Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3917-3935.doi: 10.3864/j.issn.0578-1752.2024.19.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Analyzing the Molecular Mechanism of Hair Follicle Development in Subo Merino Based on miRNA Sequencing Data

HE JunMin(), MAO JingYi, WEI Chen, REN YiFan, ZHANG GuoPing, TIAN KeChuan(), LIU GuiFen()   

  1. Institute of Animal Husbandry and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji’nan 250100
  • Received:2023-11-27 Accepted:2024-08-25 Online:2024-10-01 Published:2024-10-09
  • Contact: TIAN KeChuan, LIU GuiFen

Abstract:

【Background】Wool is produced and controlled by hair follicles (HFs). The structure, function and morphogenesis of HF is a complex biological process. The morphogenesis of HF in the embryonic stage of fine wool sheep determines the wool yield and quality after sheep adulthood. Subo Merino sheep is a new breed of ultra-fine wool sheep for worsted spinning with wool fineness up to 17-19 μm independently bred in China. The miRNAs and their regulatory mechanisms during the morphogenesis of the HF in superfine wool sheep need to be studied in depth. 【Objective】 Analyzing the molecular regulatory mechanisms of miRNAs in the early development of HF in superfine wool sheep was of great significance for a better understanding of the morphogenesis of HF as well as for the breeding of ultrafine wool sheep, and it could provide the reference molecular markers for the analyzing of molecular mechanisms of the molecular regulatory mechanisms of the development of HF in ultrafine wool sheep and for the selection and breeding of high-quality ultrafine wool sheep. 【Method】 In this study, simultaneous estrus treatments and artificial insemination were performed on Subo Merino sheep under the same feeding conditions, with insemination day designated as embryonic day 0 (E0). Skin tissues from embryos were collected by cesarean section after euthanasia of pregnant ewes at embryonic days 65 (E65), 85 (E85), 105 (E105), and 135 (E135), respectively; skin tissues from the left scapular region were collected at 7 (D7) and 30 (D30) days after the birth of the lambs, and three samples were taken at each period. miRNA-Seq were used to identify conserved miRNAs and Novel miRNAs at different periods of hair follicle development, and constructed skin tissue miRNA libraries at different periods of HF development in Super Fine Wool Merino sheep. The target gene prediction and bioinformatics analysis of differentially expressed miRNAs (DE-miRNAs) were also performed, the key miRNAs and candidate genes involved in HF development in Superfine wool sheep were screened, and constructed miRNA-target gene regulatory networks. The targeting of miR-433-3p with NOTCH1 was validated by using RT-qPCR and dual luciferase reporter gene assays. 【Result】 In this study, 18 skin tissue miRNA libraries were constructed at different periods of HF development in Subo Merino sheep, and 87 DE-miRNAs and 446 novel DE-miRNAs were screened. DE-miRNA clustering analysis showed that there were 21 DE-miRNAs in the HF-induced differentiation stage (E65, E85, and E105), in which 5 DE-miRNAs (oar-miR-23b, oar-miR-133, etc.) were key candidate miRNAs; there were 28 DE-miRNAs in the HF-maturation stage (E135, D7, and D30). SOM analysis showed that DE-miRNAs could be clustered into 10 clusters, and miRNAs in each cluster had similar functions. Mixed prediction of target genes and functional enrichment of DE-miRNAs and Novel DE-miRNAs revealed that the main enriched pathways of target genes were AMPK, Notch, and hedgehog pathways. The miRNA-target gene regulatory network associated with HF development was constructed by combining DE-mRNA and target gene with bioinformatics analysis. NOTCH1 wild-type and mutant vectors were cotransfected with miR-433-3p mimics and mimics-NC in 293T cells, and the results showed that NOTCH1 was a target gene of miR-433-3p. 【Conclusion】In summary, this study constructed miRNA expression profiles in different periods of hair follicle development in Subo Merino sheep, analyzed the relationship between miRNAs and their target genes, and built a miRNA-target gene regulatory network, to further understand the roles of miRNAs in different periods of hair follicle development and molecular mechanisms. This study also provided a reference molecular marker for analyzing the molecular regulation mechanism of hair follicle development, as well as selecting and breeding high-quality ultra-fine wool sheep.

Key words: hair follicle development, Subo Merino, miRNA, target gene, regulatory network

Table 1

Primers for RT-qPCR of miRNA and candidate target genes"

名称ID 引物 Primer (5′-3′)
oar-miR-433-3p F: CCGatcatgatgggctcctcggtgt
U6 F: CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT
NOTCH1 F: TATCTGCATGCCTGGCTACG
R: GTCCACGTCATACTGGCACA
GAPDH F: GAGATCAAGAAGGTGGTGAAGCAG
R: GTAGAAGAGTGAGTGTCGCTGTTG

Table 2

NOTCH1 wild-type and mutant gene sequences"

ID 序列Primer (5′ to 3′)
NOTCH1-
WT
TGATTTTGTTTAAGAAATCTGATTGGACAACTCTGTCAGGGTCGTGCTGATAAGGGATGCCAGAACCCAGGCCCCACGACCTGCAGCTGCCGAACCGTAGCTCCTGAGAGCAAAGCCGGGGGGTCCCGACGCCCACCGCACTGAGTCTGCTGCCCCGGCCTCGCCGGGCGTGCTGTGGGGCCACCCCTAGTGGGCACGAT
NOTCH1-
MUT
TGATTTTGTTTAAGAAATCTGATTGGACAACTCTGTCAGGGTCGTGCTGATAAGGGATGCCAGAACCCAGGCCCCACGACCTGCAGCTGCCGAACCGTAGCTCCTGAGAGCAAAATTAAAAAATTTTAAACGCCCACCGCACTGAGTCTGCTGCCCCGGCCTCGCCGGGCGTGCTGTGGGGCCACCCCTAGTGGGCACGAT

Table 3

Data output, number of Reads and Q30 probability of sample sequencing"

样本
Sample
数据产量
Data output (Gb)
Reads
(M)
Q30
(%)
1 8.899 29.665 77.33
2 7.492 24.975 77.52
3 8.541 28.47 77.49
4 7.296 24.32 77.82
5 5.431 18.105 77.67
6 7.921 26.405 77.73
7 8.42 28.07 76.89
8 7.662 25.54 77.43
9 8.653 28.845 77.93
10 8.241 27.475 77.58
11 5.87 19.57 77.97
12 9.137 30.46 77.57
13 8.791 29.305 75.62
14 8.909 29.695 75.21
15 9.762 32.54 75.49
16 5.059 24.53 76.84
17 5.837 19.46 76.97
18 4.708 22.2 76.84

Fig. 1

Characteristic analysis of miRNAs A. Total Read distribution statistics on alignments within gene signature regions; B. Classification statistics of total small RNA-seq; C. Reads length distribution; D. Bias distribution of the first base of miRNA sequence"

Fig. 2

Analysis of DE-miRNAs A. Volcano plot of DE-miRNAs between two neighboring groups; B. Statistical analysis of DE-miRNAs; C. Venn analysis of DE-miRNAs at embryonic stage; D. Venn analysis of DE-miRNAs at six time periods"

Fig. 3

Heatmap of DE-miRNAs A. Heat map of DE-miRNAs between two neighboring groups; B. Heat map of 87 DE-miRNAs"

Fig. 4

SOM trend analysis of DE-miRNAs"

Fig. 5

Analysis of Novel DE-miRNAs A. Histogram of novel DE-miRNAs, Up indicates an upregulated miRNA, Down indicates a downregulated miRNA; B. Venn diagram of Novel DE-miRNAs"

Fig. 6

Heatmap of Novel DE-miRNAs"

Table 4

Quantitative statistics of miRNAs and target genes"

分类 E65vs.E85 E85vs.E105 E105vs.E135 E135vs.D7 D7vs.D30 E65vs.D30
DE-miRNA 11 15 43 9 21 60
靶基因 Target gene 639 725 2346 1535 708 3400
Novel DE-miRNA 104 104 97 105 48 307
靶基因 Target gene 8938 11124 9511 8740 3468 31811

Fig. 7

Enrichment analysis of target genes"

Fig. 8

Integration of hair follicle development-related pathways and family genes to construct a DE-miRNA-target gene co- expression network Squares are DE-miRNAs, circles are target genes, darker colors represent more targeting relationships"

Fig. 9

Validation of miR-433-3p and NOTCH1 targeting relationship A: Prediction of miR-433-3p and NOTCH1 binding sites; B: Relative expression of miR-433-3p and NOTCH1 in skin tissues at different stages of hair follicle morphogenesis; C: Structure of pmirGLO vector; D: Results of dual luciferase reporter gene assay"

[1]
ZHAO B R, FU X F, TIAN K C, HUANG X X, DI J, BAI Y, XU X M, TIAN Y Z, WU W W, ABLAT S, ZENG W D, HANIKEZI T. Identification of SNPs and expression patterns of FZD3 gene and its effect on wool traits in Chinese Merino sheep (Xinjiang Type). Journal of Integrative Agriculture, 2019, 18(10): 2351-2360.
[2]
张小伟, 何军敏, 徐新明, 田月珍, 关鸣轩, 张漫, 付雪峰, 哈尼克孜·吐拉甫, 黄锡霞, 田可川. 苏博美利奴羊毛囊发育不同时期ncRNA调控网络的构建. 中国畜牧杂志, 2022. 58(7): 122-133.
ZHANG X W, HE J M, XU X M, TIAN Y Z, GUAN M X, ZHANG M, FU X F, HANICKI T, HUANG X X, TIAN K C. Construction of ncRNA network related to hair follicle development in Subo Merino Sheep. Chinese Journal of Animal Science, 2022. 58(7): 122-133. (in Chinese)
[3]
何军敏. 苏博美利奴羊毛囊发育不同时期相关基因的筛选[D]. 乌鲁木齐: 新疆农业大学, 2018.
HE J M. Screening related genes of different hair follicle stages in Subo merino sheep[D]. Xinjiang Agricultural University, 2018. (in Chinese)
[4]
HARDY H M, LYNE A G. The pre-natal development of wool follicles in merino sheep. Australian Journal of Biological Sciences, 1956, 9(3): 423.
[5]
BROOK A H, SHORT B F, LYNE A G. Formation of new wool follicles in the adult sheep. Nature, 1960, 185: 51.
[6]
HE L, HANNON G J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 2004, 5: 522-531.

doi: 10.1038/nrg1379 pmid: 15211354
[7]
FAN J F, AN X Y, YANG Y L, XU H Y, FAN L Y, DENG L C, LI T, WENG X S, ZHANG J M, CHUNHUA ZHAO R. MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the Wnt/β-catenin pathway. Aging and Disease, 2018, 9(6): 1103.
[8]
WANG Z H, PANG L, ZHAO H Y, SONG L, WANG Y H, SUN Q, GUO C J, WANG B, QIN X J, PAN A Q. MiR-128 regulates differentiation of hair follicle mesenchymal stem cells into smooth muscle cells by targeting SMAD2. Acta Histochemica, 2016, 118(4): 393-400.

doi: 10.1016/j.acthis.2016.04.001 pmid: 27087048
[9]
QU H E, WU S F, LI J P, MA T, LI J Y, XIANG B, JIANG H Z, ZHANG Q L. MiR-125b regulates the differentiation of hair follicles in Fine-wool Sheep and Cashmere goats by targeting MXD4 and FGFR2. Animal Biotechnology, 2023, 34(2): 357-364.
[10]
ZHAO B H, CHEN Y, YANG N S, CHEN Q R, BAO Z Y, LIU M, HU S S, LI J L, WU X S. MiR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. Journal of Cellular Physiology, 2019, 234(11): 20329-20341.

doi: 10.1002/jcp.28633 pmid: 30953362
[11]
AHMED R, ZAMAN T, CHOWDHURY F, MRAICHE F, TARIQ M, AHMAD I S, HASAN A. Single-cell RNA sequencing with spatial transcriptomics of cancer tissues. International Journal of Molecular Sciences, 2022, 23(6): 3042.
[12]
ZHAI B, ZHANG L C, WANG C X, ZHAO Z, ZHANG M X, LI X. Identification of microRNA-21 target genes associated with hair follicle development in sheep. PeerJ, 2019, 7: e7167.
[13]
YIN R H, ZHAO S J, JIAO Q, WANG Z Y, BAI M, FAN Y X, ZHU Y B, BAI W L. CircRNA-1926 promotes the differentiation of goat SHF stem cells into hair follicle lineage by miR-148a/b-3p/CDK19 axis. Animals, 2020, 10(9): 1552.
[14]
X Y, GAO W, JIN C Y, WANG L H, WANG Y, CHEN W H, ZOU S X, HUANG S N, LI Z F, WANG J Y, SUN W. Preliminary study on microR-148a and microR-10a in dermal papilla cells of Hu sheep. BMC Genetics, 2019, 20(1): 70.

doi: 10.1186/s12863-019-0770-8 pmid: 31455210
[15]
MA T, LI J P, JIANG Q, WU S F, JIANG H Z, ZHANG Q L. Differential expression of miR-let7a in hair follicle cycle of Liaoning Cashmere goats and identification of its targets. Functional & Integrative Genomics, 2018, 18(6): 701-707.
[16]
CAI B J, LI M, ZHENG Y P, YIN Y K, JIN F C, LI X Y, DONG J, JIAO X Y, LIU X J, ZHANG K, LI D Q, WANG J M, YIN G W. MicroRNA-149-mediated MAPK1/ERK2 suppression attenuates hair follicle stem cell differentiation. Human Gene Therapy, 2022, 33(11/12): 625-637.
[17]
YU J, PENG H, RUAN Q, FATIMA A, GETSIOS S, LAVKER R M. MicroRNA-205 promotes keratinocyte migrationviathe lipid phosphatase SHIP2. The FASEB Journal, 2010, 24(10): 3950-3959.
[18]
AHMED M I, ALAM M, EMELIANOV V U, POTERLOWICZ K, PATEL A, SHAROV A A, MARDARYEV A N, BOTCHKAREVA N V. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. Journal of Cell Biology, 2014, 207(4): 549-567.

doi: 10.1083/jcb.201404001 pmid: 25422376
[19]
DU K T, DENG J Q, HE X G, LIU Z P, PENG C, ZHANG M S. MiR-214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β-catenin signaling way in vitro. Tissue Engineering and Regenerative Medicine, 2018, 15(3): 341-350.
[20]
LI X J, WU Y Q, XIE F F, ZHANG F X, ZHANG S X, ZHOU J H, CHEN D F, LIU A J. MiR-339-5p negatively regulates loureirin A-induced hair follicle stem cell differentiation by targeting DLX5. Molecular Medicine Reports, 2018. 18(2): 1279-1286.
[21]
ZHU N X, HUANG K, LIU Y, ZHANG H, LIN E, ZENG Y, LI H H, XU Y M, CAI B Z, YUAN Y P, LI Y, LIN C M. MiR-195-5p regulates hair follicle inductivity of dermal papilla cells by suppressing Wnt/β-catenin activation. BioMed Research International, 2018, 2018: 4924356.
[22]
HE J M, HUANG X X, ZHAO B R, LIU G F, TIAN Y Z, ZHANG G P, WEI C, MAO J Y, TIAN K C. Integrated analysis of miRNAs and mRNA profiling reveals the potential roles of miRNAs in sheep hair follicle development. BMC Genomics, 2022, 23(1): 722.

doi: 10.1186/s12864-022-08954-2 pmid: 36273119
[23]
ANDL T, REDDY S T, GADDAPARA T, MILLAR S E. WNT signals are required for the initiation of hair follicle development. Developmental Cell, 2002, 2(5): 643-653.

doi: 10.1016/s1534-5807(02)00167-3 pmid: 12015971
[24]
CHAPMAN R E, HARDY M H. Effects of intradermally injected and topically applied mouse epidermal growth factor on wool growth, skin and wool follicles of merino sheep. Australian Journal of Biological Sciences, 1988, 41(2): 261-268.

pmid: 3270313
[25]
DU CROS D L, ISAACS K, MOORE G P M. Localization of epidermal growth factor immunoreactivity in sheep skin during wool follicle development. Journal of Investigative Dermatology, 1992, 98(1): 109-115.

pmid: 1370228
[26]
FOITZIK K, LINDNER G, MUELLER-ROEVER S, MAURER M, BOTCHKAREVA N, BOTCHKAREV V, HANDJISKI B, METZ M, HIBINO T, SOMA T, PAOLO DOTTO G, PAUS R. Control of murine hair follicle regression (catagen) by TGF-β1in vivo. The FASEB Journal, 2000, 14(5): 752-760.
[27]
PLIKUS M V, MAYER J A, DE LA CRUZ D, BAKER R E, MAINI P K, MAXSON R, CHUONG C M. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature, 2008, 451: 340-344.
[28]
HOCKING EDWARDS J E. Reduction in wool follicles prior to birth in Merino sheep. Reproduction, Fertility and Development, 1999, 11(5): 229.
[29]
SANDER G, SIMON BAWDEN C, HYND P I, NESCI A, ROGERS G, POWELL B C. Expression of the homeobox gene, Barx2, in wool follicle development. Journal of Investigative Dermatology, 2000, 115(4): 753-756.

pmid: 10998155
[30]
ROGERS G E. Biology of the wool follicle: An excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology, 2006, 15(12): 931-949.

pmid: 17083360
[31]
ZHAO B R, LUO H P, HE J M, HUANG X X, CHEN S Q, FU X F, ZENG W D, TIAN Y Z, LIU S L, LI C J, LIU G E, FANG L Z, ZHANG S L, TIAN K C. Comprehensive transcriptome and methylome analysis delineates the biological basis of hair follicle development and wool-related traits in Merino sheep. BMC Biology, 2021, 19(1): 197.

doi: 10.1186/s12915-021-01127-9 pmid: 34503498
[32]
YI R, O’CARROLL D, PASOLLI H A, ZHANG Z H, DIETRICH F S, TARAKHOVSKY A, FUCHS E. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genetics, 2006, 38: 356-362.

doi: 10.1038/ng1744 pmid: 16462742
[33]
YI R, POY M N, STOFFEL M, FUCHS E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 2008, 452: 225-229.
[34]
ZHANG L, STOKES N, POLAK L, FUCHS E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell, 2011, 8(3): 294-308.

doi: 10.1016/j.stem.2011.01.014 pmid: 21362569
[35]
MARDARYEV A N, AHMED M I, VLAHOV N V, FESSING M Y, GILL J H, SHAROV A A, BOTCHKAREVA N V. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. The FASEB Journal, 2010, 24(10): 3869-3881.
[36]
AMELIO I, LENA A M, BONANNO E, MELINO G, CANDI E. MiR-24 affects hair follicle morphogenesis targeting Tcf-3. Cell Death & Disease, 2013, 4(11): e922.
[37]
LIU F Z, ZHANG X, PENG Y, ZHANG L P, YU Y, HUA P, ZHU P Y, YAN X Y, LI Y, ZHANG L. MiR-24 controls the regenerative competence of hair follicle progenitors by targeting Plk3. Cell Reports, 2021, 35(10): 109225.
[38]
ANDL T, BOTCHKAREVA N V. MicroRNAs (miRNAs) in the control of HF development and cycling: The next frontiers in hair research. Experimental Dermatology, 2015, 24(11): 821-826.

doi: 10.1111/exd.12785 pmid: 26121602
[39]
BOTCHKAREVA N. MicroRNA/mRNA regulatory networks in the control of skin development and regeneration. Cell Cycle, 2012, 11(3): 468-474.

doi: 10.4161/cc.11.3.19058 pmid: 22262186
[40]
ANDL T, MURCHISON E P, LIU F, ZHANG Y H, YUNTA- GONZALEZ M, TOBIAS J W, ANDL C D, SEYKORA J T, HANNON G J, MILLAR S E. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Current Biology, 2006, 16(10): 1041-1049.

doi: 10.1016/j.cub.2006.04.005 pmid: 16682203
[41]
YI R, PASOLLI H A, LANDTHALER M, HAFNER M, OJO T, SHERIDAN R, SANDER C, O’CARROLL D, STOFFEL M, TUSCHL T, FUCHS E. DGCR8-dependent microRNA biogenesis is essential for skin development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(2): 498-502.
[42]
TETA M, CHOI Y S, OKEGBE T, WONG G, TAM O H, CHONG M M W, SEYKORA J T, NAGY A, LITTMAN D R, ANDL T, MILLAR S E. Inducible deletion of epidermal Dicer and Drosha reveals multiple functions for miRNAs in postnatal skin. Development, 2012, 139(8): 1405-1416.
[43]
樊凯军, 尹俊. 绒山羊70d胚胎皮肤小分子RNA文库构建及miRNA鉴定. 生物技术, 2014, 24(1): 32-36.
FAN K J, YIN J. Construction of a small RNA library and identify of miRNAs from 70 days Cashmere goat fetal skin. Biotechnology, 2014, 24(1): 32-36. (in Chinese)
[44]
郝玉, 尹俊. 绒山羊70d胚胎与新生羊羔体侧部皮肤miRNA的比较分析. 生物技术, 2014, 24(5): 71-76.
HAO Y, YIN J. Analysis of miRNAs between 70 days fetal and lamb skin. Biotechnology, 2014, 24(5): 71-76. (in Chinese)
[45]
唐晓惠. 藏绵羊毛囊不同发育时期miRNAs表达变化研究[D]. 武汉: 华中农业大学, 2012.
TANG X H. The study of expression of miRNAs in wool follicle during different development phases[D]. Huazhong Agricultural University, 2012. (in Chinese)
[46]
袁超. 绒山羊次级毛囊周期性变化相关microRNA的鉴定及miR-125b在毛乳头细胞中的功能研究[D]. 杨凌: 西北农林科技大学, 2014.
YANG C. Identification of microRNAs in secondary hair follicle cycling and functional analysis of miR-125b in dermal papilla cells of cashmere goats[D]. Northwest University of Agriculture and Forestry Science and Technology, 2014. (in Chinese)
[47]
BAI W L, DANG Y L, YIN R H, JIANG W Q, WANG Z Y, ZHU Y B, WANG S Q, ZHAO Y Y, DENG L, LUO G B, YANG S H. Differential expression of microRNAs and their regulatory networks in skin tissue of Liaoning Cashmere goat during hair follicle cycles. Animal Biotechnology, 2016, 27(2): 104-112.

doi: 10.1080/10495398.2015.1105240 pmid: 26913551
[48]
YUAN C, WANG X L, GENG R Q, HE X L, QU L, CHEN Y L. Discovery of Cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genomics, 2013, 14(1): 511.
[49]
LIU G B, LIU R Z, LI Q Q, TANG X H, YU M, LI X Y, CAO J H, ZHAO S H. Identification of microRNAs in wool follicles during anagen, catagen, and telogen phases in Tibetan sheep. PLoS ONE, 2013, 8(10): e77801.
[50]
X Y, CHEN W H, WANG S H, CAO X K, YUAN Z H, GETACHEW T, MWACHARO J M, HAILE A, SUN W. Integrated hair follicle profiles of microRNAs and mRNAs to reveal the pattern formation of Hu sheep lambskin. Genes, 2022, 13(2): 342.
[51]
YANG H Y L, YANG H, SHI G Q, SHEN M, YANG J Q, YANG Y L, LIU X J. Expression profile analysis of microRNAs during hair follicle development in the sheep foetus. Bioscience, Biotechnology, and Biochemistry, 2019, 83(6): 1045-1061.
[52]
ZHAO R R, LI J, LIU N, LI H G, LIU L R, YANG F, LI L L, WANG Y, HE J N. Transcriptomic analysis reveals the involvement of lncRNA-miRNA-mRNA networks in hair follicle induction in Aohan fine wool sheep skin. Frontiers in Genetics, 2020, 11: 590.

doi: 10.3389/fgene.2020.00590 pmid: 33117415
[53]
CAI J, LEE J, KOPAN R, MA L. Genetic interplays between Msx2 and Foxn1 are required for Notch1 expression and hair shaft differentiation. Developmental Biology, 2009, 326(2): 420-430.

doi: 10.1016/j.ydbio.2008.11.021 pmid: 19103190
[54]
KUREK D, GARINIS G A, VAN DOORNINCK J H, VAN DER WEES J, GROSVELD F G. Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development, 2007, 134(2): 261-272.

pmid: 17151017
[55]
KOBIELAK K, PASOLLI H A, ALONSO L, POLAK L, FUCHS E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. The Journal of Cell Biology, 2003, 163(3): 609-623.
[56]
ESTRACH S, AMBLER C A, LO CELSO C L, HOZUMI K, WATT F M. Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development, 2006, 133(22): 4427-4438.
[57]
LEE J, BASAK J M, DEMEHRI S, KOPAN R. Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes. Development, 2007, 134(15): 2795-2806.

pmid: 17611229
[58]
BAZZI H, GETZ A, MAHONEY M G, ISHIDA-YAMAMOTO A, LANGBEIN L, WAHL J K, CHRISTIANO A M. Desmoglein 4 is expressed in highly differentiated keratinocytes and trichocytes in human epidermis and hair follicle. Differentiation, 2006, 74(2/3): 129-140.
[59]
BAZZI H, DEMEHRI S, POTTER C S, BARBER A G, AWGULEWITSCH A, KOPAN R, CHRISTIANO A M. Desmoglein 4 is regulated by transcription factors implicated in hair shaft differentiation. Differentiation, 2009, 78(5): 292-300.

doi: 10.1016/j.diff.2009.06.004 pmid: 19683850
[60]
AUBIN-HOUZELSTEIN G. Notch signaling and the developing hair follicle. Advances in Experimental Medicine and Biology. New York, NY: Springer US, 2012, 727: 142-160.
[61]
KOPAN R, WEINTRAUB H. Mouse Notch: Expression in hair follicles correlates with cell fate determination. The Journal of Cell Biology, 1993, 121(3): 631-641.
[62]
POWELL B C, PASSMORE E A, NESCI A, DUNN S M. The Notch signalling pathway in hair growth. Mechanisms of Development, 1998, 78(1/2): 189-192.
[63]
BLANPAIN C, LOWRY W E, PASOLLI H A, FUCHS E. Canonical Notch signaling functions as a commitment switch in the epidermal lineage. Genes & Development, 2006, 20(21): 3022-3035.
[64]
XAVIER S P, GORDON-THOMSON C, WYNN P C, MCCULLAGH P, THOMSON P C, TOMKINS L, MASON R S, MOORE G P M. Evidence that Notch and Delta expressions have a role in dermal condensate aggregation during wool follicle initiation. Experimental Dermatology, 2013, 22(10): 659-662.

doi: 10.1111/exd.12217 pmid: 24079736
[65]
PAN Y H, LIN M H, TIAN X L, CHENG H T, GRIDLEY T, SHEN J, KOPAN R. γ-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Developmental Cell, 2004, 7(5): 731-743.
[1] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[2] LIU BingQi, LUO ChunHai, YAO WeiJia, WANG Wei, LIU JiaJin, LI DanYang, FU ShiXin. Mechanism of miRNA-424-5p Regulate the Decomposition of Collagen on Retained Fetal Membranes of Dairy Cows Through VEGFA Pathway [J]. Scientia Agricultura Sinica, 2024, 57(15): 3083-3092.
[3] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[4] YIN ZiHe, YANG ChengCheng, ZHAO YuHui, ZHAO Li, LÜ XiuRong, YANG ZhenChao, WU YongJun. Sequencing and Functional Analysis of Tomato circRNA During Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(21): 4288-4303.
[5] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[6] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[7] FENG RuiRong,FU ZhongMin,DU Yu,ZHANG WenDe,FAN XiaoXue,WANG HaiPeng,WAN JieQi,ZHOU ZiYu,KANG YuXin,CHEN DaFu,GUO Rui,SHI PeiYing. Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(1): 208-218.
[8] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[9] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[10] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[11] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[12] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[13] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[14] TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723.
[15] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!