Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (5): 885-899.doi: 10.3864/j.issn.0578-1752.2024.05.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model

ZHOU HaoLu1(), SHEN ZhaoYang1, LUO XinYu1, HUANG YingHui1, WANG KeXin1, WANG YunHao2, GAO XiaoLi1()   

  1. 1 College of Agronomy, Northwest A & F University/State Key Laboratory of Crop Stress Biology in Arid Regions, Yangling 712100, Shaanxi
    2 Agriculture and Rural Bureau of Kuancheng Manchu Autonomous County, Kuancheng 067600, Hebei
  • Received:2023-09-07 Accepted:2023-11-24 Online:2024-03-06 Published:2024-03-06
  • Contact: GAO XiaoLi

Abstract:

【Objective】To explore the response of foxtail millet growth and yield to nitrogen fertilizer under ridge-furrow rainwater harvesting planting model, in order to provide a theoretical basis for high yield and efficient production of foxtail millet in the semi-arid regions of the Loess Plateau. 【Method】Shaan-Yugu No. 3 variety was selected for field experiments from 2022 to 2023, and split plot design was adopted. The main plot were different planting models (Ridge-furrow rainwater harvesting planting model, R; Traditional plain planting model, T), and the sub-plot were different nitrogen application levels (0 kg·hm-2, N0; 60 kg·hm-2, N1; 135 kg·hm-2, N2; 210 kg·hm-2, N3). The net photosynthetic rate and chlorophyll content of flag leaves of foxtail millet, dry matter accumulation and nitrogen accumulation of aboveground population at different growth stages, agronomic traits and yield at maturity stage, and nitrogen utilization rate were measured under different planting models. 【Result】Under the same nitrogen application rate, compared with the traditional plain planting model, the net photosynthetic rate and chlorophyll content of flag leaves under the ridge-furrow rainwater harvesting planting model increased only at the filling stage in 2022 with more rainfall and increased at the heading, flowering, and filling stages in 2023 with less rainfall. The ridge-furrow rainwater harvesting planting model enhanced the photosynthetic capacity of foxtail millet in the middle and later stages of growth and delayed leaf senescence during the two years. The dry matter accumulation and nitrogen accumulation of the aboveground population of foxtail millet increased during the jointing, filling, and maturity stages in 2022, and increased at all growth stages in 2023. There was no significant difference between N1, N2, and N3, and the aboveground dry matter accumulation and nitrogen accumulation increased by 0.6% to 39.5% and 0.9% to 51.1%, respectively. The grain nitrogen accumulation, post-flowering nitrogen accumulation, and post-flowering nitrogen contribution rate to grain have significantly increased over the past two years, meeting the nutrient needs of foxtail millet throughout its entire growth stage and improving insufficient nitrogen supply in the later growth stage of foxtail millet under traditional plain planting model. Nitrogen partial productivity increased between two years, increasing by 3.7% to 14.3% and 2.8% to 27.6%, respectively. Nitrogen agronomic efficiency slightly decreased at a nitrogen application rate of 210 kg·hm-2 in 2022, while the nitrogen agronomic efficiency and nitrogen use efficiency both decreased when the nitrogen application rate exceeded 135 kg·hm-2 in 2023. Meanwhile, nitrogen partial productivity, nitrogen agronomic efficiency, and nitrogen use efficiency decreased with the increase in nitrogen application rate. The ear diameter and single ear weight of foxtail millet increased between two years, while the ear length decreased. The yield has significantly increased between two years, increasing by 3.7% to 14.3% and 2.8% to 27.6%, respectively. The yield increase effect was more significant in 2023 with less rainfall, and there was no significant increase in yield when the nitrogen application rate exceeded 60 kg·hm-2. 【Conclusion】In the semi-arid regions of the Loess Plateau, the ridge-furrow rainwater harvesting planting model combined with 60 to 135 kg·hm-2 nitrogen fertilizer is more beneficial to the nitrogen utilization and yield formation of foxtail millet.

Key words: foxtail millet, the ridge-furrow rainwater harvesting planting model, nitrogen utilization, yield, Loess Plateau

Fig.1

The precipitation and daily maximum temperature and minimum temperature during the growth period of foxtail millet"

Table 1

Soil moisture content under different planting models during foxtail millet growth period (%)"

年份
Year
处理Treatment 抽穗期Heading stage 成熟期Maturity stage
种植模式
Planting models
施氮量
Nitrogen rate
0-10 cm 10-20 cm 0-10 cm 10-20 cm
2022 T N0 8.66 7.30 6.17 8.46
N1 8.41 4.98 6.27 8.31
N2 9.54 7.84 5.60 7.65
N3 8.07 6.66 6.18 6.34
R N0 6.31 10.89 5.93 6.26
N1 4.59 10.87 6.91 9.26
N2 4.78 10.15 7.91 9.87
N3 4.83 10.06 5.49 7.26
2023 T N0 2.57 3.06 6.86 7.01
N1 3.06 3.12 6.74 7.79
N2 2.67 3.72 5.04 5.68
N3 3.71 4.15 7.03 7.98
R N0 3.67 4.19 7.86 8.20
N1 4.26 4.71 7.02 7.22
N2 3.70 3.97 6.37 6.69
N3 6.13 6.05 8.92 9.53

Fig.2

Schematic diagram of different planting models of foxtail millet A: Traditional plain planting model; B: Ridge-furrow rainwater harvesting planting model"

Fig.3

Effect of nitrogen fertilizer application on the photosynthetic characteristics of foxtail millet at different growth stages under different planting models Different letters indicate significant differences at P<0.05 level between treatments. The same as below"

Fig. 4

Effect of nitrogen fertilizer application on dry matter accumulation in the aboveground population of foxtail millet at different growth stages under different planting models"

Table 2

Effect of nitrogen fertilizer application on above-ground nitrogen accumulation of foxtail millet plants under different planting models"

年份
Year
处理Treatment 生育时期Growing stage
种植模式
Planting models
施氮量
Nitrogen rate
拔节期
Jointing stage
抽穗期
Heading stage
开花期
Flowering stage
灌浆期
Filling stage
成熟期
<BOLD>M</BOLD>aturity stage
2022 T N0 15.38±1.78d 39.37±5.78d 52.18±4.91e 57.02±2.64g 71.65±2.85f
N1 22.56±1.12c 63.40±7.31c 79.64±4.29d 85.23±2.26e 100.59±2.36d
N2 28.95±2.30b 76.08±8.46b 111.61±5.68b 116.27±3.43c 133.49±7.20c
N3 37.67±0.85a 109.32±10.82a 129.97±6.86a 134.06±8.10b 150.59±6.89b
R N0 23.45±2.11c 32.67±3.14d 55.87±4.53e 72.59±1.81f 89.73±4.25e
N1 35.17±2.50a 57.38±2.08c 88.53±7.92cd 104.13±4.42d 126.57±8.07c
N2 37.40±3.30a 56.92±4.91c 97.88±1.75c 139.38±6.03b 152.95±7.05b
N3 38.46±3.02a 79.84±9.93b 120.52±6.66ab 151.24±7.37a 171.04±6.93a
2023 T N0 7.07±0.39d 33.87±2.12c 42.50±2.03f 50.79±2.71e 61.79±1.76e
N1 12.51±0.70c 49.04±3.56b 65.85±1.09d 80.12±2.14c 90.95±2.37c
N2 18.89±1.68ab 59.75±2.93a 77.07±3.66c 90.83±5.12b 106.33±3.19b
N3 18.03±1.36b 60.54±2.30a 80.13±4.45bc 88.31±3.09b 107.14±5.62b
R N0 10.68±0.87c 37.78±1.48c 53.93±4.30e 69.90±3.56d 84.15±3.27d
N1 18.73±0.63ab 62.22±5.37a 85.43±4.03ab 104.20±3.36a 124.51±2.75a
N2 20.69±1.35a 65.16±2.84a 87.00±3.69a 109.69±8.14a 124.76±1.65a
N3 19.05±0.94ab 61.09±6.86a 83.09±2.60abc 104.76±5.11a 120.72±2.02a
显著性Significance
年份Year (Y) ** ** ** ** **
种植模式Planting models (P) ** ** ** ** **
施氮量Nitrogen rate (N) ** ** ** ** **
Y×P ** ** ** ns ns
Y×N ** ** ** ** **
P×N ** ** ** ns *
Y×P×N ns ns ns ns ns

Table 3

Effect of nitrogen fertilizer application on nitrogen transport of foxtail millet under different planting models"

年份
Year
处理Treatment 籽粒氮素积累量
Grain nitrogen accumulation (kg·hm-2)
花后氮素积累量
Post-flowering nitrogen accumulation (kg·hm-2)
花后氮素对籽粒贡献率
Post-flowering nitrogen contribution rate to grain (%)
种植模式
Planting models
施氮量
Nitrogen rate
2022 T N0 52.45±1.02e 19.47±2.22c 37.14±4.51b
N1 74.17±2.69d 20.95±2.45c 28.26±3.30c
N2 98.44±3.38c 21.88±1.61c 22.21±0.91d
N3 107.87±4.19b 20.62±2.10c 19.12±1.93d
R N0 68.10±3.19d 33.85±3.51b 49.71±4.68a
N1 95.66±5.69c 38.05±0.90b 39.86±2.46b
N2 114.59±5.92b 55.07±5.34a 48.00±2.65a
N3 126.01±5.31a 50.53±3.88a 40.15±3.71b
2023 T N0 45.95±1.65e 19.29±3.69d 41.82±6.66ab
N1 64.92±2.54d 25.10±2.09cd 38.62±1.84ab
N2 78.34±4.24c 29.26±6.46c 37.21±6.71ab
N3 79.38±4.10c 27.01±3.78c 33.98±3.72b
R N0 64.95±2.01d 30.22±5.75bc 46.51±8.74a
N1 92.10±2.71a 39.08±1.30a 42.48±2.66ab
N2 92.22±2.72a 37.76±5.34ab 40.86±4.56ab
N3 86.88±1.85a 37.63±2.51ab 43.31±2.69ab
显著性Significance
年份Year (Y) ** ns **
种植模式Planting models (P) ** ** **
施氮量Nitrogen rate (N) ** ** **
Y×P ns ** **
Y×N ** ns ns
P×N ** * ns
Y×P×N * ** ns

Fig. 5

Effect of nitrogen fertilizer application on nitrogen fertilizer utilization efficiency of foxtail millet under different planting models"

Table 4

Effects of nitrogen fertilizer application on agronomic traits and yield of foxtail millet under different planting models"

年份Year 处理Treatment 株高
Plant height (cm)
茎粗
Stem diameter (mm)
穗长
Ear length (cm)
穗粗
Ear diameter (mm)
单穗重
Single ear weight (g)
产量
Yield
(kg·hm-2)
种植模式
Planting models
施氮量
Nitrogen rate
2022 T N0 114.3±1.7d 8.4±0.4d 17.0±1.1d 18.8±0.5e 14.38±1.15d 3429.8±172.2f
N1 137.3±3.4ab 8.6±0.5d 23.0±0.7bc 22.3±2.1d 19.55±2.06c 4399.2±254.2d
N2 135.2±4.9abc 11.7±1.6ab 25.3±2.4ab 32.7±2.1bc 25.51±0.93ab 5500.5±195.8b
N3 130.6±6.2bc 11.9±0.9ab 27.5±2.5a 33.5±2.5bc 26.06±0.25a 5658.3±164.4ab
R N0 126.1±7.4c 9.2±0.4cd 15.8±0.8d 19.8±0.4de 18.12±0.92c 3804.0±93.8e
N1 131.8±1.5bc 10.4±0.7bc 21.8±0.8c 30.4±3.0c 23.40±1.46b 5026.9±192.7c
N2 142.6±7.5a 11.6±0.5ab 24.8±1.2ab 36.8±1.4a 27.43±0.86a 5958.8±263.7a
N3 139.7±5.3ab 12.0±0.9a 23.4±1.2bc 34.6±0.6ab 26.63±1.33a 5869.2±152.7a
2023 T N0 99.4±3.4e 8.6±0.8c 20.6±1.3cd 22.8±1.6c 14.21±0.98c 3179.3±90.6d
N1 102.0±3.6de 9.2±0.7c 23.7±1.6ad 27.0±1.4b 18.90±1.61b 4145.4±105.3b
N2 106.8±2.0cd 11.2±1.0a 24.9±2.0a 29.6±0.6ab 23.13±1.32a 5154.7±314.0a
N3 116.3±2.0ab 10.8±0.9ab 25.3±0.6a 30.3±1.3a 22.47±1.17a 5047.3±353.8a
R N0 105.2±5.0cde 9.1±0.9c 19.5±1.5d 24.3±2.3c 16.99±1.67b 3588.1±194.2c
N1 109.7±4.0bc 10.2±1.0abc 21.7±1.5bcd 31.0±0.5a 23.99±1.41a 5291.3±235.4a
N2 108.3±3.1cd 9.5±0.8bc 22.8±1.7abc 29.7±1.4ab 24.82±0.81a 5356.8±148.0a
N3 120.7±6.1a 9.9±0.7abc 24.1±1.0ab 31.3±2.1a 23.17±0.91a 5190.5±208.3a
显著性 Significance
年份Year (Y) ** ** ns ns ** **
种植模式Planting models (P) ** ns ** ** ** **
施氮量Nitrogen rate( N) ** ** ** ** ** **
Y×P ns ns ns ns ns ns
Y×N ** * ** ** ** **
P×N ns ** ns ** ** **
Y×P×N * ns ns ns ns ns
[1]
赵利蓉, 马珂, 张丽光, 汤沙, 原向阳, 刁现民. 不同生态区谷子品种农艺性状和品质分析. 作物杂志, 2022(2): 44-53.
ZHAO L R, MA K, ZHANG L G, TANG S, YUAN X Y, DIAO X M. Analysis of agronomic traits and quality of foxtail millet varieties in different ecological regions. Crops, 2022(2): 44-53. (in Chinese)
[2]
ZHANG L G, MA K, ZHAO X T, LI Z, ZHANG X, LI W D, MENG R, LU B Y, YUAN X Y. Development of a comprehensive quality evaluation system for foxtail millet from different ecological regions. Foods, 2023, 12(13): 2545.

doi: 10.3390/foods12132545
[3]
JIA Q M, XU R R, CHANG S H, ZHANG C, LIU Y J, SHI W, PENG Z C, HOU F J. Planting practices with nutrient strategies to improves productivity of rain-fed corn and resource use efficiency in semi-arid regions. Agricultural Water Management, 2020, 228: 105879.

doi: 10.1016/j.agwat.2019.105879
[4]
HAN T T, LU H F, Y H, ZHU Y P, FU B J. Crop switching could be a win-win solution for improving both the productivity and sustainability in a typical dryland farming region-Loess Plateau, China. Journal of Cleaner Production, 2023, 384: 135456.

doi: 10.1016/j.jclepro.2022.135456
[5]
李宗善, 杨磊, 王国梁, 侯建, 信忠保, 刘国华, 傅伯杰. 黄土高原水土流失治理现状、问题及对策. 生态学报, 2019, 39(20): 7398-7409.
LI Z S, YANG L, WANG G L, HOU J, XIN Z B, LIU G H, FU B J. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Ecologica Sinica, 2019, 39(20): 7398-7409. (in Chinese)
[6]
蔡媛媛, 王瑞琪, 王丽丽, 刘惠芬, 杨殿林, 谭炳昌. 华北平原不同施氮量与施肥模式对作物产量与氮肥利用率的影响. 农业资源与环境学报, 2020, 37(4): 503-510.
CAI Y Y, WANG R Q, WANG L L, LIU H F, YANG D L, TAN B C. Effects of nitrogen amount and fertilization patterns on crop yield and nitrogen use efficiency on the North China Plain. Journal of Agricultural Resources and Environment, 2020, 37(4): 503-510. (in Chinese)
[7]
王爽, 李菡, 任学军, 王健, 郭振清, 李云, 韩玉翠, 林小虎. 减量施氮对冀东地区春小麦氮肥利用及产量的影响. 山东农业科学, 2023, 55(5): 115-121.
WANG S, LI H, REN X J, WANG J, GUO Z Q, LI Y, HAN Y C, LIN X H. Effects of reduced nitrogen application on nitrogen utilization and yield of spring wheat in eastern Hebei Province. Shandong Agricultural Sciences, 2023, 55(5): 115-121. (in Chinese)
[8]
左海军, 张奇, 徐力刚. 农田氮素淋溶损失影响因素及防治对策研究. 环境污染与防治, 2008, 30(12): 83-89.
ZUO H J, ZHANG Q, XU L G. Study on influencing factors and control countermeasures of nitrogen leaching loss in farmland. Environmental Pollution & Control, 2008, 30(12): 83-89. (in Chinese)
[9]
WANG J B, XIE J H, LI L L, ADINGO S. Review on the fully mulched ridge-furrow system for sustainable maize production on the semi-arid Loess Plateau. Journal of Integrative Agriculture, 2023, 22(5): 1277-1290.

doi: 10.1016/j.jia.2022.09.023
[10]
ZHANG C, DONG Z Y, GUO Q, HU Z L, LI J A, WEI T, DING R X, CAI T E, REN X L, HAN Q F, ZHANG P, JIA Z K. Ridge-furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in situ experiment. Agricultural Water Management, 2022, 259: 107239.

doi: 10.1016/j.agwat.2021.107239
[11]
韩清芳. “旱地农业高效用水技术”研究新进展. 干旱地区农业研究, 2021, 39(5): 239-240.
HAN Q F. Research progress of high efficiency water use technology for dryland agriculture. Agricultural Research in the Arid Areas, 2021, 39(5): 239-240. (in Chinese)
[12]
邱临静, 周春菊, 李生秀, 薛亮, 王虎, 王林权. 不同栽培模式和施肥方法对旱地冬小麦氮素吸收运转的影响. 植物营养与肥料学报, 2007, 13(3): 355-360.
QIU L J, ZHOU C J, LI S X, XUE L, WANG H, WANG L Q. The effects of different cultivation models and fertilizer application methods on N absorption and translocation of dryland winter wheat. Plant Nutrition and Fertilizer Science, 2007, 13(3): 355-360. (in Chinese)
[13]
苏旺, 屈洋, 冯佰利, 柴岩. 沟垄覆膜集水模式提高糜子光合作用和产量. 农业工程学报, 2014, 30(13): 137-145.
SU W, QU Y, FENG B L, CHAI Y. Photosynthesis characteristics and yield of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in semi-arid region of Northern Shaanxi. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 137-145. (in Chinese)
[14]
REN X, CHEN X, JIA Z. Effect of rainfall collecting with ridge and furrow on soil moisture and root growth of corn in semiarid northwest China. Journal of Agronomy and Crop Science, 2010, 196(2): 109-122.

doi: 10.1111/jac.2010.196.issue-2
[15]
许菁. 垄沟集雨种植春玉米农田的耗水机制与水肥高效利用的调控研究[D]. 杨凌: 西北农林科技大学, 2021.
XU J. Study on the mechanism of spring maize field water consumption and the regulation of efficient utilization of water and fertilizer under ridge-furrow rainwater harvesting planting system[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
[16]
夏桂敏, 罗秀兰, 聂修平, 郑俊林, 迟道才. 不同生育期水分亏缺耦合施氮量对花生光合特性和品质的影响. 农业工程学报, 2022, 38(21): 67-75.
XIA G M, LUO X L, NIE X P, ZHENG J L, CHI D C. Effects of water deficit in different growth stages coupling with nitrogen application rates on photosynthetic traits and quality of peanuts. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(21): 67-75. (in Chinese)
[17]
陈雪娇, 张旭东, 韩治中, 张鹏, 贾志宽, 连延浩, 韩清芳. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献. 作物学报, 2018, 44(7): 1055-1066.

doi: 10.3724/SP.J.1006.2018.01055
CHEN X J, ZHANG X D, HAN Z Z, ZHANG P, JIA Z K, LIAN Y H, HAN Q F. Fertilizer response and its contribution to yield of foxtail millet under ridge-furrow rainfall harvesting planting model in semi-arid areas. Acta Agronomica Sinica, 2018, 44(7): 1055-1066. (in Chinese)

doi: 10.3724/SP.J.1006.2018.01055
[18]
邱临静, 王林权, 李生秀, 张素霞. 旱地不同栽培模式和施肥方法对小麦光合产物积累运转的影响. 土壤通报, 2007, 38(3): 513-518.
QIU L J, WANG L Q, LI S X, ZHANG S X. Effect of different cultivation models and fertilization patterns on the accumulation and transportation of photosynthate for wheat in rain-fed land. Chinese Journal of Soil Science, 2007, 38(3): 513-518. (in Chinese)
[19]
李永平, 刘世新, 贾志宽, 聂俊峰, 曹秀霞, 李明芳. 垄沟集水种植对土壤有效蓄水量及谷子生长、光合特性的影响. 西北农林科技大学学报(自然科学版), 2007, 35(10): 163-167.
LI Y P, LIU S X, JIA Z K, NIE J F, CAO X X, LI M F. Effects of water retaining planting technique under ridge and ditch micro- collection on growth, photosynthetic rate and transpiration rate of dry-land foxtail millet. Journal of Northwest A&F University (Natural Science Edition), 2007, 35(10): 163-167. (in Chinese)
[20]
KANG J A, CHU Y Y, MA G, ZHANG Y F, ZHANG X Y, WANG M, LU H F, WANG L F, KANG G Z, MA D Y, XIE Y X, WANG C Y. Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. The Crop Journal, 2023, 11(2): 638-650.

doi: 10.1016/j.cj.2022.06.010
[21]
任小龙, 贾志宽, 陈小莉, 韩娟, 韩清芳, 丁瑞霞. 半干旱区沟垄集雨对玉米光合特性及产量的影响. 作物学报, 2008, 34(5): 838-845.
REN X L, JIA Z K, CHEN X L, HAN J, HAN Q F, DING R X. Effects of ridge and furrow planting for rainfall harvesting on photosynthetic characteristics and yield in corn in semi-arid regions. Acta Agronomica Sinica, 2008, 34(5): 838-845. (in Chinese)

doi: 10.3724/SP.J.1006.2008.00838
[22]
常闻谦. 水氮耦合对谷子拔节后源库关系作用规律的研究[D]. 杨凌: 西北农林科技大学, 2018.
CHANG W Q. Coupling effects of water and nitrogen on source-sink relationship after jointing in millet[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[23]
王丽萍, 白岚方, 王天昊, 王宵璇, 白云鹤, 王玉芬. 不同施氮水平对青贮玉米植株氮素积累和转运的影响. 作物杂志, 2023(4): 165-173.
WANG L P, BAI L F, WANG T H, WANG X X, BAI Y H, WANG Y F. Effects of different nitrogen levels on nitrogen accumulation and transport in silage maize. Crops, 2023(4): 165-173. (in Chinese)
[24]
王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷农艺性状、产量及氮素利用的影响. 作物杂志, 2023(1): 58-67.
WANG Q, XU Y L, YAN P, DONG H S, ZHANG W, LU L, DONG Z Q. Effects of polyaspartic acid-chitosan on agronomic traits, yield and nitrogen use of spring foxtail millet. Crops, 2023(1): 58-67. (in Chinese)
[25]
ZHAO J K, XU Y F, XU X X, LIU S, HAO T, QU W K, LI M R, SHI Y, ZHAO C X. Effects of supplemental irrigation on grain yield, and water and nitrogen efficiencies of winter wheat in North China Plain. Journal of the Science of Food and Agriculture, 2023, 103(15): 7484-7493.

doi: 10.1002/jsfa.v103.15
[26]
谷晓博, 李援农, 黄鹏, 杜娅丹, 方恒, 陈朋朋. 种植方式和施氮量对冬油菜产量与水氮利用效率的影响. 农业工程学报, 2018, 34(10): 113-123.
GU X B, LI Y N, HUANG P, DU Y D, FANG H, CHEN P P. Effects of planting patterns and nitrogen application rates on yield, water and nitrogen use efficiencies of winter oilseed rape (Brassica napus L.). Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(10): 113-123. (in Chinese)
[27]
YANG Y, QIN Q, LI Q, NANGIA V, LAN B, MO F, LIAO Y C, LIU Y. Effect of nitrogen management on wheat yield, water and nitrogen utilization, and economic benefits under ridge-furrow cropping system with supplementary irrigation. Agronomy, 2023, 13(7): 1708.

doi: 10.3390/agronomy13071708
[28]
任小龙, 贾志宽, 陈小莉, 韩清芳, 韩娟. 模拟降雨量下沟垄微型集雨种植玉米的水温效应. 中国农业科学, 2008, 41(1): 70-77. doi: 10.3864/j.issn.0578-1752.2008.01.009.
REN X L, JIA Z K, CHEN X L, HAN Q F, HAN J. Effect of corn (Zea mays L.) water and temperature of ridge and furrow planting of rainfall harvesting under simulated rainfall conditions. Scientia Agricultura Sinica, 2008, 41(1): 70-77. doi: 10.3864/j.issn.0578-1752.2008.01.009. (in Chinese)
[29]
李慧, 王旭敏, 刘朋召, 刘苗, 王小利, 王瑞, 李军. 耦合效应弥补水氮减量对夏玉米养分吸收和利用的不利影响. 植物营养与肥料学报, 2022, 28(7): 1283-1296.
LI H, WANG X M, LIU P Z, LIU M, WANG X L, WANG R, LI J. Interaction offset the adverse impacts of water and nitrogen reduction on nutrient accumulation and utilization of summer maize. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1283-1296. (in Chinese)
[30]
李玉玲, 张鹏, 张艳, 贾倩民, 刘东华, 董昭芸, 贾志宽, 韩清芳, 任小龙. 旱区集雨种植方式对土壤水分、温度的时空变化及春玉米产量的影响. 中国农业科学, 2016, 49(6): 1084-1096. doi: 10.3864/j.issn.0578-1752.2016.06.005.
LI Y L, ZHANG P, ZHANG Y, JIA Q M, LIU D H, DONG Z Y, JIA Z K, HAN Q F, REN X L. Effects of rainfall harvesting planting on temporal and spatial changing of soil water and temperature, and yield of spring maize (Zea mays L.) in semi-arid areas. Scientia Agricultura Sinica, 2016, 49(6): 1084-1096. doi: 10.3864/j.issn.0578-1752.2016.06.005. (in Chinese)
[31]
刘丹, 安雨丽, 陶笑笑, 王孝忠, 吕典秋, 郭彦军, 陈新平, 张务帅. 西北地区制种玉米产量及氮素吸收对供氮水平的响应. 中国农业科学, 2023, 56(3): 441-452. doi: 10.3864/j.issn.0578-1752.2023.03.004.
LIU D, AN Y L, TAO X X, WANG X Z, D Q, GUO Y J, CHEN X P, ZHANG W S. Effects of different nitrogen gradients on yield and nitrogen uptake of hybrid seed maize in northwest China. Scientia Agricultura Sinica, 2023, 56(3): 441-452. doi: 10.3864/j.issn.0578-1752.2023.03.004. (in Chinese)
[32]
LIAN Y H, ALI S, ZHANG X D, WANG T L, LIU Q, JIA Q M, JIA Z K, HAN Q F. Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas. Agricultural Water Management, 2016, 178: 137-147.

doi: 10.1016/j.agwat.2016.09.021
[33]
史关燕, 王娟菲, 麻慧芳, 赵雄伟. 谷子杂交种产量与主要农艺性状的相关性及回归分析. 作物杂志, 2022(6): 82-87.
SHI G Y, WANG J F, MA H F, ZHAO X W. Correlation and regression analysis between yield and main agronomic traits in foxtail millet hybrids. Crops, 2022(6): 82-87. (in Chinese)
[34]
魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析. 作物杂志, 2018(4): 42-47.
WEI M H, XIE H F, XING L, SONG H, WANG S J, WANG S Y, LIU H P, FU N, LIU J R. Comprehensive evaluation of yield and agronomic characters of foxtail millet germplasms from north China. Crops, 2018(4): 42-47. (in Chinese)
[35]
任月梅. 春播早熟区谷子主要农艺性状相关和通径分析. 内蒙古农业科技, 2004, 32(1): 13-22.
REN Y M. Correlation and path analysis of main agronomic traits of millet in early spring sowing area. Inner Mongolia Agricultural Science and Technology, 2004, 32(1): 13-22. (in Chinese)
[36]
邓浩亮, 张恒嘉, 肖让, 张永玲, 李福强, 王玉才, 俞海英, 吴克倩, 孙克平. 陇中旱塬不同覆盖集雨种植方式对春玉米生长特性和产量的影响. 玉米科学, 2020, 28(3): 135-141.
DENG H L, ZHANG H J, XIAO R, ZHANG Y L, LI F Q, WANG Y C, YU H Y, WU K Q, SUN K P. Effects of different covered-rainwater harvesting planting patterns on growth characteristics and yield of spring maize in semi-arid region in loess plateau. Journal of Maize Sciences, 2020, 28(3): 135-141. (in Chinese)
[37]
密菲瑶, 张腾, 李卓远, 邢英英, 王秀康. 施氮和覆膜对陕北地区玉米生长及氮素转运的影响. 中国农业大学学报, 2023, 28(8): 65-79.
MI F Y, ZHANG T, LI Z Y, XING Y Y, WANG X K. Effects of nitrogen application and plastic mulching on the growth and nitrogen transport of maize in northern Shaanxi Province. Journal of China Agricultural University, 2023, 28(8): 65-79. (in Chinese)
[1] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[2] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[3] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[4] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[5] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[6] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[7] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[8] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[9] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[10] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[11] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[12] QIN Feng, WANG XiaoFei, WU Zhen, HU YiBo, WANG XiaoQin, ZHANG JiaWei, CAI Tie. Effects of Planting Density and Row Spacing Configuration on Sugar Accumulation and Lodging Performance of Wheat Stem Under Rainfall Harvesting Planting Mode [J]. Scientia Agricultura Sinica, 2024, 57(1): 65-79.
[13] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[14] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[15] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!