Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4308-4327.doi: 10.3864/j.issn.0578-1752.2024.21.011

• HORTICULTURE • Previous Articles     Next Articles

Analysis of Glucosinolate Content and Component in Brassica rapa L.

MA YuHe1(), PU YuanYuan1, WANG JinXiong2, WU JunYan1, YANG Gang1, ZHAO CaiXia2, MA Li3, LIU LiJun3, WANG WangTian4, MIAO ChunQing5, GUAN ZhouBo6, FAN TingTing1, WANG XingRong7, MA Rui1, LIAN YinTao4, SUN WanCang1()   

  1. 1 College of Agriculture, Gansu Agricultural University, Lanzhou 730070
    2 Agricultural Research Institute, Xizang Autonomous Region Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032
    3 State Key Laboratory of Crop Science in Arid Habitats, Lanzhou 730070
    4 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070
    5 Zhangye Academy of Agricultural Sciences, Zhangye 734000, Gansu
    6 Shaanxi Province Hybrid Rapeseed Research Center, Yangling 712100, Shaanxi
    7 Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2024-03-12 Accepted:2024-07-24 Online:2024-11-01 Published:2024-11-10
  • Contact: SUN WanCang

Abstract:

【Objective】 Brassica rapa L. originated from China, whose qualify analysis and evaluation was highly important for its development and utilization. 【Method】 In this study, rapeseed was used as the research object. After grinding extraction and ion exchange column treatment, the glucosinolate extract was obtained. The high performance liquid chromatography (HPLC) was utilized to determine and analyze the content and components of glucosinolates in 323 B. rapa L. accessions. 【Result】 The total content of glucosinolates in 323 B. rapa L. samples ranged from 26.19 to 238.21 µmol∙g-1, with an average of 137.22 µmol∙g-1. A total of 9 glucosinolate components were identified, consisting of five aliphatic glucosinolates (progoitrin, glucoraphanin, gluconapoleiferin, gluconapin and glucobrassicanapin), three indole glucosinolates (4-hydroxyglucobrassicin, glucobrassicin, and 4-methoxyglucobrassicin), and one aromatic glucosinolate (gluconasturtiin). The predominant glucosinolate in B. rapa L. was gluconapin, which belonged to the aliphatic glucosinolate group. It had an average concentration of 122.68 µmol∙g-1, making up 93.71% of the aliphatic glucosinolate content and 89.40% of the overall glucosinolate content. The comparison of the total glucosinolate content in accessions originated from various ecological zones indicated that the Yangtze River basin had the highest glucosinolate content, followed by the Huanghuai region, Xizang, and Gansu accessions. Among accessions, the content of 4-hydroxyglucobrassicin and glucobrassicin in Gansu accessions was more than that in accessions originated from the other three ecological zones. The content of gluconapin in Gansu accessions was the lowest compared to other accessions. The content of indole glucosinolates exhibited significant variations based on their sensitivity to temperature, with the highest levels observed in harsh winter types (11.50 µmol∙g-1), followed by winter types (7.60 µmol∙g-1), semi-winter types (6.77 µmol∙g-1), and spring types (3.87 µmol∙g-1). The findings demonstrated that, the content of progoitrin and indole glucosinolates differed significantly among the germplasm collection used in this study. Six accessions with high-indolyl glucoside content (ranging from 5.86 to 13.81 µmol∙g-1) and three accessions with progoitrin content (ranging from 50.14 to 68.38 µmol∙g-1) were selected by screening. 【Conclusion】 Aliphatic glucosinolates were the primary components of glucosinolates in B. rapa L., with gluconapin being the predominant component. The glucosinolate components exhibited significant variations depending on the genotype of the accessions. Different genotypes were selected based on their concentration of ultra-high glucosinolate, high indole glucosinolate, and high progoitrin.

Key words: Brassica rapa L., rapeseed, glucosinolates, components analyze, HPLC

Table 1

Elution gradient of mobile phase"

时间 Time (min) 流量 Flow rate (mL·min-1) 流动相A Mobile phase A (%) 流动相B Mobile phase B (%)
0 1 85.0 15.0
10 1 0.0 100.0
12 1 0.0 100.0
15 1 85.0 15.0
20 1 85.0 15.0

Table 2

Glucosinolates detected in Brassica rapa L. and their response factors"

硫苷类别
Aliphatic glucosinolate
硫苷名称
Name of glucosinolate
相对校正系数
Response facto (ƒ)
缩写
Abbreviation
脂肪族硫苷 Aliphatic glucosinolate 2-羟基-3-丁烯基硫苷 Progoitrin 1.09 PRO
4-甲亚砜丁基硫苷 Glucoraphanin 1.07 GRP
2-羟基-4-戊烯基硫苷 Gluconapoleiferin 1.00 GAL
3-丁烯基硫苷 Gluconapin 1.11 GNA
4-戊烯基硫苷 Glucobrassicanapin 1.15 GBN
吲哚族硫苷 Indole glucosinolate 4-羟基-3-吲哚甲基硫苷 4-hydroxyglucobrassicin 0.28 4-OHGBS
3-吲哚甲基硫苷 Glucobrassicin 0.29 GBS
4-甲氧基-3-吲哚甲基硫苷 4-methoxyglucobrassicin 0.25 MGBS
芳香族硫苷 Aromatic glucosinolate 苯乙基硫苷 Gluconasturtiin 0.95 GST

Table 3

Each component and total amount of glucosinolates in 323 samples"

硫苷
Glucosinolate
硫苷变异范围
Variation range of glucosinolate
硫苷均值
Glucosinolate mean (µmol∙g-1)
占总硫苷含量的百分比
Percentage (%)
变异系数
Coefficient of variation (%)
极差
MAX-MIN
总硫苷 Total gucosinolate 26.19—238.21 137.22±29.28 100.00 21.34 212.02
脂肪族硫苷总量 Total aliphatic glucosinolate 21.50—225.66 130.91±29.05 95.40 22.19 204.16
2-羟基-3-丁烯基硫苷Progoitrin 0.82—68.38 6.02±6.63 4.39 109.98 67.56
4-甲亚砜丁基硫苷Glucoraphanin 0.10—8.86 1.37±1.81 1.00 132.07 8.76
2-羟基-4-戊烯基硫苷Gluconapoleiferin 0.47—4.52 0.29±0.63 0.21 218.54 4.04
3-丁烯基硫苷 Gluconapin 15.90—217.77 122.68±31.39 89.40 25.59 201.87
4-戊烯基硫苷Glucobrassicanapin 0.89—7.45 0.56±1.35 0.40 243.37 6.56
吲哚族硫苷总量 Total indole glucosinolate 0.64—18.97 5.84±3.82 4.26 65.39 18.33
4-羟基-3-吲哚甲基硫苷 4-hydroxyglucobrassicin 0.40—8.38 3.01±1.63 2.19 54.13 7.97
3-吲哚甲基硫苷 Glucobrassicin 0.22—14.28 2.69±2.48 1.96 91.94 14.06
4-甲氧基-3-吲哚甲基硫苷 4-methoxyglucobrassicin 0.13—5.82 0.14 ±0.45 0.10 325.73 5.69
芳香族硫苷总量 Total aromatic glucosinolates 0.11—6.96 0.47±1.19 0.34 252.70 6.85
苯乙基硫苷 Gluconasturtiin 0.11—6.96 0.47±1.19 0.34 252.70 6.85

Fig. 1

Content of various sulfur glycoside components in low sulfur glycoside types"

Fig. 2

Content of various sulfur glycoside components in middle types of sulfur glycoside types"

Table 4

Total amount of glucosinolates and content of various components under different levels of total glucosinolate"

项目
Item
总硫苷
Total gucosinolate
脂肪族硫
苷总量
Total aliphatic glucosinolate
PRO GRP GAL GNA GBN 吲哚族硫
苷总量
Total indole glucosinolate
4-OHGBS GBS MGBS 芳香族硫
苷总量
Total aromatic glucosinolate
GST
低硫苷菜籽样品(硫苷含量
≤40 µmol∙g-1
Low sulfur glucoside rapeseed sample (sulfur glucoside content ≤40 µmol∙g-1)
平均值(µmol∙g-1)
Glucosinolate
mean (µmol∙g-1)
29.73±3.54 24.58±3.08 6.28±1.38 0.12±0.02 0.83±0.23 17.35±1.45 0.00 5.01±0.43 4.46±0.59 0.33±0.07 0.21±0.09 0.14±0.03 0.14±0.03
百分比 (%)
percentage (%)
100.00 76.90 19.64 0.38 2.60 54.27 0.00 15.67 13.96 1.04 0.67 0.45 0.45
变异系数 (%)
Coefficient of variation (%)
11.91 12.52 21.95 18.37 27.67 8.34 0.00 8.67 13.14 19.91 39.73 22.74 22.74
硫苷变异范围
Range of variation
of glucosinolates
26.19—33.27 21.50—27.65 4.90—7.66 0.10—0.15 0.60—1.06 15.90—18.79 0.00 4.58—5.44 3.88—5.05 0.27—0.40 0.13—0.30 0.11—0.17 0.11—0.17
中硫苷菜籽样品(硫苷含量
41-80 µmol∙g-1) Medium sulfur glucoside (with a content of 41-80 µmol∙g-1)
平均值(µmol∙g-1)
Glucosinolate
mean (µmol∙g-1)
72.94±5.91 69.93±5.78 12.67±18.92 0.57±0.76 0.37±0.46 56.12±17.67 0.19±0.39 2.61±1.67 1.20±0.54 1.12±1.08 0.29±0.58 0.40±0.80 0.40±0.80
百分比 (%)
percentage (%)
100.00 95.86 17.38 0.78 0.51 76.94 0.27 3.58 1.65 1.54 0.40 0.55 0.55
变异系数 (%)
Coefficient of variation (%)
8.10 8.27 149.30 134.70 123.02 31.49 0.00 64.03 45.08 96.29 200.00 200.00 200.00
硫苷变异范围 Range of variation of glucosinolates 61.87—78.83 61.24—76.24 1.86—50.14 0.91—1.92 0.86—1.00 23.19—72.13 0.97—0.97 0.64—5.61 0.40—1.89 0.23—3.23 1.46—1.46 2.01—2.01 2.01—2.01
高硫苷菜籽样品(硫苷含量81-100 µmol∙g-1
High glucoside (with a content of 81-100 µmol∙g-1)
平均值(µmol∙g-1) Glucosinolate
mean (µmol∙g-1)
93.72±5.41 89.22±6.41 7.85±13.33 1.41±1.48 0.38±0.66 79.59±19.97 0.00 4.24±2.23 2.52±1.10 1.68±1.26 0.05±0.18 0.25±0.94 0.25±0.94
百分比 (%) Percentage (%) 100.00 95.20 8.37 1.50 0.40 84.92 0.00 4.53 2.68 1.79 0.05 0.27 0.27
变异系数 (%)
Coefficient of variation (%)
5.77 7.19 169.83 105.32 173.75 25.09 0.00 52.53 43.56 75.21 374.17 374.17 374.17
硫苷变异范围 Range of variation of glucosinolates 82.70—99.95 76.85—96.92 0.87—50.16 0.78—4.03 1.00—2.00 23.87—96.61 0.00 1.93—10.49 1.05—5.54 0.40—4.95 0.73—0.73 3.77—3.77 3.77—3.77
超高硫苷菜籽
样品(硫苷含量
≥101 µmol∙g-1
Ultra high sulfur content
(sulfur content
≥101 µmol∙g-1)
平均值 (µmol∙g-1)
Glucosinolate
mean (µmol∙g-1)
141.17±25.74 134.70±25.79 5.82±5.60 1.39±1.84 0.28±0.64 126.63±27.87 0.59±1.39 5.98±3.87 3.05±1.64 2.79±2.52 0.14±0.46 0.49±1.21 0.49±1.21
百分比 (%) Percentage (%) 100.00 95.42 4.12 0.99 0.20 89.70 0.42 4.23 2.16 1.97 0.10 0.34 0.34
变异系数 (%)
Coefficient of variation (%)
18.23 19.15 96.18 132.13 226.22 22.01 234.33 64.80 53.78 90.41 327.67 249.16 249.16
硫苷变异范围 Range of variation of glucosinolates 100.02—238.21 88.68—225.66 0.82—68.38 0.41—8.86 0.47—4.52 56.11—217.77 0.89—7.45 0.91—18.97 0.64—8.38 0.22—14.28 0.14—5.82 0.49—6.96 0.49—6.96

Fig. 3

Content of various sulfur glycoside components in high sulfur glycoside types"

Fig. 4

Content of various sulfur glycoside components in ultra-high sulfur glycoside types This picture only marks 15 representative ultra-high glucosinolate germplasm resources"

Table 5

The content of glucosinolates and the correlation between different glucosinolate components in the group"

项目
Item
总硫苷
Total gucosinolate
2-羟基-3-
丁烯基硫苷Progoitrin
4-甲亚砜
丁基硫苷Glucoraphanin
2-羟基-4-
戊烯基硫苷Glucon-
apoleiferin
3-丁烯
基硫苷
Gluconapin
4-羟基-3-
吲哚甲基硫苷
4-hydroxyglu-
cobrassicin
4-戊烯基硫苷Glucobrassi-
canapin
3-吲哚
甲基硫苷
Gluco-
brassicin
苯乙基硫苷
Gluconas-
turtiin
4-甲氧基-3-
吲哚甲基硫苷
4-methoxyglu-
cobrassicin
脂肪族硫
苷总量
Total aliphatic glucosinolates
吲哚族硫苷总量
Total indole glucosinolate
2-羟基-3-丁烯基硫苷Progoitrin -0.06
4-甲亚砜丁基硫苷Glucoraphanin -0.05 0.35
2-羟基-4-戊烯基硫苷Gluconapoleiferin -0.07 0.62 0.54
3-丁烯基硫苷
Gluconapin
0.93** -0.36 -0.32 -0.35
4-羟基-3-吲哚甲基硫苷4-hydroxyglucobrassicin 0.02 0.29 0.63 0.54 -0.22
4-戊烯基硫苷Glucobrassicanapin 0.05 0.19 0.57 0.48 -0.16 0.53
3-吲哚甲基硫苷
Glucobrassicin
0.12 0.28 0.83** 0.56 -0.16 0.64 0.62
苯乙基硫苷
Gluconasturtiin
0.11 0.10 0.19 0.19 0.00 0.14 0.15 0.13
4-甲氧基-3-吲哚甲基
硫苷4-methoxyglucobrassicin
0.15 0.07 0.16 0.17 0.06 0.13 0.13 0.11 0.49
脂肪族硫苷总量
Total aliphatic glucosinolates
0.99** -0.11 -0.17 -0.16 0.96** -0.09 -0.04 -0.01 0.04 0.10
吲哚族硫苷总量
Total indole glucosinolate
0.10 0.32 0.82** 0.61 -0.19 0.86** 0.65 0.93** 0.20 0.24 -0.03
芳香族硫苷总量
Total aromatic glucosinolates
0.11 0.10 0.19 0.19 0.00 0.14 0.15 0.13 1.00** 0.49 0.04 0.20

Table 6

Total amount and content of various components of glucosinolates in winter and spring rapeseed"

项目
Item
总硫苷
Total gucosinolate
脂肪族硫
苷总量
Total aliphatic glucosinolate
PRO GRP GAL GNA GBN 吲哚族硫
苷总量
Total indole glucosinolate
4-OHGBS GBS MGBS 芳香族硫
苷总量
Total aromatic glucosinolate
GST
强冬性
Strong winter
硫苷均值
Glucosinolate mean (µmol∙g-1)
133.51±21.97 121.14±21.02 9.30±3.96 3.63±1.30 0.89±0.77 105.15±20.33 2.18±1.90 11.50±2.10 5.23±0.98 6.01±1.64 0.25±0.35 0.87±1.17 0.87±1.17
百分比
Percentage (%)
100.00 90.74 6.97 2.72 0.67 78.76 1.63 8.61 3.92 4.50 0.19 0.65 0.65
变异系数
Coefficient of
variation (%)
16.45 17.35 42.54 35.81 87.16 19.33 87.38 18.27 18.65 27.23 137.12 133.42 133.42
极差
MAX-MIN
164.82 148.50 25.63 8.76 2.68 145.30 6.56 14.39 5.52 12.03 1.17 4.79 4.79
硫苷变异范围
Range of variation of glucosinolates
26.19—191.00 21.50—170.00 4.34—29.96 0.10—8.86 0.60—3.28 15.90—161.20 0.89—7.45 4.58—18.97 2.48—8.00 0.40—12.43 0.14—1.31 0.11—4.90 0.11—4.90
冬性
Winter
硫苷均值
Glucosinolate mean (µmol∙g-1)
142.81±41.63 135.06±40.92 6.86±2.73 2.29±1.00 0.79±0.66 124.36±40.77 0.75±1.26 7.60±1.93 3.07±0.77 4.41±1.59 0.11±0.39 0.15±0.54 0.15±0.54
百分比
Percentage (%)
100.00 94.57 4.81 1.60 0.55 87.08 0.53 5.32 2.15 3.09 0.08 0.11 0.11
变异系数
Coefficient of
variation (%)
29.15 30.29 39.73 43.54 83.28 32.79 167.76 25.33 25.02 36.06 346.41 346.41 346.41
极差
MAX-MIN
131.31 131.60 9.60 2.65 0.90 139.04 2.54 6.36 3.32 4.96 0.00 0.00 0.00
硫苷变异范围
Range of variation of glucosinolates
72.59—203.90 64.98—196.57 2.29—11.90 0.91—3.57 0.86—1.76 54.13—193.17 0.97—3.51 4.88—11.24 0.91—4.24 2.23—7.19 1.46—1.46 2.01—2.01 2.01—2.01
半冬性
Semi-
Winter
硫苷均值
Glucosinolate mean (µmol∙g-1)
185.48±31.90 178.25±30.14 2.80±2.22 0.89±1.19 0.00 174.25±29.62 0.35±0.85 6.77±4.32 1.41±0.81 5.08±4.64 0.28±0.75 0.46±1.22 0.46±1.22
百分比
Percentage (%)
100.00 96.10 1.51 0.48 0.00 93.94 0.19 3.65 0.76 2.74 0.15 0.25 0.25
变异系数
Coefficient of
variation (%)
17.20 16.91 78.99 133.16 0.00 17.00 244.95 63.80 57.19 91.37 264.58 264.58 264.58
极差
MAX-MIN
99.59 90.79 6.41 3.10 0.00 84.99 0.00 12.94 2.50 12.88 0.00 0.00 0.00
硫苷变异范围
Range of variation of glucosinolates
138.62—238.21 134.87—225.66 0.82—7.23 0.41—3.51 0.00 132.78—217.77 2.42—2.42 2.36—15.30 0.89—3.39 1.40—14.28 2.25—2.25 3.70—3.70 3.70—3.70
春性
Spring
硫苷均值
Glucosinolate mean (µmol∙g-1)
136.41±28.89 132.18±28.51 5.03±7.18 0.59±1.29 0.08±0.42 126.46±30.47 0.03±0.41 3.87±1.97 2.34±1.12 1.43±1.18 0.10±0.46 0.36±1.20 0.36±1.20
百分比
Percentage (%)
100.00 96.90 3.68 0.44 0.06 92.71 0.02 2.84 1.71 1.05 0.07 0.26 0.26
变异系数
Coefficient of
variation (%)
21.18 21.57 142.96 217.61 532.31 24.10 1506.65 50.77 47.82 82.11 474.54 332.84 332.84
极差
MAX-MIN
188.30 182.87 67.51 8.68 4.04 185.59 0.00 18.32 7.97 10.36 5.69 6.79 6.79
硫苷变异范围
Range of variation of glucosinolates
33.27—221.57 27.65—210.52 0.87—68.38 0.15—8.83 0.47—4.52 18.79—204.38 6.14—6.14 0.64—18.96 0.40—8.38 0.22—10.58 0.13—5.82 0.17—6.96 0.17—6.96

Table 7

Statistical analysis of various sulfur glycoside contents in different ecological regions"

项目
Item
总硫苷
Total gucosinolates
脂肪族硫
苷总量
Total aliphatic glucosinolates
PRO GRP GAL GNA GBN 吲哚族硫苷总量
Total indole glucosinolate
4-OHGBS GBS MGBS 芳香族硫
苷总量
Total aromatic glucosinolate
GST
长江
流域
Yangtze river basin
硫苷均值
Glucosinolate mean (µmol∙g-1)
162.00±32.61 154.75±32.79 3.87±6.28 1.21±1.87 0.17±0.57 149.36±36.52 0.14±0.57 7.17±3.37 2.73±1.80 4.33±3.38 0.11±0.43 0.09±0.37 0.09±0.37
百分比
percentage (%)
100.00 95.52 2.39 0.74 0.10 92.20 0.09 4.42 1.68 2.67 0.07 0.06 0.06
变异系数
Coefficient of
variation (%)
20.13 21.19 162.28 154.86 336.32 24.45 400.00 47.06 65.99 77.99 400.00 400.00 400.00
极差
MAX-MIN
125.95 118.98 26.99 4.38 1.91 143.24 0.00 12.09 5.18 13.56 0.00 0.00 0.00
硫苷变异范围
Range of variation of glucosinolates
112.26—238.21 106.68—225.66 0.82—27.81 1.48—5.87 0.47—2.39 74.53—217.77 2.42—2.42 3.20—15.30 0.89—6.08 0.72—14.28 1.82—1.82 1.55—1.55 1.55—1.55
黄淮区
Huang-
Huai Region
硫苷均值
Glucosinolate mean (µmol∙g-1)
157.24±39.67 149.96±39.16 6.14±3.04 2.07±1.14 0.63±0.69 140.54±40.32 0.59±1.21 7.03±2.32 2.86±0.92 4.03±1.78 0.15±0.56 0.25±0.92 0.25±0.92
百分比
Percentage (%)
100.00 95.37 3.91 1.31 0.40 89.38 0.37 4.47 1.82 2.56 0.10 0.16 0.16
变异系数
Coefficient of
variation (%)
25.23 26.11 49.44 54.93 109.68 28.69 205.90 32.99 32.11 44.20 374.17 374.17 374.17
极差
MAX-MIN
133.81 131.24 10.82 3.16 0.66 136.92 1.47 8.88 3.28 5.79 0.00 0.00 0.00
硫苷变异范围
Range of variation of glucosinolates
87.43—221.25 81.39—212.63 1.07—11.90 0.41—3.57 1.10—1.76 74.64—211.56 2.04—3.51 2.36—11.24 0.96—4.24 1.40—7.19 2.25—2.25 3.70—3.70 3.70—3.70
甘肃
Gansu
硫苷均值
Glucosinolate mean (µmol∙g-1)
134.13±22.73 121.77±21.98 10.00±7.74 3.63±1.39 0.94±0.87 105.14±22.53 2.07±1.91 11.50±2.27 5.23±1.05 5.95±1.85 0.32±0.72 0.86±1.16 0.86±1.16
百分比
Percentage (%)
100.00 90.79 7.46 2.70 0.70 78.38 1.54 8.57 3.90 4.43 0.24 0.64 0.64
变异系数
Coefficient of
variation (%)
16.95 18.05 77.32 38.44 92.77 21.43 92.67 19.77 20.08 31.10 220.49 135.09 135.09
极差
MAX-MIN
172.48 166.68 64.99 8.76 3.92 167.69 6.56 14.39 5.89 12.03 5.68 4.79 4.79
硫苷变异范围
Range of variation of glucosinolates
26.19—198.67 21.50—188.18 3.39—68.38 0.10—8.86 0.60—4.52 15.90—183.59 0.89—7.45 4.58—18.97 2.48—8.38 0.40—12.43 0.14—5.82 0.11—4.90 0.11—4.90
西藏
Xizang
硫苷均值
Glucosinolate mean (µmol∙g-1)
135.76±27.79 131.86±27.32 4.70±5.78 0.48±1.09 0.03±0.19 126.67±28.58 0.00 3.53±1.27 2.20±0.89 1.26±0.80 0.06±0.25 0.37±1.23 0.37±1.23
百分比
Percentage (%)
100.00 97.13 3.46 0.35 0.02 93.30 0.00 2.60 1.62 0.93 0.05 0.27 0.27
变异系数
Coefficient of
variation (%)
20.47 20.72 123.06 225.35 748.02 22.56 0.00 35.86 40.34 63.18 379.19 335.11 335.11
极差
MAX-MIN
159.70 149.28 49.29 8.25 1.00 181.19 0.00 7.88 5.72 4.98 1.51 5.80 5.80
硫苷变异范围
Range of variation of glucosinolates
61.87—221.57 61.24—210.52 0.87—50.16 0.58—8.83 1.00—2.00 23.19—204.38 0.00 0.64—8.52 0.40—6.12 0.22—5.20 0.36—1.87 1.16—6.96 1.16—6.96
[1]
BRADER G, TAS E, PALVA E T. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiology, 2001, 126(2): 849-860.
[2]
HALKIER B A. General Introduction to Glucosinolates. Advances in Botanical Research. Amsterdam: Elsevier, 2016: 1-14.
[3]
王天娅, 余坤江, 万薇, 叶波涛, Aimal Nawaz Khattak, 杨仁芹, 田恩堂. 甘蓝型油菜种质群体芥酸和硫苷含量变异及相关性分析. 种子, 2020, 39(11): 59-62.
WANG T Y, YU K J, WAN W, YE B T, KHATTAK A N, YANG R Q, TIAN E T. Variation and correlation analysis of erucic acid and glucoside content in germplasm groups of Brassica napus. Seed, 2020, 39(11): 59-62. (in Chinese)
[4]
张园园. 油菜和拟南芥中几个硫代葡萄糖苷合成及调控基因的功能分析[D]. 武汉: 华中农业大学, 2015.
ZHANG Y Y. Functional analysis of several genes involved in biosynthesis and regulation of glucosinolate in Brassica napus and Arabidopsis thaliana [D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[5]
赵恒. 甘蓝型油菜CRISPR/Cas9编辑体系的构建及其对BnSVP的编辑效果[D]. 荆州: 长江大学, 2018.
ZHAO H. Construction of CRISPR/Cas9 editing system of Brassica napus and its editing effect on BnSVP in rapeseed (Brassica napus L.)[D]. Jingzhou: Yangtze University, 2018. (in Chinese)
[6]
AGERBIRK N, OLSEN C E. Glucosinolate structures in evolution. Phytochemistry, 2012, 77: 16-45.

doi: 10.1016/j.phytochem.2012.02.005 pmid: 22405332
[7]
WILLIAMS C M, HENRY H A L, SINCLAIR B J. Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews of the Cambridge Philosophical Society, 2015, 90(1): 214-235.

doi: 10.1111/brv.12105 pmid: 24720862
[8]
EASTERLING D R, MEEHL G A, PARMESAN C, CHANGNON S A, KARL T R, MEARNS L O. Climate extremes: Observations, modeling, and impacts. Science, 2000, 289(5487): 2068-2074.

doi: 10.1126/science.289.5487.2068 pmid: 11000103
[9]
杨伟雄. 硫代葡萄糖甙的降解化学及分析进展. 中国油料, 1983, 5(3): 78-87.
YANG W X. Progress in degradation chemistry and analysis of glucosinolates. Chinese Journal of Oil Crop Sciences, 1983, 5(3): 78-87. (in Chinese)
[10]
单彦卿, 张建丽, 何洪巨. 十字花科植物中硫代葡萄糖甙及萝卜硫素的性质研究. 食品科技, 2007, 32(9): 110-112.
SHAN Y Q, ZHANG J L, HE H J. The property research of glucosinolate and sulforaphane in Cruciferae plants. Food Science and Technology, 2007, 32(9): 110-112. (in Chinese)
[11]
陈坤, 杨丽梅, 方智远, 刘玉梅, 庄木, 张扬勇, 孙培田. 十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展. 中国蔬菜, 2010(12): 1-6.
CHEN K, YANG L M, FANG Z Y, LIU Y M, ZHUNG M, ZHANG Y Y, SUN P T. Research progress on regulation and synthesis genes on glucosinolates biosynthesis in crucifer. China Vegetables, 2010(12): 1-6. (in Chinese)
[12]
邱正明, 黄燕, 矫振彪, 朱凤娟, 严承欢. 萝卜硫代葡萄糖苷的研究进展. 中国瓜菜, 2021, 34(2): 1-7.
QIU Z M, HUANG Y, JIAO Z B, ZHU F J, YAN C H. Research progress of glucosinolates in radish. China Cucurbits and Vegetables, 2021, 34(2): 1-7. (in Chinese)
[13]
李小冬, 郭贝贝, 杨英士, 李杰, 李雪飞, 谈满良, 栾连军. 萝卜硫素抗癌机理研究进展. 中药材, 2015, 38(8): 1768-1771.
LI X D, GUO B B, YANG Y S, LI J, LI X F, TAN M L, LUAN L J. Research progress on the anticancer mechanism of sulforaphane. Journal of Chinese Medicinal Materials, 2015, 38(8): 1768-1771. (in Chinese)
[14]
雷建军, 陈长明, 陈国菊, 曹必好, 邹丽芳, 吴双花, 朱张生. 硫苷及其生物合成分子生物学机理研究进展. 华南农业大学学报, 2019, 40(5): 59-70.
LEI J J, CHEN C M, CHEN G J, CAO B H, ZOU L F, WU S H, ZHU Z S. Progress in glucosinolates and its molecular mechanism of biosynthesis. Journal of South China Agricultural University, 2019, 40(5): 59-70. (in Chinese)
[15]
秦晗, 张文姗, 王猛, 熊思灿, 胡丹丹, 孙秀丽, 胡莲莲, 孟金陵, 邹珺. 四个芸薹属物种硫苷含量与种类分析及特殊硫苷成分的种间导入. 植物遗传资源学报, 2020, 21(1): 94-104.

doi: 10.13430/j.cnki.jpgr.20191024003
QIN H, ZHANG W S, WANG M, XIONG S C, HU D D, SUN X L, HU L L, MENG J L, ZOU J. Characterizing glucosinolates of four Brassica species and interspecific transferring of specific glucosinolates. Journal of Plant Genetic Resources, 2020, 21(1): 94-104. (in Chinese)
[16]
MITREITER S, GIGOLASHVILI T. Regulation of glucosinolate biosynthesis. Journal of Experimental Botany, 2021, 72(1): 70-91.

doi: 10.1093/jxb/eraa479 pmid: 33313802
[17]
FRARY A, NESBITT T C, GRANDILLO S, KNAAP E, CONG B, LIU J, MELLER J, ELBER R, ALPERT K B, TANKSLEY S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289(5476): 85-88.

doi: 10.1126/science.289.5476.85 pmid: 10884229
[18]
FELLER A, MACHEMER K, BRAUN E L, GROTEWOLD E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 2011, 66(1): 94-116.

doi: 10.1111/j.1365-313X.2010.04459.x pmid: 21443626
[19]
SØNDERBY I E, GEU-FLORES F, HALKIER B A. Biosynthesis of glucosinolates-Gene discovery and beyond. Trends in Plant Science, 2010, 15(5): 283-290.
[20]
杨林. 甘蓝型油菜硫苷转运基因BnGTRs的克隆与初步研究[D]. 武汉: 华中农业大学, 2015.
YANG L. Cloning and preliminary functional study of glucosinola testransport genes BnGTRs in rapeseed (Brassica napus L.)[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[21]
DOUGHTY K J, PORTER A J R, MORTON A M, KIDDLE G, BOCK C H, WALLSGROVE R. Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. Annals of Applied Biology, 1991, 118(2): 469-477.
[22]
江定, 陈国菊, 雷建军, 曹必好, 陈长明. 硫代葡萄糖苷运输的生理生化及分子机理研究进展. 植物生理学报, 2017, 53(1): 29-37.
JIANG D, CHEN G J, LEI J J, CAO B H, CHEN C M. Advances in the physiological, biochemical and molecular mechanisms of glucosinolate transport. Plant Physiology Journal, 2017, 53(1): 29-37. (in Chinese)
[23]
ANDERSEN T G, HALKIER B A. Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots. Plant Signaling & Behavior, 2014, 9(1): e27740.
[24]
田志涛, 赵永国, Lenka Havlickova, He Zhesi, Andrea L Harper, Ian Bancroft, 邹锡玲, 张学昆, 陆光远. 甘蓝型油菜种子和角果皮中硫苷含量的动态变化及转录组关联分析. 中国农业科学, 2018, 51(4): 635-651. doi: 10.3864/j.issn.0578-1752.2018.04.004.
TIAN Z T, ZHAO Y G, HAVLICKOVA L, HE Z S, HARPER A L, BANCROFT I, ZOU X L, ZHANG X K, LU G Y. Dynamic and associative transcriptomic analysis of glucosinolate content in seeds and silique walls of Brassica napus. Scientia Agricultura Sinica, 2018, 51(4): 635-651. doi: 10.3864/j.issn.0578-1752.2018.04.004. (in Chinese)
[25]
MITHEN R. Glucosinolates-biochemistry, genetics and biological activity. Plant Growth Regulation, 2001, 34(1): 91-103.
[26]
李培武, 赵永国, 张文, 丁小霞, 杨湄, 汪雪芳, 谢从华, 傅廷栋. 中国甘蓝型油菜硫苷含量及组份分析. 中国农业科学, 2005, 38(7): 1346-1352. doi: 10.3321/j.issn:0578-1752.2005.07.010.
LI P W, ZHAO Y G, ZHANG W, DING X X, YANG M, WANG X F, XIE C H, FU T D. Analysis of glucosinolate components and profiles in Brassica napus. Scientia Agricultura Sinica, 2005, 38(7): 1346-1352. doi: 10.3321/j.issn:0578-1752.2005.07.010. (in Chinese)
[27]
李培武. 甘蓝型油菜叶片与种子硫苷相关性研究[D]. 武汉: 华中农业大学, 2007.
LI P W. Glucosinolate and their relationship between leaves and seeds in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese)
[28]
中华人民共和国农业部. 油菜籽中硫代葡萄糖苷的测定高效液相色谱法: NY/T 1582—2007. 北京: 中国农业出版社, 2008.
Ministry of Agriculture of the People’s Republic of China. Rapeseed-Determination of glucosinolates content-Method using high-performance liquid chromatography: NY/T 1582-2007. Beijing: China Agriculture Press, (in Chinese)
[29]
赵兴忠, 王丽萍, 陈文杰, 陈娜娜, 李殿荣, 田建华. 超高效液相色谱内标法测定油菜种子硫苷含量. 西北农业学报, 2012, 21(4): 77-82.
ZHAO X Z, WANG L P, CHEN W J, CHEN N N, LI D R, TIAN J H. Determination of glucosinolate content in rapeseeds by ultra performance liquid chromatography with internal standard method. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(4): 77-82. (in Chinese)
[30]
申艳玲, 徐运杰. 油菜籽饼粕中硫代葡萄糖苷的含量及其降解. 猪业科学, 2023, 40(3): 81-84.
SHEN Y L, XU Y J. Content and degradation of glucosinolates in rapeseed meal. Swine Industry Science, 2023, 40(3): 81-84. (in Chinese)
[31]
LIU Z, HIRANI A H, MCVETTY P B E, DAAYF F, QUIROS C F, LI G Y. Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family. Plant Molecular Biology, 2012, 79(1): 179-189.
[32]
李培武, 丁小霞, 赵永国, 张文, 陈小媚, 李云昌, 谢从华, 傅廷栋. 油菜叶片中硫甙总量与分量的HPLC测定. 分析测试学报, 2006, 25(4): 117-120.
LI P W, DING X X, ZHAO Y G, ZHANG W, CHEN X M, LI Y C, XIE C H, FU T D. Determination of constituents and total content of glucosinolate in rapeseed leaves by HPLC. Journal of Instrumental Analysis, 2006, 25(4): 117-120. (in Chinese)
[33]
LI Y C, KIDDLE G, BENNETT R, DOUGHTY K, WALLSGROVE R. Variation in the glucosinolate content of vegetative tissues of Chinese lines of Brassica napus L.. Annals of Applied Biology, 1999, 134(1): 131-136.
[34]
OPAŁKA M, DUSZA L, KOZIOROWSKI M, STASZKIEWICZ J, LIPIÑSKI K, TYWOÑCZUK J. Effect of long-term feeding with graded levels of low glucosinolate rapeseed meal on endocrine status of gilts and their piglets. Livestock Production Science, 2001, 69(3): 233-243.
[35]
TRUSCOTT R J W, BURKE D G, MINCHINTON I R. The characterisation of a novel hydroxindole glucosinolate. Biochemical and Biophysical Research Communications, 1982, 107(4): 1258-1264.

pmid: 7138536
[36]
尚毅. 影响甘蓝型双低油菜籽粒中硫代葡萄糖苷含量稳定性的研究[D]. 杨凌: 西北农林科技大学, 2003.
SHANG Y. Effect on stability of glucosinolate content in double low seeds of B. napus L.[D]. Yangling: Northwest A & F University, 2003. (in Chinese)
[37]
KUSHAD M M, BROWN A F, KURILICH A C, JUVIK J A, KLEIN B P, WALLIG M A, JEFFERY E H. Variation of glucosinolates in vegetable crops of Brassica oleracea. Journal of Agricultural and Food Chemistry, 1999, 47(4): 1541-1548.
[38]
BROWN P D, TOKUHISA J G, REICHELT M, GERSHENZON J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 2003, 62(3): 471-481.
[39]
徐义俊, 孙华光, 钱敏珍, 陈复仁, 朱琳. 中国主要油菜品种的芥子甙含量分析. 中国农业科学, 1982, 15(3): 23-27.
XU Y J, SUN H G, QIAN M Z, CHEN F R, ZHU L. Analysis of mustard glycoside content in major rapeseed varieties in China. Scientia Agricultura Sinica, 1982, 15(3): 23-27. (in Chinese)
[40]
BOHINC T, TRDAN S. Environmental factors affecting the glucosinolate content in Brassicaceae. Journal of Food Agriculture and Environment, 2012, 10(2): 357.
[41]
杜海, 冉凤, 刘静, 文婧, 马珊珊, 柯蕴倬, 孙丽萍, 李加纳. 拟南芥硫苷生物合成相关基因的组织和胁迫诱导表达谱的全基因组分析. 中国农业科学, 2016, 49(15): 2879-2897. doi: 10.3864/j.issn.0578-1752.2016.15.003.
DU H, RAN F, LIU J, WEN J, MA S S, KE Y Z, SUN L P, LI J N. Genome-wide expression analysis of glucosinolate biosynthetic genes in Arabidopsis across diverse tissues and stresses induction. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897. doi: 10.3864/j.issn.0578-1752.2016.15.003. (in Chinese)
[42]
HONG E, KIM S J, KIM G H. Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage. Food Chemistry, 2011, 128(4): 1115-1120.
[43]
BROWN A F, YOUSEF G G, JEFFERY E H, KLEIN B P, WALLIG M A, KUSHAD M M, JUVIK J A. Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. Journal of the American Society for Horticultural Science, 2002, 127(5): 807-813.
[44]
ZHAO F J, EVANS E J, BILSBORROW P E, SYERS J K. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L.). Journal of the Science of Food and Agriculture, 1994, 64(3): 295-304.
[45]
刘蓓姝, 王晓丹, 官春云, 官梅. 吲哚硫苷在甘蓝型油菜种子中的分布. 分子植物育种, 2022. https://kns.cnki.net/kcms/detail/46.1068.S.20220209.1716.015.html.
LIU B S, WANG X D, GUAN C Y, GUAN M. Distribution of indole glucosinolates in Brassica napus L. seeds. Molecular Plant Breeding, 2022. https://kns.cnki.net/kcms/detail/46.1068.S.20220209.1716.015.html. (in Chinese)
[1] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[2] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[3] LI YiYang, WANG Long, QIAN Chen, LI Jing, LIN GuoBing, QU WenTing, WANG Yan, LIN YaoWei, HUANG YiHang, ZHENG JingDong, YOU JingJing, ZUO QingSong. Effects of Planting Density on the Pod Characteristics and Exploring Strategie Analysis to Increase Yield in High-Yield Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(22): 4459-4472.
[4] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
[5] HUANG FangYuan, BIAN XiaoHua, JIANG Zhan, XIAO XiaoLu, DUAN Bo, CHEN Chang, MA Ni, GUAN ZhouBo. Characteristics of Root Growth, Carbon and Nitrogen Accumulation and Distribution in Winter Rapeseed in Different Ecological Regions [J]. Scientia Agricultura Sinica, 2024, 57(12): 2404-2423.
[6] WU SiHui, ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie. Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(9): 1760-1774.
[7] PENG WenLi, WANG Rui, CHEN XiaoLei, LIU AHui, ZHENG WeiDong. Effects of Varied Rapeseed Varieties and Cultivation Measures on Harvest Index [J]. Scientia Agricultura Sinica, 2023, 56(17): 3331-3346.
[8] LI Jing, QIAN Chen, LIN GuoBing, WANG Long, LI YiYang, ZHENG JingDong, YOU JingJing, LENG SuoHu, ZUO QingSong. Studies on the Suitable Nitrogen Supply Level of Rapeseed Blanket Seedling for Mechanized Transplanting [J]. Scientia Agricultura Sinica, 2023, 56(16): 3100-3109.
[9] LIU ZiGang, WEI JiaPing, CUI JunMei, WU ZeFeng, FANG Yan, DONG XiaoYun, ZHENG GuoQiang. Status, Existing Problems and Strategy Discussion on Northward Expansion of Winter Rapeseed in China [J]. Scientia Agricultura Sinica, 2023, 56(15): 2854-2862.
[10] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[11] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[12] BAI Fei, BAI GuiPing, WANG ChunYun, LI Zhen, GONG DePing, HUANG Wei, CHENG YuGui, WANG Bo, WANG Jing, XU ZhengHua, KUAI Jie, ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
[13] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[14] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[15] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!