌头麻痹而缺失部分味觉[26]
A numbing or lack of sensation
花椒油
Zanthoxylum oil
生青
Green
未成熟的水果在口中混合着酸涩的感觉[24]
The unripe fruit’s combination of sour and astringent sensations in the mouth
生香蕉
Green banana
涂覆感
Mouthcoat
口腔中黏附一层膜的感觉[15]
Gives the impression of a coating film that adheres to mouth surfaces, and which falls from the mouth surfaces with time
芝麻糊
Sesame paste

Table 2

Astringency intensity related indicators of sampled wines"

编号Code 产区Region Imax Vi Vd Plateau 90% AUC Ttot (s)
G1 甘肃
Gansu
6.03±0.69 0.29±0.10 0.07±0.01 9.67±3.16 196.55±10.40 92.08±5.60
G2 5.22±0.55 0.30±0.02 0.06±0.01 8.77±2.56 151.73±6.71 84.88±4.78
G3 7.18±0.74 0.48±0.08 0.08±0.01 19.20±4.91 234.55±23.64 94.14±5.22
G4 6.52±0.14 0.27±0.00 0.07±0.00 14.90±6.21 218.61±8.67 96.45±4.53
G5 6.89±0.28 0.50±0.09 0.08±0.00 12.67±0.69 251.99±13.27 81.59±4.23
G6 6.50±0.47 0.28±0.04 0.07±0.01 10.17±1.02 245.48±10.34 88.66±7.01
G7 6.21±0.36 0.28±0.00 0.07±0.00 28.53±3.17 258.35±19.41 93.67±5.82
G8 5.94±0.75 0.32±0.03 0.07±0.01 11.23±0.71 239.52±11.33 82.07±3.12
G9 7.56±0.13 0.39±0.02 0.09±0.00 14.93±3.47 256.06±14.49 81.40±4.19
平均值 Average 6.45±0.70b 0.35±0.09a 0.07±0.01ab 14.45±6.20a 228.09±34.75b 88.33±5.99a
N1 宁夏
Ningxia
7.10±0.83 0.55±0.25 0.08±0.01 11.13±0.99 233.97±26.54 80.22±6.03
N2 7.81±0.46 0.58±0.04 0.10±0.01 11.87±0.88 249.65±19.43 79.16±4.19
N3 6.25±0.24 0.32±0.09 0.07±0.00 12.10±2.86 226.39±7.04 85.87±5.38
N4 7.89±0.59 0.37±0.07 0.08±0.01 13.73±1.76 228.4±18.27 96.50±6.62
N5 7.51±0.37 0.40±0.09 0.09±0.00 11.90±0.29 259.02±7.24 83.02±3.35
N6 6.82±0.39 0.52±0.04 0.07±0.00 10.73±1.56 231.83±1.69 93.94±4.44
N7 8.07±0.30 0.41±0.06 0.08±0.00 14.10±0.24 291.56±11.11 95.08±5.30
N8 5.94±0.90 0.33±0.05 0.07±0.01 13.57±1.96 249.52±18.03 90.91±5.67
N9 7.17±0.96 0.46±0.10 0.09±0.01 14.07±0.75 224.83±18.84 83.46±4.08
平均值 Average 7.17±0.74c 0.44±0.10b 0.08±0.01b 12.58±1.30a 243.91±21.56b 87.70±6.88a
X1 新疆
Xinjiang
6.28±0.31 0.43±0.00 0.08±0.00 15.93±1.69 194.52±23.89 88.31±4.87
X2 5.92±0.55 0.40±0.04 0.07±0.01 15.03±0.55 202.17±27.80 80.80±4.11
X3 5.67±0.41 0.30±0.01 0.07±0.00 13.60±3.49 221.30±7.48 84.25±4.76
X4 4.45±0.54 0.31±0.06 0.06±0.01 14.00±0.54 145.85±22.58 79.24±6.57
X5 4.84±0.52 0.37±0.03 0.06±0.01 19.30±0.52 187.97±20.88 81.00±6.89
X6 6.21±0.30 0.50±0.10 0.07±0.00 15.43±5.64 213.27±2.38 84.82±5.70
X7 5.46±0.19 0.48±0.07 0.06±0.00 20.83±2.37 213.26±9.14 89.93±4.00
X8 5.06±0.49 0.39±0.04 0.06±0.01 14.97±0.49 165.63±17.82 81.09±4.60
X9 5.16±0.29 0.25±0.01 0.05±0.00 11.03±4.32 159.51±24.04 97.49±5.83
平均值 Average 5.45±0.63a 0.38±0.08ab 0.06±0.01a 15.57±2.94a 189.28±26.70a 85.21±5.85a

Fig. 2

The proportion of astringency sub-qualities of sampled wines in the CATA questionnaire"

Table 3

Astringency sub-quality dominate rate of sampled wines"

编号
Code
产区
Region
DR粗糙
DR rough
DR褶皱
DR pucker
DR生青
DR green
DR颗粒
DR grainy
DR干燥
DR drying
DR麻木
DR numbing
DT粗糙
DT rough
DT褶皱
DT pucker
DT生青
DT green
DT颗粒
DT grainy
DT干燥
DT drying
DT麻木
DT numbing
G1 甘肃
Gansu
0.18±0.03 0.25±0.04 0.39±0.07 0.35±0.09 0.32±0.01 0.36±0.09 0.00±0.00 0.00±0.00 13.30±1.06 1.73±0.29 0.90±0.49 3.17±1.04
G2 0.25±0.09 0.35±0.04 0.50±0.08 0.25±0.04 0.37±0.03 0.34±0.05 0.00±0.00 1.07±1.05 7.37±0.74 0.00±0.00 4.11±0.90 1.13±1.60
G3 0.13±0.00 0.37±0.06 0.50±0.06 0.46±0.05 0.37±0.03 0.38±0.09 0.00±0.00 7.80±1.80 4.07±0.74 3.07±0.76 4.97±0.76 4.13±0.68
G4 0.54±0.06 0.27±0.05 0.34±0.09 0.15±0.04 0.54±0.03 0.18±0.07 14.73±0.77 0.00±0.00 1.10±0.49 0.00±0.00 26.20±2.79 0.00±0.00
G5 0.44±0.03 0.33±0.05 0.30±0.08 0.11±0.09 0.53±0.13 0.33±0.04 13.80±2.29 11.17±4.66 0.00±0.00 0.00±0.00 15.47±3.56 1.33±0.19
G6 0.30±0.09 0.27±0.06 0.40±0.05 0.30±0.07 0.30±0.07 0.20±0.08 0.00±0.00 0.00±0.00 2.53±0.95 0.00±0.00 0.00±0.00 0.00±0.00
G7 0.25±0.05 0.13±0.04 0.25±0.01 0.50±0.09 0.37±0.08 0.13±0.02 0.00±0.00 0.00±0.00 0.00±0.00 11.00±1.08 10.97±2.38 0.00±0.00
G8 0.43±0.10 0.29±0.07 0.41±0.07 0.41±0.09 0.43±0.13 0.14±0.02 2.20±0.54 0.00±0.00 9.17±1.35 2.73±1.59 22.07±2.58 0.00±0.00
G9 0.33±0.05 0.33±0.07 0.22±0.10 0.33±0.09 0.55±0.11 0.22±0.05 10.60±2.43 1.37±0.82 0.00±0.00 7.30±0.88 11.97±3.80 0.00±0.00
平均值 Average 0.28±0.09a 0.29±0.07a 0.37±0.09a 0.32±0.13a 0.42±0.09ab 0.25±0.09a 3.49±4.96a 2.38±3.92a 4.16±4.49a 2.87±3.65a 10.78±8.70a 1.08±1.47a
N1 宁夏
Ningxia
0.17±0.02 0.33±0.10 0.33±0.02 0.33±0.16 0.50±0.09 0.33±0.04 0.00±0.00 18.37±2.62 1.80±1.07 0.20±0.16 16.80±1.81 20.67±7.59
N2 0.53±0.07 0.40±0.03 0.36±0.11 0.27±0.07 0.54±0.04 0.18±0.19 16.47±6.14 4.97±4.66 3.40±1.53 0.00±0.00 10.20±1.56 0.00±0.00
N3 0.36±0.07 0.44±0.04 0.27±0.18 0.18±0.11 0.36±0.09 0.18±0.08 4.33±1.47 14.50±3.76 0.00±0.00 0.00±0.00 10.43±4.48 0.00±0.00
N4 0.50±0.10 0.21±0.11 0.25±0.13 0.38±0.09 0.55±0.10 0.25±0.05 13.37±1.76 0.00±0.00 0.00±0.00 3.50±2.55 16.93±3.49 0.00±0.00
N5 0.52±0.05 0.55±0.11 0.33±0.04 0.11±0.01 0.78±0.31 0.33±0.07 14.37±2.98 20.10±3.21 1.31±1.07 0.00±0.00 32.64±9.59 1.29±0.54
N6 0.37±0.05 0.37±0.08 0.22±0.06 0.13±0.14 0.50±0.18 0.25±0.10 6.20±1.88 7.37±1.63 0.00±0.00 0.00±0.00 34.27±8.41 0.00±0.00
N7 0.53±0.05 0.42±0.13 0.29±0.09 0.14±0.10 0.59±0.13 0.43±0.02 15.13±4.37 12.80±0.98 0.00±0.00 0.00±0.00 14.67±4.30 3.40±2.12
N8 0.54±0.05 0.34±0.03 0.25±0.08 0.50±0.08 0.38±0.12 0.37±0.09 17.01±2.51 1.07±0.90 0.00±0.00 10.30±2.61 4.76±0.98 4.87±1.67
N9 0.43±0.07 0.42±0.06 0.43±0.15 0.14±0.03 0.43±0.05 0.29±0.05 9.76±3.20 11.30±1.80 2.35±0.31 0.00±0.00 19.28±3.61 0.00±0.00
平均值 Average 0.44±0.12b 0.40±0.08b 0.30±0.06a 0.24±0.13a 0.51±0.12b 0.29±0.08a 10.74±5.68b 10.10±6.82b 1.00±1.26a 1.56±3.28a 16.33±10.06a 2.28±3.49a
X1 新疆
Xinjiang
0.33±0.06 0.33±0.02 0.11±0.16 0.33±0.11 0.51±0.06 0.22±0.06 1.30±1.06 1.92±0.63 0.00±0.00 0.00±0.00 20.37±1.27 0.00±0.00
X2 0.33±0.10 0.22±0.04 0.44±0.04 0.30±0.22 0.53±0.06 0.11±0.04 2.54±2.38 0.00±0.00 11.84±1.97 0.00±0.00 30.53±3.97 0.00±0.00
X3 0.34±0.05 0.22±0.19 0.29±0.11 0.33±0.15 0.44±0.08 0.33±0.19 2.63±1.55 0.00±0.00 0.00±0.00 1.30±1.84 16.30±3.51 5.47±1.26
X4 0.41±0.14 0.21±0.29 0.20±0.16 0.52±0.08 0.40±0.06 0.13±0.15 3.13±0.90 0.00±0.00 0.00±0.00 9.17±1.11 9.47±3.77 0.00±0.00
X5 0.32±0.07 0.21±0.05 0.31±0.03 0.20±0.18 0.37±0.11 0.17±0.07 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 2.11±1.73 0.00±0.00
X6 0.40±0.08 0.21±0.04 0.19±0.03 0.36±0.13 0.60±0.08 0.41±0.06 8.45±2.18 0.00±0.00 0.00±0.00 1.51±1.22 7.62±1.21 11.53±3.17
X7 0.52±0.14 0.25±0.07 0.38±0.12 0.13±0.01 0.38±0.05 0.21±0.04 12.13±8.86 0.00±0.00 1.78±1.03 0.00±0.00 10.22±2.37 0.00±0.00
X8 0.18±0.04 0.27±0.11 0.36±0.06 0.27±0.13 0.33±0.15 0.06±0.04 0.00±0.00 0.00±0.00 15.68±4.29 0.00±0.00 1.09±0.81 0.00±0.00
X9 0.29±0.13 0.14±0.02 0.24±0.03 0.57±0.15 0.43±0.07 0.14±0.13 0.00±0.00 0.00±0.00 0.00±0.00 21.90±5.80 12.61±1.49 0.00±0.00
平均值 Average 0.34±0.08ab 0.23±0.05a 0.28±0.10a 0.33±0.13a 0.40±0.08a 0.20±0.10a 3.33±3.96a 0.21±0.60a 3.26±5.71a 3.74±6.94a 12.31±8.79a 1.90±3.83a

Fig. 3

Trend plot of astringency sub-quality-time dominant by TDS method"

Fig. 4

Schematic representation of facial expression results"

Table 4

Instant facial expression ratio of the astringency evaluation from sampled wines"

编号
Code
产区
Region
面部表情Facial expression
高兴
Happy (%)
平淡
Neutral (%)
复杂
Complex (%)
惊讶
Surprise (%)
恐惧
Fear (%)
愤怒
Angry (%)
厌恶
Disgust (%)
G1 甘肃
Gansu
19.72±4.36 51.46±5.53 3.72±0.31 4.28±3.34 19.35±13.11 1.49±0.44 0.00±0.00
G3 18.55±3.08 40.76±24.08 8.01±0.64 3.41±1.38 27.49±19.40 1.70±0.43 0.08±0.03
G5 19.68±3.69 33.91±15.71 10.79±5.96 3.49±2.21 30.28±24.68 1.83±1.50 0.03±0.03
G7 31.91±6.00 21.95±4.91 9.24±0.45 3.40±0.80 31.49±8.55 1.65±0.44 0.36±0.11
G9 20.38±3.89 34.17±7.44 10.28±4.94 3.59±0.35 29.78±7.11 1.69±0.44 0.11±0.06
平均值 Average 22.05±5.55a 36.45±10.79a 8.40±2.84ab 3.63±0.37ab 27.68±4.88a 1.67±0.12a 0.12±0.14a
N1 宁夏
Ningxia
15.58±1.51 26.66±13.99 24.09±6.64 2.30±0.98 16.44±3.93 12.06±1.96 2.87±1.63
N2 24.51±5.28 42.53±14.40 11.23±1.66 1.10±0.22 18.02±7.25 2.34±0.58 0.28±0.14
N4 16.00±3.69 39.64±15.70 27.96±5.96 4.88±2.21 10.79±4.68 0.53±0.40 0.20±0.11
N6 18.48±0.71 35.64±10.32 8.44±0.97 1.67±0.62 34.77±10.45 0.53±0.02 0.47±0.21
N7 20.50±0.74 39.65±16.97 9.07±1.27 0.97±0.14 27.13±16.96 2.62±0.38 0.06±0.01
N9 24.41±1.67 26.77±0.61 8.50±6.94 1.81±1.48 36.87±4.26 1.50±0.94 0.14±0.10
平均值 Average 19.91±3.95a 35.14±6.89a 14.88±8.78b 2.12±1.44a 24.00±10.57a 3.26±4.40a 0.67±1.09a
X1 新疆
Xinjiang
28.68±1.91 51.76±10.66 7.02±1.01 3.31±1.16 8.76±6.41 0.44±0.03 0.03±0.04
X3 35.77±7.88 34.81±19.11 7.23±2.32 5.42±2.60 14.43±15.77 1.99±0.72 0.36±0.08
X5 27.28±0.37 38.70±9.54 4.13±3.71 3.44±1.09 25.01±7.36 1.44±0.06 0.00±0.00
X7 30.57±8.03 37.68±25.00 5.29±0.38 1.81±0.98 22.52±17.74 2.13±0.58 0.00±0.00
X8 34.05±7.72 36.45±10.85 9.10±6.66 5.88±2.01 12.37±3.65 1.82±1.42 0.33±0.12
平均值 Average 31.27±3.57b 39.88±6.80a 6.55±1.91a 3.97±1.67b 16.61±6.89a 1.56±0.68a 0.14±0.18a

Fig. 5

The correlation heat map of 18 astringency indices *:P<0.05; **:P<0.01"

Fig. 6

Loadings of astringency related indices and the distribution of wine in the first two PCs"

[1]
WANG S Y, OLARTE MANTILLA S M, SMITH P A, STOKES J R, SMYTH H E. Relationship between salivary lubrication and temporal sensory profiles of wine mouthfeel and astringency sub-qualities. Food Hydrocolloids, 2023, 135: 108106.
[2]
LEI X Q, ZHU Y Y, WANG X Y, ZHAO P T, LIU P, ZHANG Q T, CHEN T G, YUAN H H, GUO Y R. Wine polysaccharides modulating astringency through the interference on interaction of flavan-3-ols and BSA in model wine. International Journal of Biological Macromolecules, 2019, 139: 896-903.

doi: S0141-8130(19)33963-7 pmid: 31400416
[3]
LI Z, PAN Q H, JIN Z M, MU L, DUAN C Q. Comparison on phenolic compounds in Vitis vinifera cv. Cabernet Sauvignon wines from five wine-growing regions in China. Food Chemistry, 2011, 125(1): 77-83.
[4]
黄翠, 武运, 薛洁, 于佳俊, 李涛, 蔡慧, 张文昊, 石俊, 张晓蒙. 新疆葡萄酒酚类物质的味觉特征相关性分析. 中国酿造, 2024, 43(1): 119-124.

doi: 10.11882/j.issn.0254-5071.2024.01.018
HUANG C, WU Y, XUE J, YU J J, LI T, CAI H, ZHANG W H, SHI J, ZHANG X M. Correlation analysis of taste characteristics of phenolic substances in Xinjiang wine. China Brewing, 2024, 43(1): 119-124. (in Chinese)

doi: 10.11882/j.issn.0254-5071.2024.01.018
[5]
SUN B S, DE SÁ M, LEANDRO C, CALDEIRA I, DUARTE F L, SPRANGER I. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency. Journal of Agricultural and Food Chemistry, 2013, 61(4): 939-946.

doi: 10.1021/jf303704u pmid: 23294371
[6]
RINALDI A, GAMBUTI A, MOINE-LEDOUX V, MOIO L. Evaluation of the astringency of commercial tannins by means of the SDS-PAGE-based method. Food Chemistry, 2010, 122(4): 951-956.
[7]
GAMBUTI A, RINALDI A, UGLIANO M, MOIO L. Evolution of phenolic compounds and astringency during aging of red wine: Effect of oxygen exposure before and after bottling. Journal of Agricultural and Food Chemistry, 2013, 61(8): 1618-1627.

doi: 10.1021/jf302822b pmid: 23110349
[8]
QI M Y, HUANG Y C, SONG X X, LING M Q, ZHANG X K, DUAN C Q, LAN Y B, SHI Y. Artificial saliva precipitation index (ASPI): An efficient evaluation method of wine astringency. Food Chemistry, 2023, 413: 135628.
[9]
KILMISTER R L, FAULKNER P, DOWNEY M O, DARBY S J, FALCONER R J. The complexity of condensed tannin binding to bovine serum albumin-An isothermal titration calorimetry study. Food Chemistry, 2016, 190: 173-178.
[10]
EDMONDS R S, FINNEY T J, BULL M R, WATRELOT A A, KUHL T L. Friction measurements of model saliva-wine solutions between polydimethylsiloxane surfaces. Food Hydrocolloids, 2021, 113: 106522.
[11]
HAYASHI N, UJIHARA T, CHEN R G, IRIE K, IKEZAKI H. Objective evaluation methods for the bitter and astringent taste intensities of black and oolong teas by a taste sensor. Food Research International, 2013, 53(2): 816-821.
[12]
闫春晓, 周聪, 王德华, 邢福全, 白小佳, 王艳萍. 基于主成分分析玫瑰露酒感官特征与偏好性关系. 食品研究与开发, 2023, 44(1): 83-88.
YAN C X, ZHOU C, WANG D H, XING F Q, BAI X J, WANG Y P. Relationship between sensory characteristics and preference of rose Lujiu based on principal component analysis. Food Research and Development, 2023, 44(1): 83-88. (in Chinese)
[13]
王若辉, 李庆杨, 刘毅华, 莫润宏. 基于蛋白质-酚互作体系的核桃仁涩味评定方法. 食品与发酵工业, 2022, 48(24): 259-265.

doi: 10.13995/j.cnki.11-1802/ts.029978
WANG R H, LI Q Y, LIU Y H, MO R H. A method for astringency assessment of walnut kernel based on protein-phenol interaction system. Food and Fermentation Industries, 2022, 48(24): 259-265. (in Chinese)

doi: 10.13995/j.cnki.11-1802/ts.029978
[14]
LEE C B, LAWLESS H T. Time-course of astringent sensations. Chemical Senses, 1991, 16(3): 225-238.
[15]
GAWEL R, OBERHOLSTER A, FRANCIS I L. A ‘mouth-feel wheel’: Terminology for communicating the mouth-feel characteristics of red wine. Australian Journal of Grape and Wine Research, 2000, 6(3): 203-207.
[16]
VIDAL L, ANTÚNEZ L, GIMÉNEZ A, MEDINA K, BOIDO E, ARES G. Dynamic characterization of red wine astringency: Case study with Uruguayan tannat wines. Food Research International, 2016, 82: 128-135.
[17]
RINALDI A, MOINE V, MOIO L. Astringency subqualities and sensory perception of Tuscan Sangiovese wines. OENO One, 2020, 54(1): 75-85.
[18]
ZHAO Q H, DU G R, WANG S N, ZHAO P T, CAO X M, CHENG C, LIU H, XUE Y W, WANG X Y. Investigating the role of tartaric acid in wine astringency. Food Chemistry, 2023, 403: 134385.
[19]
VIDAL L, ANTÚNEZ L, GIMÉNEZ A, ARES G. Evaluation of palate cleansers for astringency evaluation of red wines. Journal of Sensory Studies, 2016, 31(2): 93-100.
[20]
HE Y X, CHEN S, TANG K, QIAN M, YU X W, XU Y. Sensory characterization of Baijiu pungency by combined time-intensity (TI) and temporal dominance of sensations (TDS). Food Research International, 2021, 147: 110493.
[21]
PINHEIRO A C M, NUNES C A, VIETORIS V. SensoMaker: A tool for sensorial characterization of food products. Ciência e Agrotecnologia, 2013, 37(3): 199-201.
[22]
PINEAU N, SCHLICH P, CORDELLE S, MATHONNIÈRE C, ISSANCHOU S, IMBERT A, ROGEAUX M, ETIÉVANT P, KÖSTER E. Temporal Dominance of Sensations: Construction of the TDS curves and comparison with time-intensity. Food Quality and Preference, 2009, 20(6): 450-455.
[23]
LAWLESS H T, CORRIGAN C J. Semantics of astringency// KURIHARA K, SUZUKI N, OGAWA H, eds. Olfaction and Taste XI. Tokyo: Springer Japan, 1994: 288-292.
[24]
RINALDI A, MOIO L. Effect of enological tannin addition on astringency subqualities and phenolic content of red wines. Journal of Sensory Studies, 2018, 33(3): e12325.
[25]
WANG S Y, OLARTE MANTILLA S M, SMITH P A, STOKES J R, SMYTH H E. Astringency sub-qualities drying and pucker are driven by tannin and pH-Insights from sensory and tribology of a model wine system. Food Hydrocolloids, 2020, 109: 106109.
[26]
KING M C, CLIFF M A, HALL J. Effectiveness of the ‘Mouth-feel Wheel’ for the evaluation of astringent subqualities in British Columbia red wines. Journal of Wine Research, 2003, 14(2/3): 67-78.
[27]
何英霞. 白酒刺激感特征的多维表征及风味化学基础解析[D]. 无锡: 江南大学, 2022.
HE Y X. Multidimensional characterization of Baijiu pungency and analysis of flavor chemical basis[D]. Wuxi: Jiangnan University, 2022. (in Chinese)
[28]
VENKATESAN R, SHIRLY S, SELVARATHI M, JEBASEELI T J. Human Emotion Detection Using DeepFace and Artificial Intelligence// RAiSE-2023. Basel Switzerland: MDPI, 2023: 37.
[29]
FLEMING E E, ZIEGLER G R, HAYES J E. Check-all-that-apply (CATA), sorting, and polarized sensory positioning (PSP) with astringent stimuli. Food Quality and Preference, 2015, 45: 41-49.

pmid: 26113771
[30]
VIDAL L, ANTÚNEZ L, GIMÉNEZ A, MEDINA K, BOIDO E, ARES G. Sensory characterization of the astringency of commercial Uruguayan Tannat wines. Food Research International, 2017, 102: 425-434.

doi: S0963-9969(17)30588-4 pmid: 29195968
[31]
GOTOW N, MORITANI A, HAYAKAWA Y, AKUTAGAWA A, HASHIMOTO H, KOBAYAKAWA T. Development of a time- intensity evaluation system for consumers: Measuring bitterness and retronasal aroma of coffee beverages in 106 untrained panelists. Journal of Food Science, 2015, 80(6): S1343-S1351.
[32]
KANG W Y, NIIMI J, MUHLACK R A, SMITH P A, BASTIAN S E P. Dynamic characterization of wine astringency profiles using modified progressive profiling. Food Research International, 2019, 120: 244-254.

doi: S0963-9969(19)30128-0 pmid: 31000236
[33]
黄翠, 武运, 薛洁, 皇甫洁, 孙志伟, 唐家乐, 张成学, 李宁, 宋涛. 基于面部表情分析技术的葡萄酒中关键香气与饮用舒适度相关性评价. 食品与发酵工业, 2024, 50(8): 146-157.

doi: 10.13995/j.cnki.11-1802/ts.036340
HUANG C, WU Y, XUE J, HUANGFU JIE, SUN Z W, TANG J L, ZHANG C X, LI N, SONG T. Evaluation of the correlation between key aromas and drinking comfort in wine based on facial expression analysis technology. Food and Fermentation Industries, 2024, 50(8): 146-157. (in Chinese)

doi: 10.13995/j.cnki.11-1802/ts.036340
[34]
冯婧, 皇甫洁, 董建辉, 韩英, 刘荣, 王成, 宋涛, 王丽华, 张娇娇, 韩兴林, 王德良. 面部表情分析技术在露酒感官及消费者接受度评价的初步研究. 食品与发酵工业, 2022, 48(6): 257-262.

doi: 10.13995/j.cnki.11-1802/ts.027554
FENG J, HUANGFU J, DONG J H, HAN Y, LIU R, WANG C, SONG T, WANG L H, ZHANG J J, HAN X L, WANG D L. Sensory evaluation and consumer acceptance of Chinese Lujiu using facial expression analysis. Food and Fermentation Industries, 2022, 48(6): 257-262. (in Chinese)

doi: 10.13995/j.cnki.11-1802/ts.027554
[1] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[2] LIU ChuanXia, CHEN Xin, WANG Xiao, LI XueWen, LI TingTing, WENG ChangJiang, ZHENG Jun. Preparation and Application of Polyclonal Antibodies Against Pig CD1d Protein [J]. Scientia Agricultura Sinica, 2024, 57(8): 1620-1628.
[3] ZHAO WenShuo, ZHANG JinLong, YAO ZhaoRan, SONG YuQi, LÜ Shun, LIU YingXue, YUAN CongCong, SUN YuHang. Effects of Aflatoxin B1 on Influenza Virus Replication, Organ Damages and Intestinal Microbiota Disorder of Swine [J]. Scientia Agricultura Sinica, 2024, 57(20): 4145-4160.
[4] FENG ChunYing, ZHANG ZhaoXia, LIU YunFei, HUANG Li, WENG ChangJiang. Preparation of Monoclonal Antibody Against African Swine Fever Virus p54 Protein and Identification of Its Epitope [J]. Scientia Agricultura Sinica, 2024, 57(19): 3936-3944.
[5] WANG JianFeng, HAN YuQi, WANG Kai, ZHAO Man, LI JiXin, FENG LiDan, ZHANG Bo, ZHAO Yong, JIANG YuMei. Influence of Pre-Harvest Application of Benzothiadiazole on Color and Aroma of Cabernet Gernischt Grapes During Fruit Development [J]. Scientia Agricultura Sinica, 2024, 57(19): 3870-3893.
[6] ZHOU DeGang, XU BinYan, WANG QingXia, ZHU Xia, YANG XueShan. Effects of Cell-to-Cell Contact Between Torulaspora delbrueckii and Saccharomyces cerevisiae on the Flavor and Quality of Cabernet Sauvignon Wine [J]. Scientia Agricultura Sinica, 2024, 57(16): 3264-3282.
[7] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[8] ZHANG NaiXin, XU ChengZhi, YANG YuYing, ZHANG YaPing, WAN YunFei, QIAO ChuanLing, CHEN HuaLan. Identification of Key Amino Acids in the Antigenic Variation of Eurasian Avian-Like H1N1 Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2023, 56(14): 2828-2836.
[9] WANG Tao, LUO Rui, SUN Yuan, QIU HuaJi. Development Strategies and Application Prospects of African Swine Fever Vaccines: Feasibility and Probability [J]. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222.
[10] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[11] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[12] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[13] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[14] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[15] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!